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ABSTRACT: In this paper, we introduce a predator-prey with susceptible and infected prey model. The model includes the
harvesting of infected prey. We assume that the predator avoids the infected prey. The susceptible prey becomes infected
when they are in contact with infected prey and recover to be susceptible again. We find the equilibrium points and the
conditions for their existence and stability. We also show the non-existence of periodic solutions. Numerical simulations
explain the effect of the parameters on the behaviour of the three classes of populations. The simulations also give the region
of the solution and guarantees that all solutions of the system lie within the region.

KEYWORDS: predator-prey, SIS, stability, invariant

INTRODUCTION

Mathematics is one way to explain many of the
ideas and concepts in the sciences. In the field of
ecology, a lot of theoretical studies were carried out
since the beginning of last century to explain the
interaction between the ecological communities. One
particular study describes the interaction between one
population (prey) and the other (predator) living in a
closed environment with the two populations striving
for survival. The basic model is known as the Lotka-
Volterra model. This model was intensively studied
and developed to describe more complicated interac-
tions. A survey of important contributions can be
found in Hethcote1. May and Leonard2 constructed
a model to study the effect of infectious diseases in
predator-prey systems. In their model, the basic epi-
demic model was combined with the Lotka-Volterra
model. Subsequently, many researchers have studied
the effects of a disease in the prey or the predator
on the dynamics of the predator prey system3–6. In
another area of study, researchers have studied the
effect of harvesting the prey or the predator on the
coexistence of both classes of population7–9.

In this paper, we develop a model in which
the prey follows the susceptible-infected-susceptible
cycle. Within this cycle, the infected prey is harvested
and the predators consume the susceptible prey only.
There are many documented cases on this, an example
is the relationship between aquatic snails and fishes as
reported by Holmes et al10. In the following section
we describe the model, to be followed by a study

on the stability of the equilibrium points. Next, we
discuss the nature of the solutions and finally the
numerical simulations to support the model.

MATHEMATICAL MODEL

In this section, we consider the following hypothe-
ses.
(i) The susceptible prey population grows according

to the logistic equation with growth rate r1 > 0,
and carrying capacity K > 0. The infected prey
grows according the logistic equation with growth
rate r2 > 0, and with carrying capacity L > 0.

(ii) The prey follows the susceptible-infected-
susceptible cycle.

(iii) The harvesting is only for the infected prey.
(iv) There is no other source of food for the predator

other than the susceptible prey, if there is no
susceptible prey the predator can die.

(v) The predator cannot be infected.
The model can be written as

dS
dt

= r1S

(
1− S

K

)
− ρSI + βI − γSF,

dI
dt

= r2I

(
1− I

L

)
+ ρSI − βI − qI,

dF
dt

= γ1SF − dF,

(1)

with condition r2 > β+q. In system (1), r1 and r2 are
intrinsic growth rate coefficients of susceptible prey
species and infected prey, respectively, K and L are
their respective carrying capacities, γ is the depletion
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rate coefficient of the prey species due to the predator,
ρ is the rate of the contact between susceptible prey
and infected prey, β is the rate of transformation
from infected prey to susceptible prey, q is the rate
of harvesting of infected prey, γ1 is the growth rate
coefficient of predator due to its interaction with the
susceptible prey, where we assume γ > γ1 and d is the
natural death rate coefficient of the predator species,
also all parameters are positive. System (1) reduces to
the standard prey-predator model without I:

dS
dt

= r1S

(
1− S

K

)
− γSF,

dF
dt

= γ1SF − dF.
(2)

In this case there are two equilibria, E(0, 0) and
Ē(S̄, F̄ ), where S̄ = d/γ1, and

F̄ =
r

γ1

(
1− S̄

K

)
.

EQUILIBRIUM AND STABILITY ANALYSIS

In system (1), there are three equilibrium points. The
first two are: E0(0, 0, 0) and Ẽ(S̃, Ĩ, 0), where

S̃ =
1
ρ

(
β + q − r2

(
1− Ĩ

L

))
,

Ĩ =
r1S̃

ρS̃ − β

(
1− S̃

K

)
.

