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ABSTRACT: We prove the Hyers-Ulam stability of an alternative Jensen’s functional equation (f(x)+f(y))/2 = ±f((x+
y)/2) in the class of mappings from 2-divisible abelian groups to Banach spaces.
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INTRODUCTION

The problem of the equivalence of the alternative
Cauchy functional equation

(f(x+ y))2 = (f(x) + f(y))2 (1)

and the Cauchy functional equation

f(x+ y) = f(x) + f(y) (2)

dates back to the work of Hosszú and the work
of Vincze referenced in a publication by Kuczma1.
There are also a few variations of (1), for instance,
a more general alternative equation(

cf(x+ y)− af(x)− bf(y)− d
)
×(

f(x+ y)− f(x)− f(y)
)
= 0,

which has completely been solved by Forti2. Another
remarkable result on the alternative Cauchy functional
equation

f(xy)− f(x)− f(y) ∈ {0, 1}

where f is a function from a group or a semigroup to
R was recently published in Ref. 3.

Another famous equation that is closely related to
the Cauchy functional equation is Jensen’s functional
equation

1

2
(f(x) + f(y)) = f

(
x+ y

2

)
. (3)

The solution of (3) on groups can be found in the pa-
pers by Ng4 or Parnami5. Similarly to the problem of
equivalence of (1) and (2), the author6 has previously
solved the alternative Jensen’s functional equation

1

2
(f(x) + f(y)) = ±f

(
x+ y

2

)
(4)

on semigroups. But a stability problem of (4) has not
yet been investigated.

In this paper, we will prove the Hyers-Ulam
stability (cf. Hyers7, Aoki8, Bourgin9, Rassias10 and
Gavruta11) of (4) for the class of mappings f from
a 2-divisible abelian group (G,+) to a Banach space
(E, ‖ · ‖). Namely, for every ε > 0, we will prove
that there exist δ+, δ− > 0 such that for a mapping
f : G→ E satisfying the alternative inequalities∥∥∥∥12(f(x) + f(y)) + f

(
x+ y

2

)∥∥∥∥ 6 δ+ (5)

or
∥∥∥∥12(f(x) + f(y))− f

(
x+ y

2

)∥∥∥∥ 6 δ−, (6)

for every x, y ∈ G, there exists a unique Jensen’s
mapping J : G→ E satisfying (3) with J(0) = f(0)
such that

‖f(x)− J(x)‖ 6 ε

for every x ∈ G. For some previous results on the
stability of Jensen’s functional equation, readers may
consult, for example, Kominek12, Jung13, Faı̆ziev14,
and Kenary15.

In the subsequent sections, we will start with a
derivation of lemmas that bound Jensen’s differences
(5) and (6) when some alternatives have been decided.
All those lemmas will compose another important
lemma that will eventually establishes the equivalence
of (3) and (4), as well as the Hyers-Ulam stability of
the alternative Jensen’s functional (4).

AUXILIARY LEMMAS

Throughout the paper, we will consider the class of
mappings from a 2-divisible abelian group (G,+) to
a Banach space (E, ‖ · ‖). For convenience, we will
denote Jensen’s differences (5) and (6) of a mapping
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f : G→ E by

D+
f (x, y) =

1

2
(f(x) + f(y)) + f

(
x+ y

2

)
, (7)

D−f (x, y) =
1

2
(f(x) + f(y))− f

(
x+ y

2

)
. (8)

We will let δ+ > 0 and δ− > 0 be the bounds of (7)
and (8), respectively, that is

‖D+
f (x, y)‖ 6 δ

+ or ‖D−f (x, y)‖ 6 δ
− (9)

for every x, y ∈ G.
One way to make the Hyers-Ulam stability of (4)

feasible is to attempt to bound D−f (x, y) for every
x, y ∈ G. We can readily see that the alternative
‖D−f (x, y)‖ 6 δ− in (9) poses no difficulty, while
the alternative ‖D+

f (x, y)‖ 6 δ+ becomes a real chal-
lenge. All lemmas in this section take the assumption
‖D+

f (x − 2y, x + 2y)‖ 6 δ− and will attempt to
bound D−f (x − 2y, x + 2y) by making meaningful
observations of f at the points x−2y, x− y, x, x+ y,
x + 2y. Consideration of all possible alternatives as
in (9) will generally draw sufficient relationship for
the desired bound, but in some other cases, further
information at the points x− 3y and x+ 3y will play
a crucial role towards the determination of the bound.

We will start with the first two lemmas where
meaningful observation at the points x − 2y, x − y,
x, x+ y, x+ 2y suffices.

Lemma 1 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D+

f (x− 2y, x)‖ 6 δ+,
‖D+

f (x, x+ 2y)‖ 6 δ+,

then ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+ + 2δ−.

