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ABSTRACT: A number of statistical techniques have been proposed by many authors to estimate the parameters in a
linear structural relationship model, but only few papers discuss the precision of these estimators. In this study, we derive
the maximum likelihood estimate (MLE) of the parameters by assuming the slope parameter β is known. β is estimated
separately by a nonparametric method and is assumed to be known when other parameters are estimated by an MLE. We
obtain closed-form estimates of parameters as well as the variance-covariance matrix. Using a simulation study and a
real-world example we show that the estimated values of the parameters are unbiased and consistent.
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INTRODUCTION

An errors-in-variables model (EIVM) is a study of
relationships between variables, groups or populations
in which errors are present in both the explanatory
and response variables. It differs from the traditional
regression where errors are present only in the depen-
dent variable. Because of the measurement error in
explanatory variables, the traditional regression often
produces biased estimates of parameters. The linear
structural relationship model (LSRM) is one of the
families in the EIVM which also includes functional,
ultrafunctional, and ultrastructural relationship mod-
els. Many authors have considered EIVM over the
years1–4. Although a lot of work has been done on
the LSRM, only a few studies focused on the precision
of the parameter estimation. Bolfarine and Cordani5,
Patefield6 and Wong7 considered only a few special
cases such as the accuracy of the slope and inter-
cept. Hood et al8 first described the precision of the
parameters and established the asymptotic variance-
covariance matrix when the ratio of the two error
variances is known. As for the estimation of slope
parameter, several methods of estimation are proposed
such as geometric mean9, by assuming equal error
variance10, repeated median11, and nonparametric

method12.
As far as we know, there has been no attempt to

estimate parameters assuming that the slope parameter
β is known. Once we assume that β is known, we can
easily estimate the other parameters by the maximum
likelihood method. But the main advantage of our
method is that, unlike other methods, β is not an
arbitrary choice. In this article, we extend the idea
of Al-Nasser12 to estimate the slope parameter by a
nonparametric method and then estimate the rest of
LSRM parameters of by maximum likelihood estima-
tion (MLE). The precision of the estimated parameters
and its asymptotic variance-covariance matrix are also
derived and investigated here through real world data
and simulations.

The applications of EIVMs can be seen in studies
in the life sciences such as biology, ecology, social
science and economics where the variables cannot be
recorded accurately. Since our proposed method of
estimation is an improvement over the existing ones
it should have wider applications in the above areas of
research. This paper is organized in the following way.
First, we briefly review different aspects of LSRM.
Next, we propose a nonparametric method to esti-
mate the slope parameter extending the work of Al-
Nasser12. The parameter estimation of LSRM by the
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MLE method assuming the slope is given is proposed
in the next section. Then we derive the asymptotic
closed form of the variance-covariance information
matrix. We also report on simulation studies which are
designed to investigate the precision of the estimated
parameters and its variance-covariance matrix. A
real world example is presented finally to show the
advantage of the proposed method over the existing
ones.

LINEAR STRUCTURAL RELATIONSHIP
MODEL

Consider the model

Y = α+ βX (1)

where there exists a linear relationship between the
random variables X and Y and suppose that they are
measured without error. However, in reality they are
subject to error. Assume that for each i = 1, 2, . . ., n,
xi and yi are taken instead of Xi and Yi, respectively.
If δi and εi are the two respective errors in measuring
Xi and Yi, then we can write

xi = Xi + δi, yi = Yi + εi,

where the error terms δi and εi are normally dis-
tributed having zero mean and variance σ2

δ and σ2
ε , re-

spectively. This reveals that the variances of error are
not dependent on i and so independent of the level of
X and Y . This property is known as homoscedasticity.
There are some assumptions that have been described
in the literature for obtaining the X values. For
example, Kendall and Stuart13 described the structural
model considering Xi as normal with mean µ and
variance σ2

X . In LSRMs, the errors are assumed to
be normal and the bivariate normal distribution of xi
and yi is then(
xi
yi

)
∼ N

((
µ

α+ βµ

)
,

(
σ2
X + σ2

δ βσ2
X

βσ2
X β2σ2

X + σ2
ε

))
.

