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ABSTRACT: In this article, three types of time-fractional diffusion equation of distributed order are introduced and some
aspects of these equations are discussed. Using the appropriate joint integral transforms, fundamental solutions of these
equations are obtained through the Fox H functions. The Mellin transform is an approach to change the fundamental

solutions into the Fox H functions.
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INTRODUCTION

The fractional differential operator of distributed order

u da
Dgoz/lb(a)@da, w>120,b()>0, (1)

is a generalization of the single order D$, = d®/dt®
which by considering a continuous or discrete distri-
bution of fractional derivative is obtained. The idea of
fractional derivative of distributed order was stated by
Caputo! and was developed by Caputo himself>? and
Bagley and Torvik*? later. Other researchers used this
idea. For example, Diethelm and Ford® used a numer-
ical technique along with its error analysis to solve a
distributed-order differential equation in engineering
problems. Mainardi’~'?, Chechkin et al''~!3, Umarov
et al'4, Kochubei'®, and Sun et al '© investigated some
linear distributed-order boundary value problems

‘/Ong)(a)D“u(x,t) da = B(D)u(z,t),

d
D=—, t>0, zeR,
dx
with pseudo-differential operator B(D) and the
Cauchy conditions
ak
WU(I,W) = fr(z)
to treat the sub, normal and super diffusions as par-
ticular cases of the time-fractional diffusion equation
of distributed order. These types of diffusion equa-
tions are related to the growth of the second moment

k=0,1,....m—1, (2

(variance) denoted by o?(t). It is a measure for
the spatial spread of u(x,t) with time of a random
walking particle starting at the origin = 0 and
initial condition u(z,0) = d(x). On the nonlinear
distributed-order differential equations applied in the
models of viscoelasticity and system identification
theory, Atanackovic!'”!® studied the existence and
uniqueness of solution for equation

2
on / b(a)Dy(t) da = f(y.1),

where the function y is an unknown function. Now, in
this paper in the distributed-order equations class we
introduce three types of the time-fractional diffusion
equations of distributed order (Klein-Gordon, Fokker-
Planck and Giona-Roman equations of distributed
order) and focus on mathematical aspects and tech-
nical approaches to find the explicit solutions of these
equations. We find the fundamental solutions via the
Fox H functions which is recalled after this section.
We introduce the time-fractional Klein-Gordon equa-
tion of distributed order and using the joint Laplace-
Fourier transform, we obtain the explicit solution via
the Fox H functions. The Mellin transform is an
alternative tool to change the solution into the Mellin-
Barnes integral and construction of the Fox H func-
tions. We proceed to study the time-fractional Fokker-
Planck equation of distributed order and using the
joint Laplace-Hankel transform its explicit solution is
found via the Fox H functions. As a generalization of
Giona-Roman equation, distributed-order case of this
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equation is written and by using the joint Laplace -
L ((z8+1)/(3+1)) transform, (8 = 0), the fundamental
solution of this equation is given in the Laplace type
integral of Fox H functions. This transform is a
special case of the £ 4 transform introduced by Aghili
and Ansari >0

Calf(2):s) = / W (@) e O f(2) da

for the increasing functions A and ®. By writing
some operational theorems for this transform authors
used this transform for solving some partial fractional
differential equations with non constant coefficients.
Finally, the main conclusions are drawn.

FOX H FUNCTION

The Fox H function is a generalized hypergeometric
function defined by means of a Mellin-Barnes type
contour integral:

p,q p.q

H’”"():Hm”[

I
[N}
R
S
T3
<y
—~
V)
N~—
N
Iy
o,
\Elb

where the integrand H is defined in terms of the
Gamma functions

Hpyo(s) =

B(s) = ﬁ [(1—a; + Ajs),

C(s)= ] T —bx+ Bys),
k=m+1

H INEY

Jj=n+1

and the orders (m,n,p,q) are non-negative integers
such that 1 < m < ¢, 0 < n < p. The parameters
A; > 0and By > 0 are positive and a; and by, can be
arbitrary complex such that the poles of the Gamma
function entering the expressions A(s) and B(s) are
simple poles and do not coincide: A;(by + 1) #
Bi(aj —U' —1)with [,I' =0,1,2,...,j=1,...,n
andk=1,...,m

Also, the contour £ can be chosen as three pos-
sible types L0, L_oo, (7 — i00,7 + i0),7 € R.
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Furthermore, depend on the following parameters