Proof : Assume the assumptions in the lemma. We
consider the following two cases.
(i) If ‖D+

f (x−y, x+y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = D+
f (x− 2y, x)

+D+
f (x, x+ 2y)− 2D+

f (x− y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+.

(ii) If ‖D−f (x − y, x + y)‖ 6 δ−, then we observe
that

D−f (x− 2y, x+ 2y) = 2D−f (x− y, x+ y)

+ 2D+
f (x− 2y, x+ 2y)−D+

f (x− 2y, x)

−D+
f (x, x+ 2y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+ + 2δ−.
The desired bound follows from the consideration of
all cases. �

Lemma 2 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D−f (x− 2y, x)‖ 6 δ−,
‖D−f (x, x+ 2y)‖ 6 δ−,

then ‖D−f (x−2y, x+2y)‖ 6 max{4δ++2δ−, 4δ−}.

Proof : Assume the assumptions in the lemma. We
consider the following two cases.
(i) If ‖D+

f (x−y, x+y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = 2D+
f (x− 2y, x+ 2y)

− 2D+
f (x− y, x+ y)−D−f (x− 2y, x)

−D−f (x, x+ 2y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+ + 2δ−.

(ii) If ‖D−f (x − y, x + y)‖ 6 δ−, then we observe
that

D−f (x− 2y, x+ 2y) = D−f (x− 2y, x)

+D−f (x, x+ 2y) + 2D−f (x− y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ−.
The desired bound follows from the consideration of
all cases. �

The next lemma will be considerably more
involved as the consideration at the points
x− 2y, x− y, x, x+ y, x+ 2y is insufficient and
thus necessitate further consideration at the point
x+ 3y.

Lemma 3 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D+

f (x− 2y, x)‖ 6 δ+,
‖D−f (x, x+ 2y)‖ 6 δ−,

‖D+
f (x− y, x+ y)‖ 6 δ+,

then

‖D−f (x−2y, x+2y)‖ 6 max{4δ++δ−, 2δ++4δ−}.

Proof : Assume the assumptions in the lemma. We
consider the following four cases.
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(i) If ‖D+
f (x+y, x+3y)‖ 6 δ+ and ‖D+

f (x−y, x+
3y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = D+
f (x− 2y, x)

−D−f (x, x+ 2y)−D+
f (x− y, x+ y)

+D+
f (x+ y, x+ 3y)−D+

f (x− y, x+ 3y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+ + δ−.

(ii) If ‖D+
f (x+y, x+3y)‖ 6 δ+ and ‖D−f (x−y, x+

3y)‖ 6 δ−, then we observe that

D−f (x− 2y, x+ 2y) = D+
f (x− 2y, x)

− 3
2D

+
f (x− y, x+ y) + 1

2D
+
f (x+ y, x+ 3y)

− 1
2D
−
f (x− y, x+ 3y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 3δ+ + 1
2δ
−.

(iii) If ‖D−f (x + y, x + 3y)‖ 6 δ− and ‖D+
f (x −

y, x+ 3y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = 1
2D

+
f (x− 2y, x)

− 1
2D
−
f (x, x+ 2y) + 1

2D
+
f (x− 2y, x+ 2y)

− 3
2D

+
f (x− y, x+ y)− 1

2D
−
f (x+ y, x+ 3y)

+ 1
2D

+
f (x− y, x+ 3y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 3δ+ + δ−.

(iv) If ‖D−f (x + y, x + 3y)‖ 6 δ− and ‖D−f (x −
y, x+ 3y)‖ 6 δ−, then we observe that

D−f (x− 2y, x+ 2y) = D+
f (x− 2y, x+ 2y)

− 2D−f (x, x+ 2y)−D+
f (x− y, x+ y)

−D−f (x+ y, x+ 3y) +D−f (x− y, x+ 3y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 2δ+ + 4δ−.
The desired bound follows from the consideration of
all cases. �

Lemma 4 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D−f (x− 2y, x)‖ 6 δ−,
‖D+

f (x, x+ 2y)‖ 6 δ+,
‖D+

f (x− y, x+ y)‖ 6 δ+,

then

‖D−f (x−2y, x+2y)‖ 6 max{4δ++δ−, 2δ++4δ−}.

Proof : Switching the sign of y in Lemma 3, we
immediately get the desired bound. �

The following lemma will resolve the bound of
D−f (x− 2y, x+ 2y) by an approach similar to that in
Lemma 3, but the point x − 3y will be considered in
lieu of x+ 3y.