Kendall and Stuart13 stated the moment equations
for the parameters of LSRM in the form

µ = x̄, βµ+ α = ȳ,

σ2
X + σ2

δ = S2
x, β2σ2

X + σ2
ε = S2

y , βσ2
X = Sxy,

where S2
x = (1/n)

∑
(xi − x̄)2, S2

y = (1/n)
∑

(yi −
ȳ)2, and Sxy = (1/n)

∑
(xi − x̄)

∑
(yi − ȳ). Clearly

there are five equations in six unknowns, so some
additional assumptions have to be made about the
parameters of the LSRM in order to overcome this
unidentifiability problem. Hood et al8 considered
the following five cases for unique and consistent
solutions to the equations.

(i) both the error variances σ2
δ and σ2

ε are known;
(ii) σ2

δ is known;
(iii) σ2

ε is known;
(iv) both the error variances σ2

δ and σ2
ε are unknown;

(v) the error variances ratio λ = σ2
ε /σ

2
δ is known;

In this article, we develop another new case
to solve the unidentifiability problem of estimating
parameters in LSRMs. We first estimate the slope
parameter by modifying the nonparametric method
and then the rest of the parameters of the LSRM are
estimated by the maximum likelihood method.

ESTIMATION OF SLOPE PARAMETER BY
USING NONPARAMETRIC METHOD

In this method, the observed pairs (xi, yi), (i =
1, 2, . . ., n) are ordered such that xi < xi+1 as-
suming all the xi are distinct. Then we distribute
the observations into several groups to calculate all
possible paired slopes. Furthermore, another possible
pair of slopes is determined by ordering the observed
pairs according to the magnitude of the y value. The
complete procedure is summarized in the following
algorithm.

Algorithm 1
Step 1: We arrange the observations in ascending

order on the magnitude of x i.e., x(1) 6 x(2) 6
, . . .,6 x(n). We take the associated values
of y, i.e., y[1], y[2], . . ., y[n] which may not be
in ascending order and obtain our desire pairs
(x(i), y[i]).

Step 2: We distribute the n observations into m sub-
samples each having r elements such that mr =
n.

Step 3: Find the number of all possible combination
of paired slopes b(k)ij = (y[j] − y[i])/(x(j) −
x(i)), where i = 1, 2, . . ., j − 1; j = 2, 3, . . ., r;
and k = 1, 2, . . .,m.

Step 4: Calculate βx = mediank b(k)ij .
Step 5: We repeat Steps 1–4 by interchanging y and

x. Finally, we define the estimated value of the
slope as β̂new = 1

2 (βx + βy).

Steps 1–4 have been proposed by Al-Nasser12 and
to improve the estimate we propose Step 5 by virtue
of the symmetrical nature of variables X and Y in
EIVM.

MLE OF A LSRM ASSUMING KNOWN SLOPE

Once the slope is estimated using the nonparametric
method as described in the previous section, the other
parameters can be estimated using the maximum like-
lihood method for the given value of the slope param-
eter. In this section, we briefly describe the procedure
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of deriving the estimating equation for the LSRM by
using MLE. One advantage of this approach is that
it is easy to get the asymptotic variance-covariance
matrix of the estimators. Let

A = S2
x(β2σ2

X + σ2
ε )− 2Sxyβσ

2
X + S2

y(σ2
X + σ2

δ ),

the determinant of the variance-covariance matrix is

B = β2σ2
Xσ

2
δ + σ2

δσ
2
ε + σ2

Xσ
2
ε

and

C = (x̄− µ)2(β2σ2
X + σ2

ε )− 2βσ2
X(x̄− µ)

(ȳ − α− βµ) + (ȳ − α− βµ)2(σ2
X + σ2

δ ).

