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ABSTRACT: When the initial state of an epidemic is uncertain, mathematical descriptions of that epidemic in terms of
initial conditions must be modified by regarding these initial conditions as random variables having particular distribution
functions. In this paper we assume a beta distribution as the initial proportion of infected in an SIR epidemic model.
Numerical simulations are carried out on the various classes of the model as the uncertainties are propagated. The probability
density functions of the random solutions of these classes over time are also calculated numerically. Some properties of the
random solution and the effect of the parameters of the beta distribution on the behaviour of the epidemic are investigated.
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INTRODUCTION

Many mathematical modelling scenarios involve an
inherent level of uncertainty. Naturally there are
differences between a mathematical model and reality
due to inherent uncertainties in the model. This can
happen due to insufficient knowledge about particular
components of the model and the proper values for
the parameters that are a part of the mathematical
model as well as the assumptions adopted during
the modelling process are not completely true. A
situation can also arise when the initial states are
not clearly known. In the SIR epidemic model,
uncertainty can happen when the transmission rates
are not known with certain or are approximated or
when the simulation of an epidemic might require
an educated guess for the initial state of infected
individuals. In this situation, the mathematical model
is not able to describe the dynamic behaviour of the
epidemic completely. Hence, mathematical descrip-
tions of the model must be modified to account for
uncertainty. Randomness is a basic type of objec-
tive uncertainty and in system theory uncertainty is
classically treated in probabilistic form by the theory
of stochastic processes. There are many ways to in-
corporate randomness into quantitative modelling and
simulation. Kegan and West1 investigated the effect of
random initial conditions on the simple deterministic
model for the susceptible-infectious epidemic. They
assumed a beta distribution on the initial proportion
of susceptible. Pollett et al2. also addressed this
problem and they presented a general method for

incorporating random initial conditions in population
models where a deterministic model is sufficient to
describe the dynamics of the population. Enszer and
Stadtherr3 assumed intervals as the uncertainties in
parameters and initial conditions of SIRS model and
other variations of the Kermack-McKendrick models.
They used a method to determine mathematical and
computational guaranteed bounds on the population
trajectories that are possible for given bounds on the
uncertain quantities.

In this paper, we assume a beta distribution as
the random initial state of the infected class in the
SIR model and investigate the effect of random initial
state on the dynamic behaviour of the epidemic. This
model has no analytical solution, for that, numerical
simulations are carried out and some properties of the
random solution are discussed.

THE SIR EPIDEMIC MODEL

The transmission dynamics of infectious disease in a
population are considered, among others, in Refs. 4, 5.
Most models start off with the basic epidemic model
of Kermack and McKendrick6. In the model, the pop-
ulation is divided into disjoint classes (compartments).
An individual in a population is susceptible when they
are healthy, but can become infected (denoted by S).
He is infectious when he is capable of transmitting
the infection (denoted by I). He is in the removed
class when he has recovered from the infection or at
least temporarily with permanent infectious-acquired
immunity or has died because of disease (denoted by
R). Consequently, the SIR epidemic model can be
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written as the following initial value problem:

dS
dt

= −δIS
N

, S(0) = S0 > 0, (1a)

dI
dt

=
δIS

N
− γI, I(0) = I0 > 0, (1b)

dR
dt

= γI, R(0) = R0 = 0, (1c)

where S(t), I(t) and R(t) are the numbers in these
classes and N is the total population size which is
assumed to be fixed (i.e., S(t) + I(t) +R(t) = N for
all t). The parameters δ and γ are the rate of unidirec-
tional transition in the epidemic from susceptible class
to infected class and the rate of unidirectional transi-
tion in the epidemic from infected class to recovered
class, respectively. Dividing (1a), (1b) and (1c) by the
constant total population size N yields

ds
dt

= −δis, s(0) = s0 > 0, (2a)

di
dt

= δis− γi, i(0) = i0 > 0, (2b)

dr
dt

= γi, r(0) = r0 = 0, (2c)

where s(t), i(t) and r(t) are the fractions in the
classes, and s(t) + i(t) + r(t) = 1.

