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ABSTRACT: Remote sensing sensors generate useful information about climate and the Earth’s surface, and are widely
used in resource management, agriculture, and environmental monitoring. Compression of the RS data helps in long-term
storage and transmission systems. Lossless compression is preferred for high-detail data, such as from remote sensing. In
this paper, a less complex and efficient lossless compression method for images is introduced. It is based on improving the
energy compaction ability of prediction models. The proposed method is applied to image processing, RS grey scale images,
LiDAR rasterized data, and hyperspectral images. All the results are evaluated and compared with different lossless JPEG
and a lossless version of JPEG2000, thus confirming that the proposed lossless compression method leads to a high speed
transmission system because of a good compression ratio and simplicity.
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INTRODUCTION

Remote sensing (RS) images have been widely used in
numerous applications, such as resource management,
agriculture, environmental monitoring, mineral explo-
ration, and climate observation. Some types of sensors
can generate more than 1 TB of data in one day. Hence
the use of a robust data compression techniques has
become very important for archiving and transferring
purposes1, 2. Because of the importance of generating
highly accurate information about the atmosphere,
clouds, and surface parameters provided by the RS
sensors, lossy compression techniques are not desir-
able3. The economics of transmission and mass-
storage of the large volumes of data accumulated by
these sensors demonstrate that efficient compression
is very important in this technology4. In addition, in
real time applications, a simple and efficient algorithm
accelerates the execution time.

Lossless compression generally consists of trans-
formation and entropy encoding4, 5. There are many

methods for lossless compression. Although most of
these methods are efficient in terms of compression
they have a high computational complexity, or vice-
versa. For example, JPEG2000 has a powerful com-
pression mechanism but at the cost of a high com-
putational complexity. In this paper, a less complex
method for lossless compression of RS data is pro-
posed based on a new transformation method called
enhanced differential pulse code modulation (DPCM)
transformation (EDT) and optimized Huffman encod-
ing. The EDT improves the energy compaction ability
of the traditional DPCM. The proposed method is
efficient in terms of compression and fast in terms
of implementation. Finally, our proposed method is
applied to different types of images and the results are
evaluated.

BACKGROUND

We start by reviewing lossless JPEG and the loss-
less version of JPEG2000. JPEG is a very famous
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A B C  1. X=(B+D)/2 4. X=D 7. X=B+(D-A)/2 
D X   2. X=B+D-A 5. X=B 8. X=(A+B+C+D)/4 
    3. X=D+(B-A)/2 6. X=A 9. X=(B+C)/4+D/2 

Fig. 1 Neighbouring pixels in DPCM and prediction equa-
tions 6.

ISO/ITU-T standard that was created in the late
1980s7. Lossless JPEG is one of several JPEG stan-
dards. In its lossless mode, the image is transformed
by DPCM, and then Huffman encoding is applied.
The DPCM is based on predicting the image pixels
from the neighbouring pixels with a certain error of
prediction. The neighbouring position and predictor
equations are shown in Fig. 18.

JPEG2000 is based on the discrete wavelet trans-
form (DWT), scalar quantization, context modelling,
arithmetic coding, and post-compression rate allo-
cation9. JPEG2000 works well and gives a good
compression ratio, especially for high-detail images,
because it analyses the details and the approxima-
tion in the transformation step and decorrelates them.
However, this does not come without a high computa-
tional complexity.

PROPOSED METHOD

Fig. 2 illustrates the whole idea of the proposed com-
pression method. The new transformation method,
EDT, which is described in the next section, is first
applied to the input image. Then, an optimized
Huffman entropy encoder is applied to encode the
transformed image to a compressed bit-stream. Huff-
man decoding and inverse transformations are then
used to reconstruct the input image.

