
REVIEW ARTICLE

doi: 10.2306/scienceasia1513-1874.2013.39S.001

ScienceAsia39S (2013): 1–5

A review of dynamic and intelligent honeypots
Wira Zanoramy Ansiry Zakaria ∗, Miss Laiha Mat Kiah

Department of Computer Systems and Technology, Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia

∗Corresponding author, e-mail:wirazanoramy@gmail.com
Received 7 Jan 2013
Accepted 5 Apr 2013

ABSTRACT : A honeypot is a computer resource that is deployed in the network to attract attackers. It is designed to be
attacked and misused by them. The functionality of a honeypot depends on its technical configuration made by the system
administrators. To properly blend in with the environment, a honeypot must be configured to mimic the production hosts
within the network environment which is very dynamic. This paper reviews research on dynamic and intelligent honeypots.

KEYWORDS : intelligent system, case-based reasoning

INTRODUCTION

Nowadays, getting connected to the internet is a very
common need. With all sorts of businesses using
the internet, this has made the environment a place
for cyber-criminals to exercise their illegal activities.
Even though a lot of effort has been made to secure
the internet from cyber-attacks, loopholes for the
attackers still exists. Advanced attackers or worms can
often bypass firewalls and intrusion detection systems.
Attack events that are happening without the consent
of network administrators are a very serious issue.

Because of this, a deception based approach
called a ‘honeypot’ is being used by network ad-
ministrators to detect attacks and understand their
taxonomy. A honeypot is an information system
resource that is covertly deployed inside the network
and purposely designed to be scanned, attacked, and
compromised1. The deception and luring concept of
a honeypot is not new in the world of IT security – it
has already been around for about 20 years. Stoll’s
“Cuckoo’s Egg” and Cheswick’s “An Evening with
Berferd” explain the basic concepts of honeypots2,3.
At that time, the term ‘honeypot’ was not coined yet,
but the idea can be clearly seen in their writings.
Those in the honeypot community took their contri-
butions as a launch pad for expanding the interest and
developments related to honeypot technology.

HONEYPOT BACKGROUND

Definition

A honeypot is a computing resource deployed in the
network in which it is meant to be probed, attacked
or compromised by attackers4. It is an information
resource that is designed to be scanned, attacked and

compromised2,5. By default, a honeypot should have
no interaction activities towards it. It is a resource that
has no production value4.

Any interactions detected on a honeypot will be
automatically considered as malicious. The value of a
honeypot lies in it being probed, scanned, or compro-
mised. The information captured by the honeypot will
be used by network administrators to overcome the
attacks and to enhance the network security measures.

Honeypots can be built in many forms, either
in the form of physical machines, virtual machines
(VMs), or emulated virtual hosts. A physical honey-
pot is a real computing platform that has its own valid
IP address. For example, a computer installed with
Fedora Linux or Windows 7 with running network
services like FTP, Telnet, or SMTP.

A honeypot VM can be built by using virtual-
ization software like VMWare Workstation, Qemu-
KVM, Virtualbox, Parallels Desktop, or User Mode
Linux. By using either of these tools, honeypot VM
can be created with any type of operating system.
This software is installed on a computing platform and
users can create single or multiple VMs running on the
same host platform.

A honeypot can also be built in the form of
emulated virtual hosts. By using tools like Honeyd,
we can emulate thousands of virtual hosts running
different types of operating system on top of a single
machine. Each of these virtual hosts is configured
with a certain behaviour and personality which defines
how the virtual host will respond to attackers’ interac-
tions. For example, a virtual host can be programmed
to contain a Perl script that is emulating a Sendmail
service.

There are two types of honeypots: low-interaction

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39S.001
http://www.scienceasia.org/2013.html
mailto:wirazanoramy@gmail.com
www.scienceasia.org

2 ScienceAsia39S (2013)

and high-interaction honeypots1,6,7. The use of the
word ‘interaction’ here means the degree of interac-
tion allowed between the honeypots and the attackers.
The level of interaction defines how much damage an
attacker can do towards a honeypot6.