The SIR epidemic model has been used in differ-
ent forms for studying epidemiological processes such
as the spread of HIV7, influenza8 and even smallpox9.
Indeed, there are various forms of the SIR model
including SEIR, SIS, SIRS, and SVIR4. Small and
Tse10 applied the SPIR model (P for prone) to the
spread of SARS.

BETA DISTRIBUTION

The standard beta distribution gives the probability
density of a value x on the interval (0, 1):

Beta(α, β) : prob(x | α, β) =
xα−1(1− x)β−1

B(α, β)
(3)

where B is the beta function

B (α, β) =
∫ 1

0

tα−1(1− t)β−1 dt. (4)

α and β are parameters which work together to de-
termine if the distribution has a mode in the interior
of the unit interval and whether it is symmetrical.
It is clear that when x ∼ Beta[α, β] then (1 −
x) ∼ Beta[β, α]. This probability density function
is a very versatile way to represent outcomes like
proportions or probabilities. Hence it is very useful

to model uncertainty. In this paper we will consider
the initial state of the infected class (i0) of (2b) in
the system (2) to be uncertain, where the uncertainty
takes the form of a distribution. Since i is a fraction
of the total population, the interval [0, 1] is its support.
Consequently, we will choose the beta distribution as
the initial state of the infected class.

In SIR model, the proportion of the total popula-
tion is fixed at any time and equal to one, and the initial
state of the recovered class is equal to zero. Hence the
initial state of the susceptible class (s0 = 1 − i0) is
also random and distributed as Beta[β, α]. By these
assumptions the system (2) becomes

ds
dt

= −δis, s(0) ∼ Beta[β, α], (5a)

di
dt

= δis− γi, i(0) ∼ Beta[α, β], (5b)

dr
dt

= γi, r(0) = 0. (5c)

THE EFFECT OF RANDOMNESS ON THE
SIZE OF AN EPIDEMIC

Let {ik0 ; k = 1, . . . ,m} be a random sample dis-
tributed as a Beta[α, β]. Suppose that ik0 is the initial
state of (5b) of the infected class. Then {sk0 | sk0 =
1− ik0 ; k = 1, . . . ,m} is the initial state of (5a) of the
susceptible class (since rk0 = 0). The set {sk0 ; k =
1, . . . ,m} is also a random sample distributed as a
Beta[β, α].

As we mentioned, (5) cannot be solved analyti-
cally. Hence we investigate the system by finding the
trajectory of the solution with t being the parameter.
Dividing (5b) by (5a) we get

di
ds

=
γ

δs
− 1. (6)

This equation may be integrated to obtain

i+ s− γ

δ
ln s = c (7)

where c is a constant and γ/δ is the basic reproduction
ratio denoted by R0. It is used to determine whether
there will be an epidemic or not. Consider the time
run from zero (the start of the epidemic) to +∞ (after
the epidemic), and assume a random sample of small
numbers ik0 ; k = 1, . . . ,m becomes infected at the
start of the epidemic. Therefore sk0 = 1− ik0 and rk0 =
0 for every k = 1, . . . ,m. Under these considerations,
(7) becomes

ik + sk − γ

δ
ln sk = ik0 + sk0 −

γ

δ
ln sk0 . (8)
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Since ik0 + sk0 = 1, (8) becomes

ik = 1− sk +
γ

δ
ln
sk

sk0
. (9)

Eq. (9) describes the random trajectories of the model,
which shows that sk is always decreasing for all k =
1, . . . ,m. For the random sample ik, sk, we can
rewrite (6) as:

dik

dsk
=

γ

δsk
− 1. (10)

Let dik/dsk = 0. We get sk = δ/γ which is a turning
point of the random function in (9). From (10), we can
see that, for every k = 1, . . . ,m, ik is decreasing for
sk < δ/γ and increasing for sk > δ/γ. The curves of
the function in (10) can be sketched by (9). Now, let
the time in both sides of (8) approach infinity. We get

lim
t→∞

ik+ lim
t→∞

sk− γ
δ

lim
t→∞

ln sk = ik0 +sk0−
γ

δ
ln sk0 .

