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On some Diophantine problems in 2 X 2 integer matrices
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ABSTRACT: Let F' be an algebraic number field with O its ring of algebraic integers. We find a condition for which the
equation a X" 4+ bY"™ = ¢Z" where a, b, c € O does not hold over a 2 x 2 matrix ring over a ring of algebraic integers.
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INTRODUCTION

Wiles ! proved that Fermat’s equation,
Xt+Yr=2" (1)

has no solution in positive integers if n > 3. In the
matrix case, the answer is different. Domiaty? gave
solutions of 2% + y4 = 2% with z, vy, z of the form

(o)

Li and Le? proved a necessary and sufficient condition
for solvability of (1) for n > 2 over the set A = {AF |
k € N} where A is a 2 x 2 matrix. Cao and Grytzuk*
showed that (1) has no solutions over the set

=5 ) i =

where k is a fixed positive integer which is not a
perfect square.

It is natural to ask about the solvability of the
Fermat-like equation,

aX"+bY" =cZ" 2)

e, f €N,

over 2 x 2 integer matrices. Moreover, since the set of
integers is the ring of integers of the field of rational
numbers, it is natural to ask about a solvability of (2)
over a ring of a 2 X 2 matrix over a ring of integers
of a number field. Our objective here is to show some
conditions on a 2 x 2 matrix so that (2) does not hold
over a ring of algebraic integers.

MAIN RESULTS

We consider the equation
aX™4+0Y" =cZ" 3)
where X, Y, Z e A,neN,n> 2.

Theorem 1 Let

=)

be an integer matrix having two distinct non-zero real
eigenvalues o and 3 and o > 1. Let a, b, ¢ be positive
integers such that a > b > c. Then (3) has no solution
(X,Y, Z,n) for every natural number n > N where

_ logfa/c] +1log2
N log o '

- )

be an integer matrix having two distinct non-zero real
eigenvalues v and $ and o > 1. Then there exists a
nonsingular matrix P such that A = P~ DP where

a 0
b= (5 9).
By induction, we have AF = P-1DkpP for k > 1.

Suppose on the contrary that for some n > N, (3)
holds, i.e., aA*™ + bA™ = ¢ A™" Then we have

N

Proof: Let

&akn + bOéln _ Camn) (4)
af*" + b = ™" (5)
Dividing (4) by ca™",

b
ga(kfm)n + 7a(l7m)n = 1.
&

Since a/c > b/c > 1 and a > 0, we have

’79—‘ a(k—’ﬂl)n > ga(k—’m)n
C C
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and

S

’79—‘ a(l—m)n > 7a(l—m)n.
C C
Thus
[a/d (a(kfm)n + a(lfm)n)
a (k—m)n 9 (I—m)n _
> CO& + CO( =1. (6)

Therefore
1

[a/c]’

Since o > 1, we have 0 < a~! < 1. Note that both
(k — m)n and (I — m)n are negative otherwise

O[(kfm)n + Oé(lfm)n >

)

aa(kfm)n bo‘(lfm)n

+ > 1.
c c

Since n > N, we have
loga™ > log [a/c] + log 2.
Then o™ > 2[a/c]. So we have

_n 1
(6] < 9 I_a/d .
Since (k — m)n, (I —m)n < —1, we have
1
(k—m)n (I—m)n —-n
« + <207 <
[a/c]

which contradicts (7). This completes the proof. [
Example 1 Takinga =b =c=1and

0 1
()
Then the eigenvalues of A are (1 + v/5)/2. By
Theorem 1 the equation
Akn+Aln — A™mn

has no solution for n > 1, which is due to Grytzuks.

< )

be an integer matrix satisfying the assumptions of
Theorem 1. Let a, b, ¢ be positive integers such that
a > 2cand a = b = a — c. Then for every natural
number n > N where

Corollary 1 Let

N — 2log 2
log «v
the equation
aA} +bA} = (a — ¢)A}, (8)

does not hold.
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Proof: Since a > 2¢, we have ¢/(a — ¢) > 1. Then

el =[] e e

Applying Theorem 1 we show that the equation a A} +
bA? = (a — ¢) A7, has no solutions forn > N. O

Example 2 Takinga =2,b=c=1and

(1Y)

Then the eigenvalues of A are 1+ /2. By Corollary 1
the equation
QAT 4 AP = A", ©)

has no solution for n > 2.