Low-interaction honeypots

A low-interaction honeypot has the lowest interaction
capability with an attacker and it is also the simplest
honeypot to set up7. This type of honeypot only
provides minimal services and usually it is in the form
of a virtual host with emulated services, e.g., a virtual
host running an emulated FTP service, built by using
Honeyd7,8. Honeyd is a popular open source low-
interaction honeypot framework that offers a simple
way to emulate virtual hosts on a single machine. As
per writing this article, the current release version is
1.5c. Honeyd is licensed under GNU General Public
License (seewww.honeyd.org). The main advantage
of a low-interaction honeypot is it has the lowest risk
of being taken over by the attacker. This is because
it only offers emulated services to the attacker. The
attacker’s action is limited to what is being offered
by the emulation within the virtual host, and they can
only scan and connect to the offered ports. Another
advantage of a low-interaction honeypot is that it is
easy to deploy and maintain. Its disadvantage is that
the amount of information that can be collected is
minimal.

High-interaction honeypots

A high-interaction honeypot is a complex honeypot
solution because it offers a real operating system or
a suite of real services to attackers7. The high-
interaction capability enables a lot of information to
be collected from the attackers. This information can
be used to investigate the attacker’s tools, motives, and
identity. The ability to gather huge amounts of data
is the main advantage of deploying a high-interaction
honeypot. As for the disadvantages, setting up this
type of honeypot is time-consuming and it is also hard
to maintain1. Furthermore, this type of honeypot has
a higher risk of being hijacked by attackers in order to
launch further attacks9. A honeynet is an example of
high-interaction honeypot. A honeynet is a network of
two or more honeypots that work together in deceiving
and trapping the attackers.

Other classifications of honeypots

Besides the level of interactions, honeypots can also
be categorized based on their form, i.e., whether they
are physical and virtual. For example, a physical
honeypot can be deployed as a Windows desktop

computer with attractive network services such as File
Transfer Protocol, Telnet or Simple Mail Transfer Pro-
tocol. Since this form of honeypot offers a full suite of
an operating system and applications for the attacker
to compromise completely, it is usually classified as
a high-interaction honeypot4. Meanwhile, a virtual
honeypot is usually in the form of a VM or emulation.

Honeypots can also be classified based on their
usage: production and research honeypots2. A pro-
duction honeypot is easy to build and deploy because
it is simple and requires less functionality. It directly
adds value to the security of the organization, aids
discovering attacks, and helps to mitigate risks. It
gathers less information from the attackers than a
research honeypot. A research honeypot is far more
advanced in its ability to gather information about
cyber-criminals. A research honeypot is very capable
of analysing the attackers’ tracks in order to extract
important information about the attackers’ identity,
their origins, their tactics, and the tools they use to
compromise other systems.

According to Refs.10,11, a honeypot can also be
categorized based on its level of adaptability. From
this aspect, honeypots are categorized as dynamic
honeypots or static honeypots. A static honeypot
is a honeypot that will always maintain the same
configuration and exhibits the same appearance to
the attackers all the time, regardless of any changes
occurring within the network. A dynamic honeypot
has the ability to change its appearance automatically
based on the attack towards it or the current network
landscape around it2.

CHALLENGES IN DEPLOYING HONEYPOTS

Several issues have been identified in honeypot de-
ployment. The main challenges are in configuring and
maintaining the honeypots11–13. Since a honeypot is a
deception tool which attracts and lures the attackers
from attacking the real production hosts, its func-
tionality and effectiveness depend on the technical
configuration. Besides that, the honeypot appearance
and behaviour also depend on the configuration. Any
error in configuring it can lead to missed detection or
that the honeypot could fail in trapping the attackers.
Advanced attackers could easily detect the presence of
the honeypot. Even worse, the attacker could use this
poorly configured honeypot to launch further attacks
on the network.