The third is E∗ = (S∗, I∗, F ∗), where S∗ = d/γ1,

I∗ =
L

r2
(r2 + ρS∗ − (β + q)),

F ∗ =
1
γ

(
r1 −

r1S
∗

K
− ρI∗ +

βI∗

S∗

)
,

with condition (γ1β > ρd). The Jacobian matrix of
system (1) has entries

A11 = r1

(
1− 2S

K

)
− ρI + γF,

A12 = − ρS + β,

A13 = − γS,
A21 = ρI,

A22 = r2

(
1− 2I

L

)
+ ρS − β − q,

A23 = A32 = 0,
A31 = γ1F,

A33 = γ1S − d.

The eigenvalues of equilibrium point E0 are r1 > 0,
r2 − (β + q) > 0, and −d < 0. Thus they are always
unstable. The eigenvalues of Ẽ are γ1S̃ − d and

1
2

[
r1

(
1− 2S̃

K

)
− Ĩ

(
ρ+

r2
L

)
±D 1

2

]
,

where

D =
[
r1

(
1− 2

S̃

K

)
− Ĩ

(
ρ+

r2
L

)]2

+ 4ρĨ
[
r2
ρL

(
r1

(
1− 2S̃

K

)
− ρĨ

)
− ρS̃ + β

]
.

The characteristic equation in the case of E∗ is

λ3 +Aλ2 +Bλ+ C = 0,

where

A = (r2 + ρS∗ − (β + q)) +
r1S

∗

K
+
βI∗

S∗
> 0,

B =
(
r1S

∗

K
+
βI∗

S∗

)
(r2 + ρS∗ − (β + q))

+ γγ1S
∗F ∗ + (ρS∗ − β)ρI∗,

C = (r2 + ρS∗ − (β + q))(γγ1S
∗F ∗) > 0,

and AB > C. From the Routh-Hurwitz criteria E∗ is
locally stable.

Lemma 1 The equilibrium point E∗ is globally sta-
ble.

Proof : Let

V =
(
S−S∗−S∗ ln

S

S∗

)
+ c1

(
I− I∗− I∗ ln

I

I∗

)
+ c2

(
F − F ∗ − F ∗ ln

F

F ∗

)
.

If c2 = γ/γ1 and c1 = 1, we get

dV
dt

=
r1
K

(S − S∗)2 − r2
L

(I − I∗)2

− β
(
I∗

S∗
− I

S

)
(S − S∗) < 0,

if I∗S > S∗I , then E∗ is globally stable under this
condition. �

INVARIANT REGION

In this section, we consider conditions for the co-
existence of the three classes of populations. There
are four cases due to the maximum size of population
of both classes K and L:
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(i) S = K, I = L, F > 0,
(ii) S = K, I < L, F > 0,
(iii) S < K, I = L, F > 0,
(iv) S < K, I < L, F > 0.
In the first case, system (1) becomes as

dS
dt

= −ρKL+ βL− γKF,

dI
dt

= ρKL− βL− qL,

dF
dt

= γ1KF − dF.

(3)

The interior region R3
+ = (K,L, F ∗), where

F ∗ =
L

γK
(β − ρK),

with condition β > ρK. In the second case, when
S = K, I < L. The system (1) becomes as

dS
dt

= −ρKI + βI − γKF,

dI
dt

= r2I

(
1− I

L

)
+ ρKI − βI − qI,

dF
dt

= γ1KF − dF .

(4)

The interior region R3
+ = (K, I∗, F ∗), where

r2

(
1− I

L

)
+ ρK − β − q = 0.

Thus

I∗ =
L

r2
(r2 + ρK − (β + q)),

F ∗ =
L

r2γK
(β − ρK)(r2 + ρK − (β + q)),

with necessary condition β > ρK. In the third case,
when S < K, I = L The system (1) becomes as

dS
dt

= r1S

(
1− S

K

)
− ρSL+ βL− γSF,

dI
dt

= ρSL− βL− qL,

dF
dt

= γ1SF − dF.

(5)

The interior region R3
+ = (S∗, L, F ∗), where

S∗ =
β + q

ρ
=

d

γ1
,

F ∗ =
1
γ

(
r1

(
1− S∗

K

)
− qL

S∗

)
.