Transformation (EDT)

EDT is based on predictive models. However, more
energy compaction is obtained by improving the pre-
diction ability. Energy compaction and low complex-
ity are two important attributes of any good trans-
formation8. From a hardware implementation point
of view, the transformation method is obtained by
adding only two shift registers to the previous DPCM.
Hence the complexity of the EDT stays low. Our
new transformation method engine is illustrated in the
block diagram in Fig. 3. Division is first applied to
the input image. Then, the quotients of the division
are predicted by one of the prediction equations of
Fig. 1. Equation (1) can be used as the prediction step.
Furthermore, the predicted matrix is rescaled in the
multiplication step. By adding the predicted matrix
to the remainders of the division step, the predicted

image is produced. The subtraction of the predicted
image from the original image gives the prediction
error matrix which is the transformed image6, 10.

X =

 min(B,D), if A 6 max(B,D)
max(B,D), if A > max(B,D)
D +B −A, otherwise.

(1)

When intensities of an image are in the range
of [0, 2k − 1], the image is of k-bit depth. Typical
greyscale images are of 8–16 bit depth11. RGB
images consist of the R, G, and B matrices, each of
which has the same depth as a greyscale image. As
shown in Fig. 3, the input image is divided by n and
the rounded quotient and the remainder of the division
are kept in Quotient and Remainder, respectively.
Divisor is chosen in a fashion that the sum of the
quotient depth and the remainder depth is equal to the
input image depth. Hence in a k-bit depth image, the
divisor is a power of two and smaller than the largest
possible intensity value. For a specific n of n = 2m,
m = 1, 2, 3, . . . , k−1, the quotient and remainder are

q(i, j) = I(i, j) div n, r(i, j) = I(i, j) mod n.
(2)

For the input image I(i, j), intensities are in the
interval 0 6 I(i, j) 6 2k − 1. Hence from (2)

0 6 I(i, j)/n 6
2k − 1

n
,

0 6 q(i, j) 6
2k − 1

2m
,

0 6 r(i, j) 6 2m,

q(i, j) ∈ [0, 2k−m − 1] and r(i, j) ∈ [0, 2m]. (3)

It follows from (3) that q(i, j) has (k − m)-bit
depth and r(i, j) has m-bit depth. If the depths of
q(i, j) and r(i, j) are added together, the total depth
will be k which is equal to the depth of the input
image. Another advantage of n being a power of
two is from a hardware implementation point of view
since it changes the division process to m-bit right
shifting, which is easily implemented by using a shift
register instead of a divisor. The question here is
why should the division of intensity values take place
before prediction? Quotients of the division step are
the input of the prediction part. As shown below, if
image intensities are divided by n, the probability of
the correct prediction increases n times.

Assume that a linear prediction model such as
Prediction Number Five (X = B) of Fig. 1 is used.
Then the probability of the correct prediction is the
probability that the intensity value shown in (4). Rr is
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Fig. 2 Flowchart of the proposed compression method.
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Fig. 3 Block diagram of the new transformation method 6.

the number of repetitions of intensity r in an M ×N
image and Pr is the probability of r. Hence in
this case, Pr will be the probability of the correct
prediction.

Pr =
Rr

MN
. (4)

We have q(i, j) from (2), which is obtained by divid-
ing each pixel of the input image by n. The probability
of the correct prediction for q(i, j) is shown in (5). Rq

is the number of repetitions of the new intensity value
q in the divided image. Hence

Pq =
Rq

MN
, (5)

q = 0, 1, . . . , (2k − 1)/n. When one number is
considered instead of a series of values in an interval,
the total number of repetitions increases. From (5),
the new value of repetition Rq and then Pq are

Rq = dRr, Pq = dPr, (6)

1 6 d 6 n.
Equation (6) allows one to easily deduce that the

probability of the correct prediction increases. In
other words, the probability of the correct prediction
in a smaller interval is higher than a bigger interval
which leads to better predictions. The objective of
our method is to estimate the prediction error, so
it would be necessary to have a predicted image.
Next, the predicted matrix is re-scaled by multiplying
the predicted matrix by n and then adding it to the
remainder. Hence the predicted image is calculated
from

p(i, j) = qp(i, j)n+ r(i, j), (7)

where qp(i, j) is the output of the prediction step and
can be called the predicted matrix. Then the predic-
tion error, which is the output of the transformation
T (i, j), is obtained from