Configuration issues include what type of operat-
ing system the honeypot will be running, how many
TCP and UDP ports to offer, which network services
to emulate, which IP address the honeypot will be
monitoring, what the behaviour of the honeypot to-

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.honeyd.org
www.scienceasia.org

ScienceAsia39S (2013) 3

Table 1 Feature comparison of static and dynamic honeypots.

Feature Static Dynamic

Personality and behaviour Fixed Changes automatically based on condition
Adaptability None Adapt and blend with current environment
Human effort Need to manually re-configure None
Knowledge Prior skill and experience None

wards the attacker is, and whether it should respond to
the attacker’s interactions or be passive11,13,14.

STATIC HONEYPOTS VERSUS DYNAMIC
HONEYPOTS

Basically, honeypots are manually configured by sys-
tem administrators. The configuration remains static
throughout the deployment period, until there is a
new configuration from the administrator. A static
honeypot’s behaviour and IP address are fixed. It
is easier to deploy a static honeypot since we do
not need to maintain or update its behaviour and
configurations15.

The downside of a statically configured honeypot
is that we might miss the attacks (some or all of them)
and the existence of the honeypot is more likely to be
detected by the attackers. A honeypot that is unable
to blend with the current production hosts within
the network will be become visible to the attackers.
Even worse, the detected static honeypot could be
manipulated by the attackers to attack the production
host within the network16.

In contrast to the static honeypot is the dynamic
honeypot. A dynamic honeypot is simply a honeypot
that has the capability to manage and adapt by itself.
At the time of this study, we found that only a few
researchers have worked on this idea of dynamic and
intelligent honeypot that has the capability to manage
and adapt by itself. It is like a fire-and-forget solution,
in which the network administrator does not need
to monitor or manually configure the honeypot in a
timely manner. Since less effort is needed to deploy
such a honeypot, the honeypot configuration is less
prone to error. The most desirable feature is that
this type of honeypot actively adapts to its current
network environment.Table 1compares the features,
strengths, and weaknesses of static and dynamic hon-
eypots.

The behaviour and personality of a static honey-
pot remain the same no matter what changes occur
within the network environment. The honeypot does
not have the capability to nicely blend with the situ-
ation of its network environment. The honeypot be-
haviour remains static regardless of any changes that

happened on the production hosts. Because of this,
the honeypot is less attractive to the attackers. It also
might lose valuable information from the attackers,
such as their tactics and tricks.

RELATED WORK ON DYNAMIC AND
INTELLIGENT HONEYPOTS

A dynamic honeypot has the ability to learn about the
network and then deploy honeypots to appropriately
blend in with the current situation inside the network.
After the deployment, the dynamic honeypots will
continuously monitor the network for any changes
and then it will update the current honeypots con-
figurations based on the changes. For example, if a
network has all Windows-based hosts, the dynamic
honeypots will autonomously deploy Windows hon-
eypots. If a Linux host is being added to the network,
automatically Linux honeypots will be deployed. It
is like some network monitoring software that can
be simply installed in a server, continuously gathers
information about available production hosts, and it
deploys honeypots with suitable configurations and
behaviour.

Basically, a dynamic honeypot consists of three
main modules: information gathering, configuration
engine, and honeypot deployment. The function for
information gathering module is to collect information
from production hosts. For instance, the information
collected is the operating system type, version, patch
version, open ports and uptime. Later, this informa-
tion will be used by the configuration engine module
in order to build a honeypot personality, complete with
its settings and behaviour. The honeypot deployment
module will use this configured personality to deploy
honeypots in the network.

The idea of dynamic and intelligent honeypot has
triggered many researchers from around the world to
take up the challenge to develop dynamic honeypot
systems. For instance, some work has been done by
using available open source tools8,10,14,17,18.

Liu et al designed a dynamic honeypot system
with a different approach8. Instead of using either an
active or passive fingerprint technique, they used both.
They applied an active fingerprint technique with a

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org

4 ScienceAsia39S (2013)

combination of passive techniques. This is to ensure
that the remote OS detection result is as accurate as
possible.