The log-likelihood function can be rewritten in the
following way

l = −n log(2π)− n

2

{
A

B
+
C

B
+ log(B)

}
. (2)

The term C in log-likelihood function will be mini-
mized, and equal to zero, when µ = x̄ and βµ+α = ȳ.
From this equation, maximum likelihood estimates of
µ and α can be determined. Since the terms A and
B in the log-likelihood function do not contain the
parameters µ and α, the likelihood function is then
solved by minimizing

G = −n
2

log(B)− n

2

(
A

B

)
with respect to σ2

X , σ2
δ and σ2

ε . The partial derivatives
are taken and set equal to zero to give

(β2σ2
δ + σ2

ε + β2S2
X − 2βSxy + S2

y)B

− (β2σ2
δ + σ2

εA) = 0

(σ2
ε + β2σ2

X + S2
y)B − (σ2

ε + β2σ2
X)A = 0

(σ2
δ + σ2

X + S2
x)B − (σ2

δ + σ2
X)A = 0. (3)

We solve the above three equations and get

σ2
X =

Sxy
β
, σ2

δ =
(βS2

x − Sxy)

β
,

σ2
ε = (S2

y − βSxy).

(4)

Admissible solutions are obtained when βS2
x > Sxy

and S2
y > βSxy . For some specific data set, if these

criteria are not satisfied, we then set one or more
variances equal to zero in order to find the maximum
likelihood estimators for the parameters. Hence, if the
first and second conditions are broken then following
Ref. 8, we set σ2

δ = 0 and σ2
ε = 0.

VARIANCE-COVARIANCE MATRIX OF A
LSRM

The Fisher information matrix (Iij) for the set of
unknown parameters θ is given by

(Iij) =

[
−E

(
∂2l

∂θi∂θj

)]
.

The above information matrix is inverted in order to
find the asymptotic variance-covariance matrix. From
(2),

l = −n log(2π)− n

2
log(B)− D

2B

where

D = (β2σ2
X + σ2

ε )
∑

(xi − µ)2 − 2βσ2
X

∑
(xi − µ)

(yi − α− βµ) + (σ2
X + σ2

δ )
∑

(yi − α− βµ)2.

After lengthy algebraic manipulations, the inverse
of the Fisher information matrix is given by

1

n


a11 a12 a13 a14 a15

a22 a23 a24 a25
a33 a34 a35

a44 a45
a55


where a11 = σ2

X + σ2
δ , a12 = −βσ2

δ , a13 = 0, a14 =
0, a15 = 0, a22 = β2σ2

δ+σ2
ε , a23 = 0, a24 = 0, a25 =

0, a33 = 2σ4
X +B/β2, a34 = 2σ2

δσ
2
X −B/β2, a35 =

2σ2
εσ

2
X − B, a44 = 2σ4

δ + B/β2, a45 = 2σ2
εσ

2
δ −

B, a55 = 2σ4
ε + β2B.

The above results clearly show that the variances
and covariances of the estimated parameters converge
to 0 as n tends to infinity. Hence all parameters are
consistent.

SIMULATION STUDY

A simulation study was carried out to support the
algebraic results presented earlier. For simulation
experiments, we considered the various parameter
settings given in Table 1. In selecting σ2

X we follow
the principle of Ref. 8 in which the difference caused
by measurement errors will probably be dominated
by the difference between the mean levels. For each
specified set of parameter values, 15 000 simulated
data sets were obtained for the sample sizes n in
Table 1. The performance of the estimated parameters
are measured by estimated bias (EB), estimated root
mean square error (ERMSE) and standard devia-
tion (SD) where EB = | ¯̂w − w| and ERMSE =√

(1/s)
∑

(ŵj − w)2 where w is a generic term for
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Table 1 Results for α = 0, µ = 10, σ2
X = 5 with 3 different sets of (β, σδ, σε). n is the sample size.

Statistic n 0.80,0.90,0.7(5) (1.00,0.75,1.00) (1.20,1.00,0.80)

100µ α β σ2
X σ2

δ 100µ α β σ2
X σ2

δ 100µ α β σ2
X σ2

δ

EB 50 0.102 0.0033 0.098 0.0128 0.0184 0.150 0.0020 0.110 0.0157 0.0239 0.186 0.0017 0.105 0.0182 0.0215
70 0.051 0.0024 0.056 0.0112 0.0132 0.092 0.0015 0.082 0.0120 0.0153 0.041 0.0012 0.074 0.0166 0.0142
100 0.021 0.0005 0.048 0.0082 0.0075 0.030 0.0011 0.048 0.0057 0.0138 0.036 0.0010 0.043 0.0065 0.0088
200 0.011 0.0003 0.028 0.0068 0.0042 0.025 0.0008 0.024 0.0045 0.0079 0.024 0.0008 0.018 0.0063 0.0060
300 0.004 0.0001 0.014 0.0043 0.0027 0.015 0.0006 0.016 0.0031 0.0024 0.002 0.0006 0.013 0.0058 0.0045
500 0.002 0.0000 0.003 0.0017 0.0011 0.001 0.0001 0.012 0.0010 0.0016 0.001 0.0002 0.007 0.0002 0.0029