I
j=1
p

A=) "Bi—) 4,

k=1 j=1

q p _
ﬂzzbk_zaj'i‘]%?

k=1 j:l
a =" A Z A +ZBk— Z By,

j=1 j=n+1 k=m+1

the choices of the contour £ and convergence domains
for analytic function H can be found. For more details
about this functions such as convergency, analytic
continuation and their applications in applied sciences
the reader is referred to references?!~2°,

Remark 1 In the presence of a multiple pole s(
of order n we need to expand the power series of
the involved functions at the pole and evaluate the
coefficient of the term 1/(s — sg) as the residue. In
this case the expansions of z° and Gamma functions
have the forms

2% = 2%0[1 4 log z(s — s0) + O((s — 50)?)],

[(s) = T(s0)[1 + ¢(s0)(s — s0) + O((s — 50)*)],
s — 89,80 #0,—1,—-2,...
(=D*
+0((s+k)?)], s— —k, k=0,1,2,...

where ¢(z) =T(2)/T'(2).

THE TIME-FRACTIONAL KLEIN-GORDON
EQUATION OF DISTRIBUTED ORDER

The following equation is called the time-fractional
Klein-Gordon equation of distributed order with frac-
tional derivative in the Caputo sense. For the given
order-density function b; («v) and initial and boundary
conditions

/bl( NEDY u(z, t)]do—cugy (z, tHd*u = q(,t),

u(z,0) = f(z), w(r,0)=g(z),
‘ 1|1m u(z,t) =0, t>0,
z,c,d€R, bi(a) =0,

2
/ h(a)da=1, (3)
1


http://www.scienceasia.org/2013.html
www.scienceasia.org

ScienceAsia 39S (2013)

the solution of the time-fractional Klein-Gordon equa-
tion of distributed order is presented in the following
theorem.

Theorem 1 In view of the above conditions, the fol-

lowing relation is the solution of the time-fractional
Klein-Gordon equation of distributed order (3).

) = [ THOG (o — €.1) de
-/ T9(©)Ca(e — £.1) de
- /0 qEmC(r— &t —n)dy, @

where the fundamental solutions G1,G2 and G
(Green’s functions) are denoted as

G (z, 1) ;m/oooe; [H(\f)izHC{fj dr,
o o) S
Gla,t) = 27rc/ A ot H( )drdg,

S

where p,~y are given by relation (13) and the functions
H and H* are expressed in terms of Fox H function
expressed at the end of paper

w(4) =miz [ (il | o
H(”) ‘ZHW) (1, 1): (7, 3<1+%2)]'

Proof: In order to obtain the solution of (3), we extend
the approach by Naber?’ to find the fundamental solu-
tion related to a generic order-density function by ().
In this respect, by applying the Laplace transform with
respect to ¢ on (3)%

L{E D& u(z,t); 8} = s%u(z, ) — s* Lu(w,07)

— 8 2uy(x,0%), s€C, (7)
and the Fourier transform with respect to 2-2°
o0 .
Flusa(estik) = [ e*u(et)do
—00
= —k*u(k,t), keR, (8)

59

we obtain the transformed equation in the form

u(k, s) /1 by (@)s® da — F(k) /1 by(e)s*tda
2
k) /1 by ()
=q(k,5),

which can be rewritten again in the following form
2

F(k)(sBi(s) — s%) — G(k)(Bi(s) — %)

52 da + Ak u(k, s) + d*u(k, s)

u(k,s) = 2B () £ 1)

L dlks)
c2(Bi(s) + k2)’
where F'(k) and G(k) is the Fourier transform of the
functions f(z) and g(x), respectively, and

IS )
)zcz{/lln(a)s da+d”|.

Now, by virtue of the Titchmarsh theorem for the in-
verse Laplace transform 3! of functions 1 (k, s) =
Bi(s)/s™(By(s)+k?) and az(k, s) = 1/s™(B1(s) +
k2), we have the following relation for j = 1,2

71/ e " Im{d;(k,re™)}dr. (12)
™ Jo

In order to simplify the above relation, we need
to evaluate the imaginary part of the functions
fﬁj(k‘,rei“) along the ray s = rel™, r > 0, (where
is the branch cut of the function s®). In this regard, by
writing

10)

Bi(s (11)

i;(h,1) =

Bi(re'™) = pcosyr + ipsiny,
{ p=p(r) = |Bi(rem)|
y=7(r) =

farg[Bl(re )],
and evaluating the imaginary part of the functions
—u;,j=1,2forn=0,1,2

Im{uﬁ(ﬂm}

13)

= Ki(n,k,r)
B k%psin(my) (14)
(=)™ (k* + 2k2p cos(my) + p?)’
Im{l}
s™(Bi(s) + k?)
= Ks(n, k,r)
—psin(my) (15)

(=) (K + 22pcos(my) + %)
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and substituting in the relation (10), we get

a(k,t) = — £k /Oooe_” {Kl(l,k,r)

™

d2
— §K2(17 k,?”)]