Liu et al and Kuwatly et al approached this prob-
lem by using operating system (OS) fingerprint tools
and a low-interaction honeypot framework8,14. The
tools that they used are almost the same. Nmap, p0f
and Snort are used as the OS fingerprint tools. In a
computer network, we can use this OS fingerprint tool
in order to determine the personality of the remote
host. Information such as its OS type, version, patch
number, list of open ports, host uptime, and host
location can be gathered from such tools.

The open source honeypot framework, Honeyd,
is used to deploy a low-interaction honeypot. The OS
fingerprint tool gathers information from production
hosts and the information will be used to build a
honeypot configuration script which deploys virtual
honeypots in the network. The personality, behaviour,
and location of this virtual honeypot are determined
by the honeypot configuration script.

Leita et al have developed an add-on tool for
Honeyd called ScriptGen17. It is designed to be
completely autonomous and allows the emulation of
any protocol of any kind without any knowledge about
it. This tool has the ability to automatically generate
Honeyd configuration scripts. They analysed the
quality of the generated scripts by launching known
attacks on the machines that run the generated scripts.
Besides that, they also deployed the same machine on
the internet by putting it next to a high-interaction
honeypot for about two months. Their approach
in doing this is much more complicated because it
involves the skills and knowledge of building state
machines.

Hecker et al built a Honeyd Configuration Man-
ager in Perl18. This module actively scans the network
using the active OS fingerprinting tool Nmap. Even
though this approach does disturb the network with
bandwidth consumption, Nmap can detect the state
of ports from a remote host faster than the passive
OS fingerprinting tool. The module triggers Nmap
to use SYN stealth scan, RPC scan, UDP scan, and
OS detection towards the remote hosts. The IP
address assignment is not done automatically. In their
approach, the administrators still need to configure the
generated Honeyd script.

There is some research that implemented the idea
of a catering honeypots framework10. It has the capa-
bility of managing the personality of each honeypot
by offering the services that the attackers are cur-
rently aiming for. The honeypot framework constantly
monitors the network traffic, identifies services that

are currently attractive to the attackers, and deploys
honeypots that run such services. These services are
meant to be the bait to attract the attackers to interact
with the honeypots. During the real implementation
of BAIT-TRAP, they managed to capture a number of
trendy attack incidents.

There are researchers who implemented artificial
intelligence (AI) techniques to build dynamic and
adaptive honeypots. For example, Chowdhary et al
approached this problem with a modification of data-
mining, which they called service mining9. By using
this approach, the honeypots are able to learn about the
behaviour of the running services inside the network.
The behaviour is then extracted from the interactions
that are being produced by the services. Later, an
emulated version of the service is created based on the
learned behaviour. These emulated services behave
like the real services and are run on a honeypot to
distract the attackers from attacking the real services.

Wagener et al approached this problem by using
reinforcement learning in order to make the honeypot
capable of dynamically changing its behaviour based
on the attacker’s interaction11. Apart from luring the
attackers towards the honeypot, their implementation
also has the ability to insult the attackers with the
intention of making the attackers reveal their identity.

FUTURE RESEARCH

A dynamic and intelligent honeypot is such an inter-
esting research problem to work on19. At present,
only two pieces of research have been done which
used an AI approach to build a dynamic honeypot
framework. AI can solve problems efficiently in
many areas such as medical information systems,
economics, real-time control, engineering, prediction
systems, and biometrics. AI approaches such as case-
based reasoning (CBR), expert system (ES), fuzzy
logic, hybrid expert system, intelligent agent and
swarm intelligence are good candidates for building
intelligent honeypots that can learn and adapt to their
environment. For example, by implementing the
techniques in CBR, we can build a honeypot that
is able to configure and maintain itself through past
experiences19. By combining ES and fuzzy logic,
this hybrid system could be used to formulate the
appropriate number of honeypots to deploy and the
number of ports to offer.