(11)
Let us consider limt→∞ ik(t) = 0, and
limt→∞ sk(t) = sk∞ > 0 as well as ik0 + sk0 = 1.
Then (11) becomes

sk∞ −
γ

δ
ln sk∞ = 1− γ

δ
ln sk0 . (12)

Eq. (12) describes the proportion of the popula-
tion that remains susceptible and calculates the pro-
portion of the final size of the epidemic (the proportion
of the random sample of the population that has been
infected) which is equal to sk0 − sk∞.

When m = 1 the initial condition of the infected
class (ik0) will be a specific number as will the initial
condition of the susceptible class (sk0 = 1−ik0). Hence
the final size of the epidemic, given by (12), will be
known. If the initial condition of the infected class is
random (uncertain) the final size of the epidemic will
also be random (uncertain).

STATISTICAL PROPERTIES OF THE
RANDOM SOLUTIONS

The behaviour of the probability density function of
the initial state of the infected class with known
statistical properties will affect the behaviour of the
probability density function of the random solution
at any time. The determination of this family of
distribution functions constitutes the solution that will
be obtained numerically since the SIR model has no
closed form solution. Determining the probability
density function of the random solution enables us
to determine a number of the statistical properties
associated with the solution, such as the moments

of the solution. The moments especially the mean
and the variance are surely among the most important
features associated with the random solution.

The probability density function of the solution

The infected density function supposes to be identical
to a beta density function with particular parameters
α and β at the start of the epidemic (t = 0), and
it begins as a right skewed because the initial mean
proportion of infected is designed to be close to 0.20.
Since the total proportion of population size is equal to
one, which is fixed for all time, and the initial state of
recovered class is equal to zero, then the susceptible
density function would be also identical to a beta
density function with particular parameters β and
α. In this situation, the susceptible density function
begins as a left skewed and the initial mean propor-
tion of susceptible would be nearby 0.80. As time
passes, the proportion of susceptible will decrease
due to the unidirectional transition in the epidemic
from susceptible to infected, which will increase and
then decrease due to the unidirectional transition in
the epidemic from infected to recovered class. Thus
the density function of s changes to a right skewed
distribution and the density function of i first changes
to left skewed and then return to right skewed. The
density function of r starts after on unit of time with
the right skewed and then changes to left skewed.
Fig. 1 shows the changing of the probability density
function of the infected class over time.

The parameters α and β affect on the probability
density function of the random solution of the model
at any time, and depending on these two parameters,
the density functions can take on different shapes. The
probability density functions with the smallest values
of α and β have the largest variance, and with lower
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Fig. 1 Changing of density of the proportion of infectious
over time with α = 1 and β = 4 (δ = 1 and γ = 1/3).
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Fig. 2 The PDF of the proportion of infected with different
values of α and β at t = 3 (δ = 1 and γ = 1/3).

variance is the faster function shifts from left to right
skewed or from right to left skewed. Fig. 2 illustrates
the effect of the two parameters of a beta distribution
on the probability density function of the proportion
of infected class.

The means of the proportion classes

The mean of the random solution gives an average
around which it realizes the solution. The means of the
proportions of the three classes, susceptible, infected
and recovered are also obtained numerically. Since the
proportion of susceptible in the SIR epidemic model
will decrease due to the unidirectional transition in
the epidemic from susceptible to infected, which will
increase in the beginning and then will decrease due
to the unidirectional transition in the epidemic from
infected to recovered, the mean proportion of suscep-
tible will decrease over time as time passes, and the
mean proportion of infected will increase and then
decreased over time. The mean proportion of infected
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Fig. 3 Mean proportion of infected over time with different
values of α and β (δ = 1 and γ = 1/3).

will approach zero as time goes to infinity and the
mean proportion of susceptible will approach (µs∞ >
0) as time goes to infinity (after the epidemic). In ad-
dition, the mean proportion of recovered will increase
over time and will also approach (µr∞ < 1) after
the epidemic. The behaviour of the mean proportion
of infected over time for four different values of the
parameters of α and β, where each of these parameters
has the same initial mean proportion of infected (0.2)
is presented in Fig. 3. This figure shows us that
the rate of decrease of the means proportion of the
infected class to zero decreases as α and β decrease.
In addition, this rate decreases fastest for large α and
β. The parameters α and β have the same effect on the
behaviour of the means proportions of susceptible and
recovered over time and they reach their finite µs∞
and µr∞, respectively.