Gk d>
— % [K1(2,k’,r) — C—2K2(2, k,r)} dr
1 o0
— @/0 e "q(k,t) *; K2(0,k,7)]dr, (16)

where the symbol *, is the convolution of the Laplace
transform. For the Fourier inversion, since the func-
tion @(k,t) is even in k, the inversion of the above
integral takes the form

u(z,t) = 1 /OOZOS(kx)ﬁ*(k,t) dk,

™

a7

where the function @* (k, t) is given by

¥ (k,t) = f(z) %o {—1/002‘” {K1(1»kﬂ°)

d2
— C—2K2(2, k,r)} dr
—q(z,t) % *m{ 1c? / e " [K5(0,k,7)]dr, }
0
(18)

and the symbol %, is the convolution of the Fourier
transform. In this stage, for evaluating the Fourier
integral (17), we use the Mellin transform for ¢; <
Re(s) < ¢2

M{f(z);s} =F(s) = /°° 571 f(2) de,

1 c+i(;<>

flx) = —/ F(s)x™%ds, c¢=Re(s),
2mi c—ioco

(19)

with convolution theorem

ma(ea(e) =m{ [atin(£) 21— ac 50

(20)
By identifying the Fourier integral (17) as the Mellin
convolution in k and setting £ = 1/x, n = k,

1 1
a(k,t) =a*(k,t), b(k,z)= 71_lm:cos<k>,
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the explicit solution u(x,t) can be written as the
Mellin inversion of product A(s,t)B(s,x), namely

1 1 c+ioco
u(z,t) = ~5 ‘A(s,t)B(s,x)zL'*S ds, (21)

where B(s, x) can be obtained from the handbook by
Erdelyi et al*? as follows

I(l—s)

B(s,z) = m,

0 < Re(s) < 1. (22)
For the required Mellin Transform of A(s,t)

A(s,t) = /Oozol*(k,t)ks‘ldk, (23)
which depend on the terms of brackets in (18)

A(s,t)

_/°° e "t l/oo k2 psin(my)
=) T b [ R costr) § )

kot dk} dr

£ psingry)
c? (k* 4 2k2p cos(my) + p?) |

+/°° e "t l/oo k2psin(my)
o 12 7)oy [(K*+2k2pcos(my) + p?)

d? psin(my) |
- = ES~ldk 3 d
¢ (kT + 2k2p cos(my) + p?) | } '
1 [, (1
+72 e -
e 0 Y
. .
psin(ry) s—1
k*~ - dkpd
/o(k4 + 2k2pcos(my) + p?) } "

(24)

we use the change of variable k> = py and apply the
following integral >2

sin(7y) sl dy

1 [
T /0 y2 + 2ypcos(my) + 1
_ _sin((s — 1)m7)
sin(7s)
7L(s)T'(1 — s)
L(y(s = 1)L —~y(s —1))
lv] < 1,0 < Re(s) < 2,

(25)
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to simplify the relation (24) into

A(s,t)
N s M3 YO R2 )
0 r 2 L) - %)
7d7 (s/2)— L($ra—s3) }dr
2 TOHE-D)IA-~+01-3)

Nt S LR
0 r2 s

2D T(I(- 3

& 2 T L)~ 3
= (PP I(3)

*A ¢ { 2 T(v(3-1)
-y o\,

nuwa—pﬁd

(26)

Finally, by substituting (24) into (21), we can write
the solution u(x,t) with respect to Green’s functions
in the forms of relations (4), (5) and associated Fox H
functions. U

Time fractional wave equation of single order

When we set b(6) = (8 —n), 1 <n < 2,d =0,
(where ¢ is the Dirac delta function) the relation (3)
is converted to time fractional wave equation of single
order n

Opru(z,t) —

C2Umaﬁ (‘ra t) = Q(xa t)7 (27)

and (11) and (13) are written as

n

1, 1
B(s):C—Ts , p:p(r):C—Qr , Y =n.
Also, the transformed equation ﬁ(k, s) in (10), takes
the form

s"UE(k) 4 s"2G(k) + ¢(k, s)

ﬂ(k,s) = o %kQ
C

(28)

Since, the inverse Laplace transform of (s™~™)/(s"+
(1/c?)k?) in (28) can be easily obtained as the Mittag-
Leffler functions of order n?