ERMSE 50 16.322 0.3441 1.108 0.5054 0.3378 18.742 0.3416 1.091 0.4530 0.4711 21.090 0.3440 1.086 0.4468 0.6051
70 13.843 0.2890 0.920 0.4249 0.2849 15.560 0.2864 0.921 0.3847 0.3971 17.821 0.2935 0.912 0.3836 0.5110
100 11.524 0.2439 0.771 0.3654 0.2421 13.171 0.2411 0.775 0.3298 0.3408 14.815 0.2420 0.765 0.3193 0.4271
200 9.301 0.0813 0.548 0.2557 0.1715 10.921 0.1240 0.542 0.2294 0.2365 11.303 0.1864 0.546 0.2246 0.3020
300 5.783 0.0667 0.449 0.2057 0.1387 8.799 0.0760 0.451 0.1868 0.1961 9.248 0.1270 0.438 0.1857 0.2489
500 0.930 0.0515 0.352 0.1599 0.1065 3.803 0.0586 0.344 0.1453 0.1512 3.955 0.0868 0.341 0.1438 0.1934

SD 50 16.129 0.3402 1.086 0.5008 0.3335 18.493 0.3353 1.067 0.4507 0.4687 20.932 0.3428 1.057 0.4451 0.5960
70 13.663 0.2887 0.926 0.4262 0.2839 15.689 0.2842 0.907 0.3833 0.3988 17.752 0.2905 0.899 0.3784 0.5074
100 11.457 0.2417 0.776 0.3575 0.2384 13.156 0.2386 0.764 0.3226 0.3353 14.882 0.2439 0.757 0.3185 0.4263
200 10.021 0.1811 0.551 0.2536 0.1694 6.922 0.1233 0.543 0.2295 0.2385 9.082 0.1555 0.538 0.2262 0.3034
300 9.810 0.1064 0.451 0.2079 0.1387 4.825 0.0762 0.444 0.1877 0.1952 6.117 0.0962 0.439 0.1849 0.2480
500 5.601 0.0814 0.350 0.1611 0.1074 2.314 0.0356 0.344 0.1353 0.1312 1.257 0.0468 0.341 0.1035 0.1623

RM 50 1.663 0.0192 1.576 1.4605 0.7183 0.367 0.0024 1.955 1.8511 1.0099 1.277 0.0031 2.398 1.0024 2.7959
70 4.992 0.0051 1.414 0.8570 0.6991 1.224 0.0102 2.524 1.0834 0.7976 1.343 0.0279 2.109 0.5985 2.6316
100 0.905 0.0111 1.490 0.8325 0.6069 2.022 0.0010 1.383 1.0844 0.5668 1.100 0.0046 1.183 0.6714 1.2388
200 4.950 0.0826 1.651 0.5988 0.3620 5.575 0.0009 0.745 0.4364 0.2840 10.744 0.1996 1.673 0.6524 0.4864
300 17.977 0.0947 0.909 0.6316 0.3417 3.701 0.0150 1.423 0.2456 0.7808 2.811 0.0054 1.302 0.7127 0.4937
500 19.141 0.1091 1.317 0.2878 0.2654 6.614 0.2964 0.924 0.3019 0.1103 3.253 0.0575 2.345 0.3223 0.2110

the parameters and SD for each parameter are com-
puted from the diagonal element of the asymptotic
variance-covariance matrix. We also tried to inves-
tigate whether the distribution of the estimators are
asymptotically normal or not. For testing normality
of the distribution of the estimators we have used
the rescaled moment (RM) test proposed by Imon14

which is an extension of the Jarque-Bera normality
test. We have used the RM test here because the
Jarque-Bera test has a well known disadvantage of
possessing poor power. When we denote the sample
skewness and sample kurtosis of the estimators by S
and K, respectively, then the RM value is defined as

RM =
nc2

6

[
S2 +

(K − 3)2

4

]
where n is the sample size and c = n/(n− k) when k
is the number of parameters. The distribution of RM
follows a χ2 distribution with 2 degrees of freedom.