T (i, j) = I(i, j)− p(i, j). (8)

The transformed image using this method has a
lower range of intensities than the traditional DPCM.
Hence more energy compaction will take place. This
happens because the transformed image values have
less variety than the output of the DPCM. Actually,
as shown by the mathematical proof below, variations
of the transformed image values by this method are n
times smaller. As with (7),

I(i, j) = q(i, j)n+ r(i, j). (9)
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Fig. 4 Histogram of (a) lossless JPEG transformation,
(b) transformed image by new method with n = 32 of
Barbara image 6.

r is equal in both (7) and (9). Hence

I(i, j)− p(i, j) = (q(i, j)− qp(i, j))n. (10)

From (8) and (10), we have the following equation for
the transformed image:

T (i, j) = (q(i, j)− qp(i, j))n.

As qp and q are in the range of [0, 2k−m − 1],

0 6 ‖q(i, j)− qp(i, j)‖ 6 2k−m − 1.

So all possible prediction error values Tv(i, j) for our
transformation is calculated from

Tv(i, j) = nV, V = 0, 1, . . . , 2k−m − 1. (11)

According to (11), the variety of outputs for the
new method is n times smaller than the DPCM. So
energy compaction is n times better, which is a good
attribute. All outputs of the method are coefficients
of n. The new method is applied to a 512× 512
Barbara image by selecting n = 32. Further, the
histogram of lossless JPEG transformation output for
the Barbara image is compared with the histogram
of the new method output in Fig. 4. From (11), the
variety of prediction error values will be equal to
(Tv(i, j) = 32V ), where V is in the range of [0, 7].
Hence there will be only 8 different possible values for
the prediction error, which are [0, 32, 64, . . . , 224]. On
the other hand, the DPCM outputs have a distribution
in the range of 0–255. As can be seen from Fig. 4, the
new method causes less variety in the output and, as a
result, more energy compaction and more redundancy
reduction would be achieved. Hence the intensity
distribution becomes n times lower. Thus, in general,

V =
2k

n
= 2k−m (12)
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Fig. 5 Numerical example of the new transformation
method.

The entropy value decreases by enhancing the
energy compaction and causes more compression.
Assuming an image with equal probability distribution
for all intensities, the entropy can be calculated12:

E = −
L−1∑
k=0

pr(r) log2 pr(r),

where r is the intensity value, L is the number of
intensity values used to present the image, and p(r)
is the probability of intensity r. For example, for
an image with a depth of 8 bits, L would be equal
to 256 and r would be in the range of 0–255. The
histogram of the given image can be used to calculate
the intensities’ probabilities12. An image with lower
entropy indicates that more compression is possible.
Transformation increases energy compaction and, as
a result, the probability of each intensity or source
symbols increase leads to less redundancy and less
entropy. The compression ratio can be obtained by
dividing the size of the original image by the size of
the compressed bit-stream. Computational complex-
ity is another factor that determines the efficiency of a
method and can be obtained by counting the number
of CPU cycles or hardware gates9. Then, for the
entropy of such image, we will have

E = −MN

log2

(
1

L

)
MN

= log2 L, (13)
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where L = 2k is the number of intensities. For an
8-bit image, L = 256. Hence the entropy is equal to
k or 8 for the described image. For a specific n, the
intensity values decrease n times. Since n = 2m,

Ln = 2k−m =
L

n
, (14)

where Ln is the number of intensities for the divided
image. From (13) and (14), for an image transformed
by the new method, we have

E = − log2

(n
L

)
= k −m.