Lemma 5 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D+

f (x− 2y, x)‖ 6 δ+,
‖D−f (x, x+ 2y)‖ 6 δ−,

‖D−f (x− y, x+ y)‖ 6 δ−,

then

‖D−f (x− 2y, x+ 2y)‖
6 max{4δ+ + 2δ−, 2δ+ + 3δ−, 7

2δ
−}.

Proof : Assume the assumptions in the lemma. We
consider the following four cases.
(i) If ‖D+

f (x−3y, x−y)‖ 6 δ+ and ‖D+
f (x−3y, x+

y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = 1
2D
−
f (x, x+ 2y)

− 1
2D

+
f (x− 2y, x) + 1

2D
+
f (x− 2y, x+ 2y)

+ 3
2D
−
f (x− y, x+ y) + 1

2D
+
f (x− 3y, x− y)

− 1
2D

+
f (x− 3y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 2δ+ + 2δ−.

(ii) If ‖D+
f (x − 3y, x − y)‖ 6 δ+ and ‖D−f (x −

3y, x+ y)‖ 6 δ−, then we observe that

D−f (x− 2y, x+ 2y) = D+
f (x− 2y, x+ 2y)

− 2D+
f (x− 2y, x) +D−f (x− y, x+ y)

+D+
f (x− 3y, x− y)−D−f (x− 3y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 4δ+ + 2δ−.

(iii) If ‖D−f (x − 3y, x − y)‖ 6 δ− and ‖D+
f (x −

3y, x+ y)‖ 6 δ+, then we observe that

D−f (x− 2y, x+ 2y) = D−f (x, x+ 2y)

−D+
f (x− 2y, x) +D−f (x− y, x+ y)

−D−f (x− 3y, x− y) +D+
f (x− 3y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 2δ+ + 3δ−.
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(iv) If ‖D−f (x − 3y, x − y)‖ 6 δ− and ‖D−f (x −
3y, x+ y)‖ 6 δ−, then we observe that

D−f (x− 2y, x+ 2y) = D−f (x, x+ 2y)

+ 3
2D
−
f (x− y, x+ y)− 1

2D
−
f (x− 3y, x− y)

+ 1
2D
−
f (x− 3y, x+ y).

Hence ‖D−f (x− 2y, x+ 2y)‖ 6 7
2δ
−.

The desired bound follows from the consideration of
all cases. �

Lemma 6 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G, if

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+,
‖D−f (x− 2y, x)‖ 6 δ−,
‖D+

f (x, x+ 2y)‖ 6 δ+,
‖D−f (x− y, x+ y)‖ 6 δ−,

then

‖D−f (x− 2y, x+ 2y)‖
6 max{4δ+ + 2δ−, 2δ+ + 3δ−, 7

2δ
−}.

Proof : Switching the sign of y in Lemma 5, we
immediately get the desired bound. �

HYERS-ULAM STABILITY

In this section, we aim to prove the Hyers-Ulam sta-
bility of the alternative Jensen’s functional (4). Firstly,
we will put together Lemmas 1–6 in the previous
section to conclude the bound of D−f(x, y).

Lemma 7 Suppose a mapping f : G → E satisfies
(9). For every x, y ∈ G,

‖D−f (x, y)‖ 6 2max{2δ+ + δ−, δ+ + 2δ−}.

Proof : For every x, y ∈ G, we know from (9) that

‖D+
f (x− 2y, x+ 2y)‖ 6 δ+

or ‖D−f (x− 2y, x+ 2y)‖ 6 δ−.

If ‖D+
f (x−2y, x+2y)‖ 6 δ+, then Lemmas 1-6 give

‖D−f (x− 2y, x+ 2y)‖
6 2max{2δ+ + δ−, δ+ + 2δ−}. (10)

Otherwise, ‖D−f (x−2y, x+2y)‖ 6 δ−, which readily
satisfies (10). Hence, (10) holds for every x, y ∈ G.

Replacing x with (x + y)/2 and y with (y − x)/4 in
(10), we get the desired result. �

As a direct consequence of Lemma 7, if we
restrict the values of both δ+ and δ− in (9) to zero,
then ‖D−f(x, y)‖ will be confined to zero as well.
The following theorem employs this fact to establish
the equivalence of Jensen’s functional (3) and the
alternative Jensen’s functional (4).

Theorem 1 A mapping f : G→ E satisfies (4) if and
only if it satisfies (3).

Proof : If f satisfies (4), then setting δ+ = δ− = 0 in
Lemma 7 givesD−f (x, y) = 0 for every x, y ∈ G; that
is, f satisfies (3). Conversely, if f satisfies (3), then f
readily satisfies (4). �

It should be remarked here that the 2-divisibility
(or possibly other substitutes) of the group (G,+) in
Theorem 1 is crucial. The 2-divisibility of (G,+)
seems natural in (3), but if we relax Jensen’s func-
tional equation to

1
2 (f(2x) + f(2y)) = f(x+ y), (11)

and accordingly relax the alternative Jensen’s func-
tional (4) to

1
2 (f(2x) + f(2y)) = ±f(x+ y), (12)

then we can give an example of a mapping which
satisfies (12) but does not satisfy (11).