In the fourth case, when S < K, I < L. The system
(1) becomes as

dS
dt

= r1S

(
1− S

K

)
− ρSI + βI − γSF,

dI
dt

= r2I

(
1− I

L

)
+ ρSI − βI − qI,

dF
dt

= γ1SF − dF.

(6)

The interior region R3
+ = (S∗, I∗, F ∗), where

S∗ =
d

γ1
,

I∗ =
L

r2
(r2 + ρS − (β + q)),

F ∗ =
1
γS∗

(
r1S

∗
(

1− S∗

K

)
− ρS∗I∗ + βI∗

)
,

with condition βγ1 > ρd. The equilibrium E∗ of the
system (1) is the interior. Thus this equilibrium must
exist in the intersection of these areas. Therefore the
invariant region of system (1) is the intersection of all
these areas.

PROPERTIES OF SOLUTION

In this section, we discuss the solution of the system
(1) when it is bounded, positive, and not periodic.

Lemma 2 The solution of system (1) is bounded and
positive.

Proof : First we define the function w(t) = S(t) +
I(t) + F (t). Then

dw
dt

+ µw(t) =
dS
dt

+
dI
dt

+
dF
dt

+ µS + µI + µF.

We assume 0 < µ < d. Since γ > γ1, we get

dw
dt

+µw(t) 6
(
K(r1 + µ)

2r1

)2

+
(
L(r2 + µ)

2r2

)2

= v.

Then

dw
dt

+ µw(t) 6 v,

0 < w(S, I, F ) 6
v

µ
(1− e−µt) + e−µt(S, I, F ) |t=0 .

This means that the solutions are bounded and posi-
tive. �

Lemma 3 The system (1) has no periodic solution.
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Fig. 1 The low harvesting leads to an increase in the infected
prey.

Proof : For no periodic orbit in this system, we use
Dulac’s criterion and consider the S − I plane. Let

H(S, I) =
1
SI

,

h1(S, I) = r1S

(
1− S

K

)
− ρSI + βI − γSF,

h2(S, I) = r2I

(
1− I

L

)
+ ρSI − βI − qI.

Then

∆(SI) =
∂(h1H)
∂S

+
∂(h2H)
∂I

.

Hence

∆(SI) = − r1
KI
− β

S2
− r2
SL

.

It is clear that there is no change in sign, therefore
this system cannot have any periodic solution in S− I
plane. Also we can show in the S−F plane that there
is no change in sign, so no periodic in S − F plane.
Hence the system has no periodic solution. �

NUMERICAL SIMULATION

In this section, we discuss the effect of effort of
harvest on the disease. First, we fixed all parameters
to ensure all populations survive. Then we find the
effect of harvest on the disease.

When ρ = β, we take these two parameters to
be large. We noticed that the infected prey increases
when there is a low harvest (Fig. 1), and decreases
when there is a large harvest (Fig. 2). When ρ =
β, the two parameters are small (Fig. 3 and Fig. 4).
When ρ > β, the infected prey increases (Fig. 5 and
Fig. 6) but this increase also depends on the amount
of harvest. Unlike the second case, i.e., β > ρ, in this
case the infected prey decreases if the harvest is large
(Fig. 7) or the harvest is low (Fig. 8).
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Fig. 2 The high harvesting leads to a decrease in the infected
prey.
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Fig. 3 The low harvesting leads to an increase in the infected
prey.

CONCLUSIONS

A predator-prey model, where the prey followed
the susceptible-infected-susceptible cycle, was devel-
oped. In order to maintain a healthy population, the
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Fig. 4 The high harvesting leads to a decrease in the infected
prey.
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Fig. 5 The infected prey increasing for ρ > β, q = 0.1.
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Fig. 6 The infected prey increasing for ρ > β, q = 0.5.

infected prey was harvested. To maintain a balance
between the prey and the predator, the harvesting rate
has to be fine-tuned as a result of the rate of infection
and recovery. Conditions for stability of the equilib-
rium points for the two populations were obtained.
Obtained also were the region of the solutions, where
the solutions are bounded. It is also observed that
the increase in harvest affects the disease and thus
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Fig. 7 The infected prey decreasing for β > ρ, q = 0.5.
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Fig. 8 The infected prey decreasing for β > ρ, q = 0.1.

prevents the occurrence of an epidemic.
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