For each specified set of parameters in Table 1,
the estimated bias (EB) of all parameters are close to
0 and become smaller when the sample size increases,
which shows the unbiasedness of the parameters.
From Table 1, the relative EB for σ2

X is 1.966 for
n = 50 and and it reduces to 0.058 for n = 500.
Similarly, the relative EB for σ2

δ decreases from 1.422
for n = 50 to 0.189 for n = 500. Also, the decrease
in relative EB for σ2

ε is seen from 2.453 for n = 50
to 0.147 for n = 500. Similar remarks may apply
with other measurements such as ERMSE and SD
where these values tend to decrease with increase in
sample sizes. These results clearly suggest that the
estimated values of parameters are consistent. We

also observe that each of the estimated parameters
individually follows a normal distribution. Here, the
cut-off value for the RM statistic is 5.99 but all RM
values we obtain from this experiment are much less
than this cut-off value.

NUMERICAL EXAMPLE

In this section we consider a real world data to
estimate the parameter of this model. In order to
make the relationship as model (1), we assume that
measurement error can occur in both the dependent
and independent variables of this data set.

Here we consider the serum kanamycin data
taken from Kelly15. In order to measure the serum
kanamycin levels in blood samples, simultaneous
pairs of measurements were taken from twenty prema-
ture babies. These two measurements were obtained
by the heel stick method (independent variable) and
the umbilical catheter method (dependent variable).

We consider five different cases to estimate
parameters and their standard deviation for serum
kanamycin data and compared those with the results
obtained by the proposed method. It is worth men-
tioning that case 4 is computationally impossible for
any real data. The results are given in Table 2

Results presented in Table 2 give a clear indi-
cation of using the proposed method for estimating
parameters and their standard deviations in a LSRM.
Case 4 is impossible to compute. Out of 6 parameters
we cannot estimate two parameters for case 1 and one
parameter for case 2, case 3, and case 5. Only the
proposed method can estimate all 6 parameters. In
terms of precision we observe that for µ our proposed
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Table 2 Comparison of estimated parameters (standard deviations in parentheses) of different MLE methods for serum
kanamycin data.

Case µ α β σ2
X σ2

δ σ2
ε

1 20.9 (1.5) −1.2 (1.1) 1.1 (0.1) 21.9 (6.9) - -
2 20.9 (1.1) 2.0 (7.3) 0.9 (0.2) 23.7 (7.8) - 26.7 (8.7)
3 20.9 (1.1) −4.4 (274.9) 1.2 (4.5) 0.9 (282.9) 23.9 (7.8) -
5 20.9 (1.1) −1.2 (3.3) 1.1 (0.2) 20.4 (7.8) 4.4 (1.4) -

Proposed 20.9 (1.1) −0.1 (0.7) 1.0 21.3 (7.5) 3.4 (3.4) 5.4 (3.7)

method has better precision than case 1, however it
has the same precision as cases 2, 3, and 5. For α
the proposed method outperforms all four cases. This
method yields lower standard deviations than all other
cases. For σ2

X the proposed method gives smaller
standard deviation than cases 2, 3, and 5 however
its standard deviation is slightly more than that of
case 1. For σ2

δ and σ2
ε the proposed method clearly

outperforms the other estimation methods. Thus the
proposed method performs best overall.

CONCLUSIONS

In this article, a new maximum likelihood method
is proposed to estimate parameters of a linear struc-
tural relationship model based on the assumption of
known slope. We then derive the asymptotic variance-
covariance matrix of the parameters in simple form.
With the help of simulation study we have showed
that the estimated values of the parameters are unbi-
ased and consistent even for relatively small samples.
Real world data shows that the proposed method has
better precisions in comparison with the existing MLE
alternatives.
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