Next, let ' be an algebraic number field and Op
be its ring of integers. Let k, d € Op — {0}. Define

wn={(s ) [eseorly |-}

We now consider (3) over the set F'(k, d). We first use
the following lemma.

evfGOFa

Lemma 1 (Ref. 4) For any positive integer n we have
e f\'_ (B Fu
kf e/ — \kF, E,

1 n __ AQn
ﬁ(a 8",
a:e—i—f\/E B:e—f\/E.

where

En:%(an"_ﬁn)a Fn:

We now establish our main theorem on the Fermat-
like equation over F'(k, d). Our method is based on a
proof by Cao and Grytzuk*.

Theorem 2 Let a, b, ¢, d, k € Op\{0}. If VA ¢
F(VE) where A = (a®+b*—c?)%—4a?b? then (3) has
no nontrivial solution over F(k,d) for any positive
integer n.

Proof: Suppose on the contrary that (3) has a solution
in F(k,d) for some positive integer n. Let

(e f (e [
=G 0 =G b)
_ (e
Z<k;3 €2>'
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By Lemma 1, we have
Ey(Ll) Fr(zl) E’SLQ) F7$2)
e B0 ) T T e 52
o
- \kEP EP )

where E(Y) = (o + B, B = ﬁ(a? - B,

a; = e; + fiv'k, and 3; = e; — f;v/k. We then have

aEW +bE® = cE®), (10)
aFM) +bF?) = cF®). (11)

From the above equations we have
aal’ + afy +bay + 0By = cay +cfy,  (12)
aal —afy +bay —bBy =cafy —cfy.  (13)

From (12) and (13) we have

aal + bag = cay, (14)
aB} +bpy = cpy. (15)

From (14) and (15) we obtain
aza?ﬁf + abal By + abal BT + bzagﬁg = CQagﬂg.
(16)
Since «;5; = d we have
(a? + 0% — A)d" + ab(a} By + a5 B7) = 0. (17)
Since d # 0, 5; # 0foralli. Letx = (81/P2)™. Note

that z € F(v/k). Since o; = d/3; for all i, from (17),
we have

dpBa\" dsi\"
a? +b%—c" d”+ab(<) + () ) =0,
( ) B1 B2
1
d"(a® +b* — %) + d"ab (m + x) =0.
Since d # 0, we have

abx? + (a® +b* — ) + ab = 0.

Solving for x, we obtain

—(a®> +b% —c?) £ \/(a2 + b2 — 2)2 — 4a2b?

2ab
If VA = /(a2 + 02 — )2 — 4a20? ¢ F(Vk), then
x ¢ F(vk). This is a contradiction. O
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Example 3 Takinga =i+ 1, b =c =14,k € N,
deZ—{0}and F = Q(i). Then A = —4 + 84, so
VA ¢ Q(i). Thus by Theorem 2 the equation

4+ 1D)X"4+4iY" =iZ",
has no solutions over F'(k, d) for positive integer n.

Corollary 2 Let F be a real number field. Let a, b, c,
d, k € Op. If a,b,c, k are positive and |b — ¢| < a <
b + c then the equation

aX" +bY" =cZ"

has no solutionin X, Y, Z € F(k,d) for any positive
integer n.

Proof: If |b—c| < a < b+ cthen A = (a® + b* —
?)? — 4a®p® < 0. Thus VA ¢ F(VE). We then
apply Theorem 2 to obtain a result. (]

Example 4 Takinga =b=c=1,k€eN,d € Z —
{0} and F = Q. Then A = —3. Thus by Theorem 2
the equation X” 4+ Y™ = Z™ has no solution over
F(k, d) for any positive integer n. This result is due
to Cao and Grytczuk* for n > 3.
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