It means that the required bits per pixel or entropy
value of the transformed image decreases and, as a
result, a higher compression would be achieved. As
the lossless compression of the RS data is our main
purpose, n = 2 must be used to prevent any loss of
information. Hence the only possible values for the
remainder would be 0 or 1 and there would be no
loss of the critical information in the reconstruction
phase. In the image reconstruction phase, one failure
in intensity value estimation (e.g., reconstructing 201
instead of 200) causes only about 0.39% of intensity
change. Another way to ensure that the method is
completely lossless is to save or send remainders
with the transformed image that is 1/8 of the main
image. In this paper, for achieving the completely
lossless compression, the remainders are saved and
used in the reconstruction phase. Lossy compression
is achieved by applying a larger n within the division
step. If we choose a very large n, like 64, we may
lose a lot of information and both the predicted and
the reconstructed images will not have an acceptable
quality.

As an example, the whole numerical process is
shown in Fig. 5. A 3 × 3 portion of the Barbara
image is selected and all the steps of the new method
are shown. For this example n = 8 and prediction
number one (X = (B + D)/2) is used. As can be
seen from Fig. 5, all the values of prediction error are
factors of 8. So all the energy will be compacted into
32 different values:

Tv(i, j) = 8V,

V = 0, 1, . . . , 31.
It is clear from the numerical example that keep-

ing the remainder helps a lot with the energy com-
paction because it ensures that the answers are a factor
of n. Also, it should be noted that a good predictor
gives better results.

Entropy encoding

Huffman encoding is selected as the entropy en-
coder for the proposed lossless compression method.
Huffman codes the image intensities based on their
probability and forms them as a bit-stream. Hence the
Huffman dictionary, which includes intensity codes,
needs to be saved as an overhead too. After calculating
the prediction error, all the values are in the range
[−2k +1, 2k− 1]. For example, for a greyscale image
with an 8-bit depth, the interval is between −255
and 255. Hence Huffman needs a dictionary which
covers this interval. To have an efficient encoder,
it was decided to change the negative values of the
transformed image to positive values. This occurs by
multiplying the input image and the predicted image
by n, as stated in (11). Absolute values are saved in
the subtraction process. As a result, the dictionary
becomes smaller and needs to code only the values
between 0 and 256. However, the signs need to be
known for the reconstruction phase. To solve this
problem, an extra overhead is added to the compressed
image which includes the sign of each code in one bit.
This overhead is 1/8 of the input image.

Reconstruction

The reconstruction phase consists of Huffman decod-
ing and the inverse of our transformation method. The
inverse of the transformation is obtained by calculat-
ing the main values from the inverse of the prediction
equation. To achieve this goal and to have a complete
reconstruction, the first row and the first column of
the main image needs to be saved and then each pixel
is reconstructed from its neighbours. The inverse
transformation for pixel X of Fig. 1 is calculated as
follows:

I(i, j)− I(i, j) mod n = T (i, j)+
+ |( prediction equation #k)/n|n,

where k is the equation number from Fig. 1, I(i, j)
mod n is the remainder which was saved as the over-
head, and T (i, j) is the predicted image. With the first
row and column and using the same predictor which
was used in the transformation step, the predicted
image is reconstructed. Moreover, calculating the
floor of division of the prediction equation by n and
then multiplying it by n again, help us to obtain the
predicted image. The main image is retrieved by
adding the predicted image and the predicted error
together. The only problem would be the remainders,
which were passed over during the quantization step
of transformation. I(i, j) is used to solve this problem
and to avoid the loss of information. I(i, j) mod n
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Fig. 6 Landsat TM image of the town of Dessau on the Elbe
River in Saxony-Anhalt, Germany.

is the remainder which was saved as the overhead in
the transformation step. It should also be noted that,
as we mentioned before, for lossless compression,
n = 2 and the remainders are saved. On the other
hand, for visually lossless compression, the remainder
overhead can be ignored and greater compression ratio
would be achieved. The compression ratio (CR) can
be calculated from

CR =
sum of all the bands sizes

sum of compressed bit-streams sizes
.