. gn—m et k2tn
) =R )

— ¢m— 1 Z kztn/c )

T(nj+1)

)

1 [/ 1 )
) + gz, t)*, *t—/ [t”En(—QthTﬂ e ik dk,
o Tl

61

the remaining solution with respect to Fourier inver-
sion can be written as follows

/ |:En (_2k2t7z):| e—lkw dk

T J_ o c

+ g(z) * i/oo 1B, [~ Lr2em )| o di
I ¥ o ool T 2 ¢

l\.')‘}_l

(29)

where *,,*; is the convolutions of the Fourier and
Laplace transforms, respectively. To calculate the
above integrals by writing Fourier kernel in real and
imaginary part according to the following relation

F UK (k);x] = %/O:;os(kx) Re(K (k)) dk
0

% / in(kz) Im(K (k) dk, (30)
0

the explicit solution gives rise to

u(a,t)

= f(z) *4 [; /O°Zos (kx Re< (—th")>
et (L))o
4 9(@) F /00205 (ka) Re< < R ))
(i (3er))a]
() s *t[t; /O cos(kz)

x Re (En (—ék%"))

e (-4

To change the above relation in the Mellin convolution
(20), in a same procedure to pervious section we use

(3D
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the following facts

0 < Re(s) < 2,

tn
CL(k, t) =E, (02]{:2) ;

M 1r(Era-3)
= A(s,z) = 5@7

to get the explicit solution wu(x,t) with respect to
Green’s function in terms of the Mellin-Barnes inte-
gral as follows

) = [ THOG@ - €1 de
i / T9(©O)C (e — £.1) de

oo

t
*/OW”Q(f,n)G(xfﬁ,tfn)dn, (32)

where Green’s function is given by

1 cHe D)1 — $)I(1 —s)
4772ix/c ra-%)

G(z,t) =

—ioco

(;) (;)Sds
11 [ DI (1 - s)
20271 Jone TG 5T — %)

<1) ds,
T

or equivalently

1 1
G(z,t) = —Hlj’2 [

210 33 |

(1,3); (1,5); (1, 5)

(la 5); (17 1)7 (15 5)
Green’s function (34) is similar to the fundamental so-
lution of the space-time fractional diffusion equation
in paper of Mainardi et al®.

Another form of the explicit solution

Also, another form of the explicit solution (4) can
be written in a closed form using the direct Fourier-
Cosine transform with respect to k in (17). For this

www.scienceasia.org
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purpose, we use the following identities *?

Kf(x,r>=fc{ K-psin(m) x}

(k* + 2k2pcos(my) + p2)’

T 1
=— ¢
2y/psin® ()

sin (W; —/px sin(?) ) ,

) —psin(my)
K = ’
5 (@) fc{(k4+2k2pcos(ﬂ"7)+p2)’x}

—+/px cos ((ﬂ"y/2)>

T 1 —+/px cos ((ﬂ’y/2))
= e

2./p3 sin®(m7)
sin(? +\/ﬁxSin(7T2’y>>7 (34)

to write the relation (17) into

) = [ THOG (o — &, 1) de

-/ Tg(©)Cale — £,1) de

— 00

- / qEG(a — €1 —n)dy, (35)

0

where Green’s functions G, G5 and G5 are denoted
as

—1 e ", d*
Gi(z,t) = o), T Ki(z,r)— 6—2K2 (z,r)|dr,
1 0Tt . d2 .
Galant) = 5 [ [ Kt + SR o)
G(z,t) = 5rc2 /—oc/O e K5 (x,7r)drdg,

(36)

provided that the integrals on the right-hand side of
(35) are convergent.