Acknowledgements: This study is funded by the Univer-
sity of Malaya Research Grant RG056/11ICT.

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org

ScienceAsia39S (2013) 5

REFERENCES

1. Mokube I, Adams M (2007) Honeypots: concepts,
approaches, and challenges. In:Proceedings of the 45th
Annual Southeast Regional Conference, New York,
pp 321–6.

2. Spitzner L (2003)History and Definition of Honeypots,
Pearson Education, Boston.

3. Chamotra S, Bhatia JS, Kamal R, Ramani AK (2011)
Deployment of a low interaction honeypot in an organi-
zational private network. In:International Conference
on Emerging Trends in Networks and Computer Com-
munications, pp 130–5.

4. Provos N, Holz T (2008)Virtual Honeypots: From Bot-
net Tracking to Intrusion Detection, Addison-Wesley,
Boston.

5. Chin WY, Markatos EP, Antonatos S, Ioannidis S
(2009) HoneyLab: large-scale honeypot deployment
and resource sharing. In:3rd International Conference
on Network and System Security, pp 381–8.

6. Grimes RA (2005)An Introduction to Honeypots,
Apress, Berkeley.

7. Nicomette V, Kâaniche M, Alata E, Herrb M (2011)
Set-up and deployment of a high-interaction honeypot:
experiment and lessons learned.J Comput Virol 7,
143–57.

8. Liu X, Peng L, Li C (2011) The dynamic honeypot
design and implementation based on Honeyd. In: Lin
S, Huang X (eds)Advances in Computer Science,
Environment, Ecoinformatics and Education, Springer,
pp 93–8.

9. Chowdhary V, Tongaonkar A, Chiueh T (2004) To-
wards automatic learning of valid services for honey-
pots. In: Proceedings of the 1st International Confer-
ence on Distributed Computing and Internet Technol-
ogy, New York, p 469.

10. Podhradsky AL, Casey C, Ceretti P (2012) The Blue-
tooth honeypot project. In:Wireless Telecommunica-
tions Symposium, pp 1–10.

11. Wagener G, State R, Engel T, Dulaunoy A (2011)
Adaptive and self-configurable honeypots. In:
IFIP/IEEE International Symposium on Integrated
Network Management, pp 345–52.

12. Hecker C, Hay B (2013) Automated honeynet de-
ployment for dynamic network environment,46th
Hawaii International Conference on System Sciences,
pp 4880–9.

13. Budiarto R, Samsudin A, Heong CW, Noori S (2004)
Honeypots: why we need a dynamics honeypots?
International Conference on Information and Commu-
nication Technologies: From Theory to Applications,
pp 565–6.

14. Kuwatly I, Sraj M, Masri ZA, Artail H (2004) A
Dynamic honeypot design for intrusion detection. In:
Proceedings of the IEEE/ACS International Conference
on Pervasive Services, Washington D.C., pp 95–104.

15. Tian L (2010) Design and implementation of a dis-

tributed intelligent network intrusion detection system.
In International Conference on Electrical and Control
Engineering, pp 683–6.

16. Sardana A, Joshi RC (2008) Autonomous dynamic
honeypot routing mechanism for mitigating DDoS at-
tacks in DMZ. In:16th IEEE International Conference
on Networks, pp 1–7.

17. Leita C, Mermoud K, Dacier M (2005) ScriptGen:
An automated script generation tool for Honeyd. In:
Proceedings of the 21st Annual Computer Security
Applications Conference, pp 203–14.

18. Hecker C, Nance KL, Hay B (2006) Dynamic honeypot
construction. In: 10th Colloquium for Information
Systems Security Education, pp 95–102.

