RESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2013.39.653

On some Diophantine problems in 2×2 integer matrices

Walisa Intrarapak, Supawadee Prugsapitak*

Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Hatyai, Songkla 90110 Thailand

*Corresponding author, e-mail: supawadee.p@psu.ac.th

Received 21 Sep 2012 Accepted 13 Nov 2013

ABSTRACT: Let F be an algebraic number field with O_F its ring of algebraic integers. We find a condition for which the equation $aX^n + bY^n = cZ^n$ where $a, b, c \in O_F$ does not hold over a 2×2 matrix ring over a ring of algebraic integers.

KEYWORDS: Fermat's equation, 2×2 matrix

INTRODUCTION

Wiles¹ proved that Fermat's equation,

$$X^n + Y^n = Z^n, (1)$$

has no solution in positive integers if $n \ge 3$. In the matrix case, the answer is different. Domiaty² gave solutions of $x^4 + y^4 = z^4$ with x, y, z of the form

$$\begin{pmatrix} 0 & * \\ 1 & 0 \end{pmatrix}.$$

Li and Le³ proved a necessary and sufficient condition for solvability of (1) for n > 2 over the set $\mathbb{A} = \{A^k \mid k \in \mathbb{N}\}$ where A is a 2×2 matrix. Cao and Grytzuk⁴ showed that (1) has no solutions over the set

$$G(k,d) = \left\{ \begin{pmatrix} e & f \\ kf & e \end{pmatrix} \middle| e, f \in \mathbb{N}, \begin{vmatrix} e & f \\ kf & e \end{vmatrix} = d \right\}$$

where k is a fixed positive integer which is not a perfect square.

It is natural to ask about the solvability of the Fermat-like equation,

$$aX^n + bY^n = cZ^n \tag{2}$$

over 2×2 integer matrices. Moreover, since the set of integers is the ring of integers of the field of rational numbers, it is natural to ask about a solvability of (2) over a ring of a 2×2 matrix over a ring of integers of a number field. Our objective here is to show some conditions on a 2×2 matrix so that (2) does not hold over a ring of algebraic integers.

MAIN RESULTS

We consider the equation

$$aX^n + bY^n = cZ^n \tag{3}$$

where $X, Y, Z \in \mathbb{A}, n \in \mathbb{N}, n > 2$.

Theorem 1 Let

$$A = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

be an integer matrix having two distinct non-zero real eigenvalues α and β and $\alpha > 1$. Let a, b, c be positive integers such that $a \ge b \ge c$. Then (3) has no solution (X, Y, Z, n) for every natural number n > N where

$$N = \frac{\log \left\lceil a/c \right\rceil + \log 2}{\log \alpha}.$$

Proof: Let

$$A = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

be an integer matrix having two distinct non-zero real eigenvalues α and β and $\alpha > 1$. Then there exists a nonsingular matrix P such that $A = P^{-1}DP$ where

$$D = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

By induction, we have $A^k = P^{-1}D^kP$ for $k \ge 1$. Suppose on the contrary that for some n > N, (3) holds, i.e., $aA^{kn} + bA^{ln} = cA^{mn}$. Then we have

$$a\alpha^{kn} + b\alpha^{ln} = c\alpha^{mn},\tag{4}$$

$$a\beta^{kn} + b\beta^{ln} = c\beta^{mn}.$$
(5)

Dividing (4) by $c\alpha^{mn}$,

$$\frac{a}{c}\alpha^{(k-m)n} + \frac{b}{c}\alpha^{(l-m)n} = 1.$$

Since $a/c \ge b/c \ge 1$ and $\alpha > 0$, we have

$$\left\lceil \frac{a}{c} \right\rceil \alpha^{(k-m)n} \geqslant \frac{a}{c} \alpha^{(k-m)n}$$

and

654

$$\left[\frac{a}{c}\right] \alpha^{(l-m)n} \ge \frac{b}{c} \alpha^{(l-m)n}$$

Thus

$$[a/c] (\alpha^{(k-m)n} + \alpha^{(l-m)n})$$

$$\geqslant \frac{a}{c} \alpha^{(k-m)n} + \frac{b}{c} \alpha^{(l-m)n} = 1.$$
(6)

Therefore

$$\alpha^{(k-m)n} + \alpha^{(l-m)n} \ge \frac{1}{\lceil a/c \rceil}.$$
(7)

Since $\alpha \ge 1$, we have $0 < \alpha^{-1} \le 1$. Note that both (k-m)n and (l-m)n are negative otherwise

$$\frac{a\alpha^{(k-m)n}}{c}+\frac{b\alpha^{(l-m)n}}{c}>1.$$

Since n > N, we have

$$\log \alpha^n > \log \left\lceil a/c \right\rceil + \log 2.$$

Then $\alpha^n > 2\lceil a/c \rceil$. So we have

$$\alpha^{-n} < \frac{1}{2\left\lceil a/c\right\rceil}.$$

Since (k-m)n, $(l-m)n \leq -1$, we have

$$\alpha^{(k-m)n} + \alpha^{(l-m)n} \leqslant 2\alpha^{-n} < \frac{1}{\lceil a/c \rceil}$$

which contradicts (7). This completes the proof. $\hfill \Box$

Example 1 Taking a = b = c = 1 and

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Then the eigenvalues of A are $(1 \pm \sqrt{5})/2$. By Theorem 1 the equation

$$A^{kn} + A^{ln} = A^{mn}$$

has no solution for n > 1, which is due to Grytzuk⁵.