THE TIME-FRACTIONAL FOKKER-PLANCK
EQUATION OF DISTRIBUTED ORDER

In this section, we study the time-fractional Fokker-
Planck equation of distributed order with fractional
derivative in the Caputo sense. This equation is a
generalization of Hassan’s equation® with the order-
density function by(«) and the initial and boundary
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conditions where F'(k) and S(k) is the Hankel transform of the
functions f(r) and s(r), respectively, and

/ ba () [ DGy u(r, t)] da 1
0 . Bsy(s) = / ba(a)s® da + A, (42)
= Upp(r,t) + —ur = A+ s(r) 0

U(T7 O) = f(r)a ‘Tl‘linoo U(ra t) < 0, BQ(T' e”T) = pcosym + ipsinymw,

p=p(r') = |Bilr'e™)|
{7=v() Larg(By (7). )

By the same procedure to the previous problem for
The solution of the time-fractional Fokker-Planck the Laplace inversion via the Titchmarsh theorem, we

equation of distributed order is presented in the fol-  have

lowing theorem. L /oo psin(m) 2F(K) — S(k)]
u(k,t)=—

Theorem 2 In view of the above conditions, there mJo v k*+2k%pcos(my) + p?

holds the following formula for the solution of the ] ) v

time-fractional Fokker-Planck equation of distributed ~ For the inverse Hankel transform, we use its definition

order (37)

1
t>0,r>0,by(a) >0, / ba(a) da = 1.
0
(37)

u(r,t) = /00 kJo(kr)au(k,t) dk, (45)

o0
ulr,t) = / [—MGI(T, 0+ ey, t)} dr, ’
0 " " (38) and apply Parseval’s identity for this transform?’
where Green’s functions G1 and G5 are given by o0 o0
| riwgtrar= [ ek
00 e~ " t 0 0
&= /0 r’ Ho{g(r); k}dk, (46)
0,5);(2,1);(1,3)
22 VP o(0,3)(2,1);(1, 3 dr’ to reduce (44) to
3,6 |:2T (07%)27(171)?”(1’%) "
oo —r't 1 o0

Gri=2 [ ur) = [ rf)

pJo r! T Jo

22[ VP (1,1 2.1) W Mo [ Jolkr)k psin(r7) } ar

27 20 |(1, 35 (1 D3t (14 3, 3 (. 9 (k¥ -+ 2K2p cos(my) + p?)

e} 77‘ t
and p,~y are shown by the relation (43) and (a,b),, is /
denoted as n iterations of (a, b). ) 0
Proof: In order to obtain the solution of (37) using the T /0 @7
Laplace transform with respect to ¢ y [ Jo(kr)psin(ry) }
0 4 2 2
IO DG ulr, 1) 5} = (. 5) — s Lu(, 0F), (K% + 2k%p cos(r) + 7%)
(39) et

and the Hankel transform of zero order with respect to 0 T
29

As a consequence of the above equation by con-

1 oo 1 . . . .
Hod iy + ~ups ke b = / rJo(rk) gy + ~uy | dr, sidering the inverse Hankel transfgrm as the Mellin
r 0 r transform convolution (20) and setting

= —k2u(k,t), (40)

() psin(ry) }

we obtain for s € C, k > 0 alk) = [(k:‘1 + 2k2p cos(my) + p?)

1
Sy BOEE SR k) = s (1) €= =t
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the (47) is converted to

1 /°° T /°° f(r)
™ Jo T 0 T
L /c+ioo M kJQpSiIl(ﬂ"}/)
27 S oo (k* + 2k2p cos(my) + p?)

1 —S
M{kQJO(k:)}T ds}
oo —r't 0o
— l/ 67/ dﬂ/ ﬂ dr
Y 0 T 0 T
R Y —
271 Jelioo (k* 4+ 2k2p cos(my) + p?)

()} o

Now, by substituting the Mellin transform of
(1/k%)J3(1/k)*

)

0 < Re(s) < 1, (49)

u(r, t) =

the desired explicit solution u(r, t) is given by

—/oo i,dt dr’/oo 1)y

o T 0 r

1 [P D1+ $)(-%)
2mi

c—ioo I3(s)
I'(s—
L(H)T ( %)

D=5 +1) (ﬁ)sds}
e [T [T
E N ; %)

r(s—1 —:+1 ( >d8}7 50

(1 -
which can be rewritten with respect to Fox H func-
tions as follows

u(r,t) =

u(r,t) = /000 —mGl(T, t) + @Gg(r, t)dr,

T
(51)
with Green’s functions
oo —r't
G1 ::/ ¢ ;
0 r
0,5);(2,1):(1,3)
H22|:\/ﬁ’ (727 y L)\ g d’l’/7
36 | 2r (07%)’(1’%)’(171)31(1a%)
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1 o] efr't
G2 = */ 7
P Jo r

Hy7 [\/ﬁ (1.3 (2D dr’