The variances of the proportion classes

The variance or the second moment of the random
solution provides a measure of dispersion for possible
values of the various realizations of the solution at
any given point. The variances of the proportions
of susceptible and infected are designed in this sim-
ulation to be similar, and equal to the variance of a
beta distribution with the parameters α and β. The
variance of a beta distribution is lower with the higher
values of α and β. Thus the height or reduction of
the initial variances of the proportions of susceptible
and infected depends on the parameters α and β.
As time passes, the curves of the variances of the
proportions of susceptible and infected increase at the
early values of t, and then decrease. Moreover, the
curve of the variance of the proportion of recovered
over time decreases at the early values of t, increases
in the middle, and then again decreases. The curves
of the variance of the proportion of infected reach to
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Fig. 4 Variance of the proportion of infected over time with
different values of α and β (δ = 1 and γ = 1/3).
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zero at the later stage of the epidemic for all values
of α and β, and the curves of the variances of the
proportions of susceptible and recovered reach to their
finite Var(s∞) and Var(r∞), respectively, at the end
of the epidemic. Fig. 4 represents the behaviour of
the variance of proportion of infected over time for
different values of α and β. It shows us that, for the
smaller values of α and β, the proportion have the
larger initial variance. These smaller values maintain
the larger variance over time. Furthermore, the rate of
reaching the curves of the variance of the proportion
of infected is faster for lower variance or by another
words for the higher values of α and β. These results
are applicable on the behaviour of the proportions
of susceptible and recovered over time except at two
things; first, the initial variance of recovered class
assumed to be equal to zero. Secondly, the curves of
the variances of these proportions do not reach zero at
the end of the epidemic.

The interquartile range is the range of the middle
50% of values in a rank-ordered distribution. In
other words, it gives the difference between the upper
and lower quartiles for the distribution. Unlike the
variance, the interquartile range does not take all
of a variable’s values into account when depicting
the dispersion of those values. The curves of the
interquartile ranges of the three proportion classes
of the SIR epidemic model have the same types of
behaviour over time as the curves of variances. the
curves of the interquartile ranges of the proportions
of susceptible and recovered reach to Range(s∞) and
Range(r∞) at the end of the epidemic. The types of
behaviour of the interquartile range of infectious class
is presented in Fig. 5.
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Fig. 5 Interquartile ranges of the proportion of infected over
time with different values of α and β (δ = 1 and γ = 1/3).

CONCLUSIONS

Applications of differential equations model in epi-
demiological problems involve several levels of un-
certainties. The SIR epidemic model of infectious
diseases in populations is presented in this paper, and
we have been concerned with the situation where there
is uncertainty in the initial state of the proportion of in-
fected individuals. A beta distribution was applied to
be a random initial state of the proportion of infected
individuals. Since this model is a nonlinear dynamical
system and does not have a close solution, numerical
simulations are used. Assuming a beta distribution
as the initial state of the infected class affect on the
final size of the epidemic that also becomes random
(uncertain). Through the simulation, we considered
how the parameters of a beta distribution affect the
behaviour of the epidemic diseases. The results show
us that the density probability functions of the three
classes take many shapes during the epidemic, and
the variety of α and β affect on the fast or slow
shifting of the densities functions from left to right
skewed or right to left skewed. The means proportion
of infected go to zero for all different values of α
and β, and the rate of increase the mean for its
maximum and decrease to zero is faster for small α
and β. Moreover, the means proportions of suscep-
tible and recovered go to their finite (µs∞ and µr∞,
respectively) for all different values of α and β. The
variances and interquartile ranges of the proportion
of the infected class also go to zero at the end of
an epidemic for all different values of α and β. On
another hand, the variances and interquartile ranges
of the proportions of the susceptible and recovered
classes reach their end values (Var(s∞), Range(s∞)
and Var(r∞), Range(r∞), respectively) which are
greater than zero. The effect of the values of α and β
on the behaviour of the probability density functions
of the random solution and the moments of these
density functions during the epidemic is also studied.
Choosing the values of α and β affect the height or
reduction of the variances of the random solution at
any time, where smaller values of these parameters
have larger variance which will affect the distribution
of the solution at any time.
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