Corollary 1 Let

$$A = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

be an integer matrix satisfying the assumptions of Theorem 1. Let a, b, c be positive integers such that $a \ge 2c$ and $a \ge b \ge a - c$. Then for every natural number n > N where

$$N = \frac{2\log 2}{\log \alpha}$$

the equation

$$aA_k^n + bA_l^n = (a-c)A_m^n \tag{8}$$

does not hold.

Proof: Since $a \ge 2c$, we have $c/(a-c) \ge 1$. Then

$$\left\lceil \frac{a}{a-c} \right\rceil = \left\lceil \frac{a-c+c}{a-c} \right\rceil = \left\lceil 1 + \frac{c}{a-c} \right\rceil = 2.$$

Applying Theorem 1 we show that the equation $aA_k^n + bA_l^n = (a - c)A_m^n$ has no solutions for n > N. \Box

Example 2 Taking a = 2, b = c = 1 and

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$

Then the eigenvalues of A are $1 \pm \sqrt{2}$. By Corollary 1 the equation

$$2A_k^n + A_l^n = A_m^n \tag{9}$$

has no solution for $n \ge 2$.

Next, let F be an algebraic number field and O_F be its ring of integers. Let $k, d \in O_F - \{0\}$. Define

$$F(k,d) = \left\{ \begin{pmatrix} e & f \\ kf & e \end{pmatrix} \middle| e, f \in O_F, \left| \begin{matrix} e & f \\ kf & e \end{matrix} \right| = d \right\}.$$

We now consider (3) over the set F(k, d). We first use the following lemma.

Lemma 1 (Ref. 4) For any positive integer n we have

$$\begin{pmatrix} e & f \\ kf & e \end{pmatrix}^n = \begin{pmatrix} E_n & F_n \\ kF_n & E_n \end{pmatrix}$$

where

$$E_n = \frac{1}{2}(\alpha^n + \beta^n), \quad F_n = \frac{1}{2\sqrt{k}}(\alpha^n - \beta^n),$$
$$\alpha = e + f\sqrt{k}, \quad \beta = e - f\sqrt{k}.$$

We now establish our main theorem on the Fermatlike equation over F(k, d). Our method is based on a proof by Cao and Grytzuk⁴.

Theorem 2 Let $a, b, c, d, k \in O_F \setminus \{0\}$. If $\sqrt{\Delta} \notin F(\sqrt{k})$ where $\Delta = (a^2+b^2-c^2)^2-4a^2b^2$ then (3) has no nontrivial solution over F(k, d) for any positive integer n.

Proof: Suppose on the contrary that (3) has a solution in F(k, d) for some positive integer n. Let

$$X = \begin{pmatrix} e_1 & f_1 \\ kf_1 & e_1 \end{pmatrix}, \quad Y = \begin{pmatrix} e_2 & f_2 \\ kf_2 & e_2 \end{pmatrix},$$
$$Z = \begin{pmatrix} e_3 & f_3 \\ kf_3 & e_3 \end{pmatrix}.$$

ScienceAsia 39 (2013)

By Lemma 1, we have

$$\begin{split} X^n &= \begin{pmatrix} E_n^{(1)} & F_n^{(1)} \\ kF_n^{(1)} & E_n^{(1)} \end{pmatrix}, \quad Y^n = \begin{pmatrix} E_n^{(2)} & F_n^{(2)} \\ kF_n^{(2)} & E_n^{(2)} \end{pmatrix}, \\ Z^n &= \begin{pmatrix} E_n^{(3)} & F_n^{(3)} \\ kF_n^{(3)} & E_n^{(3)} \end{pmatrix}, \end{split}$$

where $E_n^{(i)} = \frac{1}{2}(\alpha_i^n + \beta_i^n)$, $F_n^{(i)} = \frac{1}{2\sqrt{k}}(\alpha_i^n - \beta_i^n)$, $\alpha_i = e_i + f_i\sqrt{k}$, and $\beta_i = e_i - f_i\sqrt{k}$. We then have

$$aE_n^{(1)} + bE_n^{(2)} = cE_n^{(3)}, (10)$$

$$aF_n^{(1)} + bF_n^{(2)} = cF_n^{(3)}.$$
 (11)