Example 1 Consider the addition group of Z. Define
a mapping f : Z → R by f(n) = (−1)n for every
n ∈ Z. For every m,n ∈ Z, f(2m) + f(2n) = 2.
Hence f satisfies (12). But f(1) 6= 1

2 (f(0) + f(2)).
Hence, f does not satisfy (11).

The following theorem presents the Hyers-Ulam
stability of the alternative Jensen’s functional (4) in
the class of mappings for 2-divisible abelian groups to
Banach spaces using the so-called direct method. For
the stability results of Jensen’s functional equation,
please refer to, for instance, Kominek12 or Jung13.

Theorem 2 If a mapping f : G → E satisfies (9),
then there exists a Jensen’s mapping J : G → E
satisfying (3) with J(0) = f(0) such that

‖f(x)− J(x)‖ 6 4max{2δ+ + δ−, δ+ + 2δ−}

for every x ∈ G. The mapping J is given by

J(x) = f(0) + lim
n→∞

1

2n
(f(2nx)− f(0))

for every x ∈ G.
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Proof : Suppose a mapping f : G → E satisfies (9).
We define another mapping f̃ : G→ E by

f̃(x) = f(x)− f(0) for every x ∈ G.

It should be noted that D−
f̃
(x, y) = D−f (x, y).

Let δ = 2max{2δ+ + δ−, δ+ + 2δ−}. For every
x, y ∈ G, Lemma 7 yields

‖D−
f̃
(x, y)‖ 6 δ,

that is∥∥∥∥12(f̃(x) + f̃(y))− f̃
(
x+ y

2

)∥∥∥∥ 6 δ. (13)

Setting (x, y) := (2x, 0) in (13) and knowing that
f̃(0) = 0, we have∥∥∥∥∥ f̃(2x)2

− f̃(x)

∥∥∥∥∥ 6 δ
for every x ∈ G. With n being a positive integer, we
observe that

f̃(2nx)

2n
− f̃(x) =

n∑
i=1

(
f̃(2ix)

2i
− f̃(2i−1x)

2i−1

)
.

Hence∥∥∥∥∥ f̃(2nx)2n
− f̃(x)

∥∥∥∥∥ 6 δ
(
2− 1

2n−1

)
(14)

for every x ∈ G and for every positive integer n.
Consider the sequence {2−nf̃(2nx)}. As a result

of (14), we have∥∥∥∥∥ f̃(2n+mx)

2n+m
− f̃(2nx)

2n

∥∥∥∥∥
=

1

2n

∥∥∥∥∥ f̃(2m · 2nx)2m
− f̃(2nx)

∥∥∥∥∥
6

δ

2n

(
2− 1

2m−1

)
.

Hence we can see that {2−nf̃(2nx)} is a Cauchy
sequence. It is now legitimate to define a mapping
J̃ : G→ E by

J̃(x) = lim
n→∞

f̃(2nx)

2n

for every x ∈ G. Replacing x and y in (13) with 2nx
and 2ny, respectively, then taking the limit as n→∞,
we can see that J is a Jensen’s mapping satisfying (3).

Considering (14), as n → ∞, we obtain, for every
x ∈ G,

‖f̃(x)− J̃(x)‖ 6 2δ.

The uniqueness of J̃ can be shown by assuming an
existence of another Jensen’s mapping J̃ ′ : G → E
such that J̃ ′(0) = 0 and ‖f̃(x) − J̃ ′(x)‖ 6 2δ for
every x ∈ G. With a positive integer n, we have
J̃(2nx) = 2nJ̃(x) and J̃ ′(2nx) = 2nJ̃ ′(x). Hence

‖J̃(x)− J̃ ′(x)‖

=

∥∥∥∥∥ f̃(2nx)− J̃ ′(2nx)2n
− f̃(2nx)− J̃(2nx)

2n

∥∥∥∥∥
6

1

2n

∥∥∥f̃(2nx)− J̃ ′(2nx)∥∥∥
+

1

2n

∥∥∥f̃(2nx)− J̃(2nx)∥∥∥
6

4δ

2n
.

As n → ∞, we can see that J̃(x) = J̃ ′(x) for every
x ∈ G.

We conclude the theorem by defining a mapping
J : G → E by J(x) = J̃(x) + f(0) for every x ∈ G
to give all desired results. �
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