(1a%)2;(1’1)37( +, 2) (7’ 2)

provided that the integrals on the right-hand side of
(51) are convergent. [l

THE TIME-FRACTIONAL GIONA-ROMAN
DIFFUSION EQUATION OF DISTRIBUTED
ORDER

In connection with initial-value problems in fractals,
Giona and Roman>*3 stated a partial fractional dif-
ferential equation with non-constant coefficients. The
distributed-order generalization of this equation in
time can be considered as

2r

1/2
/ b3 ()¢ DY u(z, t)] da = —Cax~Puy(z, t),
’ (52)
u(x,O) = f(x)vu(oat) =0,
C>0,820t>0,2>0,b3(a) >0,

1/2
/ bs(a)da =1,
0

with Cauchy type initial and boundary conditions and
order-density function bs(«).

Theorem 3 In view of the above conditions, the fol-
lowing relation is the solution of the time-fractional

Giona-Roman diffusion equation of distributed order
(52).

u(z,t) = /ZﬁGa(xﬁH —uPTU ) f(u) du, (53)
0

where Green’s function G* is given in terms of the Fox
H functions as

oo —r't
G (avt) = V[ peostro)a
0

[ -

1,0
Hy

)

L0 |

[}Lpz sin? () x>
~ psin(r7)
Hég [4/) sin? ()2 © 1)._(1 1) ” dr’.
y 1) (9

Proof: In order to obtain the solution of (52), using
the Laplace transform in time ¢

L{E DG u(r,t); s} = s*iu(x, s) — s*7*

u(z,07),
(54)
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and the L(y5+1)/(g41)) transform in space x 19

L@+ {ule, t); p}
= ﬁ(p, t)
o0 2B+1
= / P e_p5+1ﬁTu(x, t)dx,
0

Rep " >0,

(55)

and using the L,6+1)/(341)) transform of delta-
derivative 6, = 27%d/dx ",

Lizmny g {z ule, t);p} = p"la(p, t)—u(0,1),

(56)
we obtain the transformed equation in the following
form

(p,s) = CZ5(Bs(s) + p70) F(p),

(57

S

where F'(p) is the L((zs+1)/(5+1)) transform of the
function f(z) and the function Bs(s) is given by

1
Bs(s) = 0/2 b3(a)s™ da. (58)
0

As with the previous problems for the Laplace inver-
sion via the Titchmarsh theorem, we have

R 1 [Tt
umw:ffl -

™ r

[ p ! psin(my)

F dr’.
p28+2 4 2pB+1p cos(my) + p? ()| dr

For the inversion of the L£(,s+1)/(341)) transform,
using the complex inversion formula

1 c+ioo )
u(w,t) = o /cﬂocg( 5/, t) P 1)/ (B+1)) dp,
(59)
we get the solution u(z, t) in the form
1 00 o1t
)= —— .
u(x,t) 71_f(ac) * /0 -

1 /C*iw ppsin(ry)
27 Jooiso D? 4 2ppcos(my) + p?’

(@ )/(B11) dp] dr. (60)

where in the above relation the symbol *, is convo-
lution of the £((,5+1)/(341)) transform and is defined
by the following integral >

frg = /m u?g(u) f( TR/ TP~ ubY) du. (61)
0

65

After evaluating the Bromwich integral in (60), we
finally get

u(z,t) = /z uP GO (2P — WP 1) f(u) du, (62)
0

where Green’s function G is given by

—r't

o _ OOe
G- [ 5

x [ p? sin®(my) sin(p sin(ry)z)

e P cos(my)x

— psin(my) cos(psin(ry)z)] dr’,  (63)
or in terms of the Fox H functions
G (x,1)
) e—r’t 10 _
=7 T Hpyy | pcos(my)x 0,1)

X {%pQ sin?(7y)

Hyy {in sin? ()2

Ganon |

— psin(my)

Hyy {in sin? ()2

o |9

provided that the integral on the right-hand side of the
above relation is convergent. ]

CONCLUSIONS

In this paper, we have paid special attention to trans-
form methods for finding the fundamental solutions
(or the corresponding Green’s function) of linear par-
tial time-fractional diffusion equations of distributed
order. We have stressed the importance of the Fourier,
Laplace, Hankel, and Mellin transforms as analytical
approaches for finding exact solutions to these types of
equations. The Mellin transform is a supplementary
tool to write the transformed equations as Mellin-
Barnes integrals and writing the Fox H functions as
the proper and well-suited functions in the solutions
of these equations.
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