From the above equations we have

$$a\alpha_1^n + a\beta_1^n + b\alpha_2^n + b\beta_2^n = c\alpha_3^n + c\beta_3^n, \quad (12)$$

$$a\alpha_1^n - a\beta_1^n + b\alpha_2^n - b\beta_2^n = c\alpha_3^n - c\beta_3^n.$$
(13)

From (12) and (13) we have

$$a\alpha_1^n + b\alpha_2^n = c\alpha_3^n, \tag{14}$$

$$a\beta_1^n + b\beta_2^n = c\beta_3^n. \tag{15}$$

From (14) and (15) we obtain

$$a^{2}\alpha_{1}^{n}\beta_{1}^{n} + ab\alpha_{1}^{n}\beta_{2}^{n} + ab\alpha_{2}^{n}\beta_{1}^{n} + b^{2}\alpha_{2}^{n}\beta_{2}^{n} = c^{2}\alpha_{3}^{n}\beta_{3}^{n}.$$
(16)

Since $\alpha_i \beta_i = d$ we have

$$(a^{2} + b^{2} - c^{2})d^{n} + ab(\alpha_{1}^{n}\beta_{2}^{n} + \alpha_{2}^{n}\beta_{1}^{n}) = 0.$$
 (17)

Since $d \neq 0$, $\beta_i \neq 0$ for all *i*. Let $x = (\beta_1/\beta_2)^n$. Note that $x \in F(\sqrt{k})$. Since $\alpha_i = d/\beta_i$ for all *i*, from (17), we have

$$(a^2 + b^2 - c^n)d^n + ab\left(\left(\frac{d\beta_2}{\beta_1}\right)^n + \left(\frac{d\beta_1}{\beta_2}\right)^n\right) = 0,$$
$$d^n(a^2 + b^2 - c^2) + d^nab\left(\frac{1}{x} + x\right) = 0.$$

Since $d \neq 0$, we have

$$abx^{2} + (a^{2} + b^{2} - c^{2})x + ab = 0.$$

Solving for x, we obtain

$$x = \frac{-(a^2 + b^2 - c^2) \pm \sqrt{(a^2 + b^2 - c^2)^2 - 4a^2b^2}}{2ab}$$

If $\sqrt{\Delta} = \sqrt{(a^2 + b^2 - c^2)^2 - 4a^2b^2} \notin F(\sqrt{k})$, then $x \notin F(\sqrt{k})$. This is a contradiction.

Example 3 Taking a = i + 1, b = c = i, $k \in \mathbb{N}$, $d \in \mathbb{Z} - \{0\}$ and $F = \mathbb{Q}(i)$. Then $\Delta = -4 + 8i$, so $\sqrt{\Delta} \notin \mathbb{Q}(i)$. Thus by Theorem 2 the equation

$$(i+1)X^n + iY^n = iZ^n$$

has no solutions over F(k, d) for positive integer n.

Corollary 2 Let F be a real number field. Let a, b, c, d, $k \in O_F$. If a, b, c, k are positive and |b - c| < a < b + c then the equation

$$aX^n + bY^n = cZ^n$$

has no solution in $X, Y, Z \in F(k, d)$ for any positive integer n.

Proof: If |b - c| < a < b + c then $\Delta = (a^2 + b^2 - c^2)^2 - 4a^2b^2 < 0$. Thus $\sqrt{\Delta} \notin F(\sqrt{k})$. We then apply Theorem 2 to obtain a result.

Example 4 Taking a = b = c = 1, $k \in \mathbb{N}$, $d \in \mathbb{Z} - \{0\}$ and $F = \mathbb{Q}$. Then $\Delta = -3$. Thus by Theorem 2 the equation $X^n + Y^n = Z^n$ has no solution over F(k, d) for any positive integer n. This result is due to Cao and Grytczuk⁴ for $n \ge 3$.

Acknowledgements: The author is indebted to a referee for their helpful comments and suggestions. The research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

REFERENCES

- 1. Wiles A (1995) Modular elliptic curves and Fermat's Last theorem. *Ann Math* **141**, 443–551.
- 2. Domiaty RZ (1966) Solution of $x^4 + y^4 = z^4$ in 2×2 integral matrices. *Amer Math Mon* **73**, 613.
- Li C, Le M (1995) A note on Fermat's equations in integral 2×2 matrices. *Discuss Math Algebra Stoch Meth* 15, 135–6.
- Cao Z, Grytzuk A (1998) Fermat's type equation in the set of 2 × 2 integral matrices. *Tsukuba J Math* 22, 637–43.
- Grytzuk A (1995) On Fermat's equation in the set of integral 2 × 2 matrices. *Period Math Hung* 30, 79–84.