19. Zakaria WZA, Mat Kiah ML (2012) A review on artifi-
cial intelligence techniques for developing intelligent
honeypot. In: Proceedings of the 3rd International
Conference on Next Generation Information Technol-
ogy, Seoul, pp 696–701.

www.scienceasia.org

http://www.scienceasia.org/2013.html
http://dx.doi.org/10.1145/1233341.1233399
http://dx.doi.org/10.1145/1233341.1233399
http://dx.doi.org/10.1145/1233341.1233399
http://dx.doi.org/10.1145/1233341.1233399
http://dx.doi.org/10.1109/ETNCC.2011.5958501
http://dx.doi.org/10.1109/ETNCC.2011.5958501
http://dx.doi.org/10.1109/ETNCC.2011.5958501
http://dx.doi.org/10.1109/ETNCC.2011.5958501
http://dx.doi.org/10.1109/ETNCC.2011.5958501
http://dx.doi.org/10.1109/NSS.2009.65
http://dx.doi.org/10.1109/NSS.2009.65
http://dx.doi.org/10.1109/NSS.2009.65
http://dx.doi.org/10.1109/NSS.2009.65
http://dx.doi.org/10.1007/s11416-010-0144-2
http://dx.doi.org/10.1007/s11416-010-0144-2
http://dx.doi.org/10.1007/s11416-010-0144-2
http://dx.doi.org/10.1007/s11416-010-0144-2
http://dx.doi.org/10.1007/978-3-642-23321-0_14
http://dx.doi.org/10.1007/978-3-642-23321-0_14
http://dx.doi.org/10.1007/978-3-642-23321-0_14
http://dx.doi.org/10.1007/978-3-642-23321-0_14
http://dx.doi.org/10.1007/978-3-642-23321-0_14
http://dx.doi.org/10.1007/978-3-540-30555-2_55
http://dx.doi.org/10.1007/978-3-540-30555-2_55
http://dx.doi.org/10.1007/978-3-540-30555-2_55
http://dx.doi.org/10.1007/978-3-540-30555-2_55
http://dx.doi.org/10.1007/978-3-540-30555-2_55
http://dx.doi.org/10.4018/jitn.2012070101
http://dx.doi.org/10.4018/jitn.2012070101
http://dx.doi.org/10.4018/jitn.2012070101
http://dx.doi.org/10.1109/INM.2011.5990710
http://dx.doi.org/10.1109/INM.2011.5990710
http://dx.doi.org/10.1109/INM.2011.5990710
http://dx.doi.org/10.1109/INM.2011.5990710
http://dx.doi.org/10.1109/HICSS.2013.110
http://dx.doi.org/10.1109/HICSS.2013.110
http://dx.doi.org/10.1109/HICSS.2013.110
http://dx.doi.org/10.1109/HICSS.2013.110
http://dx.doi.org/10.1109/ICTTA.2004.1307887
http://dx.doi.org/10.1109/ICTTA.2004.1307887
http://dx.doi.org/10.1109/ICTTA.2004.1307887
http://dx.doi.org/10.1109/ICTTA.2004.1307887
http://dx.doi.org/10.1109/ICTTA.2004.1307887
http://dx.doi.org/10.1109/PERSER.2004.3
http://dx.doi.org/10.1109/PERSER.2004.3
http://dx.doi.org/10.1109/PERSER.2004.3
http://dx.doi.org/10.1109/PERSER.2004.3
http://dx.doi.org/10.1109/iCECE.2010.174
http://dx.doi.org/10.1109/iCECE.2010.174
http://dx.doi.org/10.1109/iCECE.2010.174
http://dx.doi.org/10.1109/iCECE.2010.174
http://dx.doi.org/10.1109/ICON.2008.4772623
http://dx.doi.org/10.1109/ICON.2008.4772623
http://dx.doi.org/10.1109/ICON.2008.4772623
http://dx.doi.org/10.1109/ICON.2008.4772623
http://dx.doi.org/10.1109/CSAC.2005.49
http://dx.doi.org/10.1109/CSAC.2005.49
http://dx.doi.org/10.1109/CSAC.2005.49
http://dx.doi.org/10.1109/CSAC.2005.49
www.scienceasia.org