Image processing data set

First, we applied our method on fifty non-medical
test cases. These test cases are standard test images
for greyscale images and have different specifications.
The Barbara, Lena, and baboon images are some of
them. They are 512×512 greyscale images with 8-bit
depth. Hence 262 kB of memory space is needed for
the uncompressed version of the images (for example,
TIFF version). All 50 test cases can be found in
Ref. 3.

RS images

Ten RS greyscale images were selected and all 3
compression methods were applied. RS test images
include information about the Earth in digital form,
and were captured by satellites in different spatial
resolutions. Our test cases range in size from 300 ×
450 to 1893 × 1825. Fig. 6 illustrates an example of
one of our RS test images which was captured by a

 

Fig. 7 Example of rasterized LiDAR data: (a) first return,
(b) first intensity.

Landsat Thematic Mapper (TM) sensor with a 30 m
spatial resolution.

LiDAR

LiDAR technology is used to obtain elevation and tree
height data using eye-safe near-infrared laser light in
the region of 1040–1060 nm. A laser pulse moves with
the speed of light and so the travel time of the laser
pulse from the transmitter to the target and back to the
receiver can be measured accurately13. For converting
these data to images, Inverse Distance Weighting or
Triangular Irregular Networks was applied to return
data and portray them in shaded-relief forms for data
validation and looking for anomalies and errors in
the data. Fig. 7a shows an example of a LiDAR
image. Most LiDAR systems provide an intensity file
in addition to the multiple return data13. Fig. 7b shows
an example of an intensity image that was used in this
study.

As can be seen from Fig. 7, LiDAR images have
high neighbouring correlation. Hence we envisage
that the prediction model will be efficient for LiDAR-
rasterized data transformation since the possibility
of correct prediction in the highly correlated images
will be more than for other images and, as a result,
the transformed image energy will be more compact.
Hence the transformed image will have lower entropy.

Hyperspectral images

Two different hyperspectral test cases are used. The
first test case was a hyperspectral image that consists
of 242 bands. Each band consists of 256 × 3128
pixels and was captured by Hyperion. Hyperion is a
hyperspectral sensor that is carried on the Earth Ob-
server (EO-1) satellite in a 705-km sun-synchronous
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Fig. 8 A band of the HYDICE image, our second test case.

Table 1 Compression ratio of different non-medical test
images.

Image JPEG JPEG2000 EDT

Baboon 1.23 1.30 1.35
Barbara 1.29 1.66 1.65
Lena 1.54 1.84 1.97
Average of
other 47 images 1.54 1.57 1.71
Overall Average 1.53 1.58 1.71

orbit at a 98.7-degree inclination. Hyperion is a push
broom spectrometer and provides resolution of the
surface properties in hundreds of spectral bands in the
range of 0.4–2.35 µm at 30 m spatial resolution. The
second test case was as image captured as part of the
Hyperspectral Digital Imagery Collection Experiment
(HYDICE) project. HYDICE is a push broom imag-
ing spectrometer, which collected data in 210 bands
in the range of 0.4–2.5 µm at an IFOV of 1–4 m,
depending on the altitude of the aircraft and ground
speed. In this case, the sensor collected data over
the Washington DC Mall in a 191 channel set. This
dataset contained 1280 scan lines with 307 pixels in
each scan line; thus each band is a 1280× 307 image.
Fig. 8 illustrates one of the bands of this test case.

EXPERIMENTAL RESULTS

Image processing test cases

We compressed all images with lossless JPEG,
JPEG2000 and the new EDT compression methods.
Lossless JPEG compression was achieved using MAT-
LAB and JPEG2000 compression using ENVI soft-
ware version 4.4. Table 1 shows the compression
ratios for the image processing test cases (50 images,
including the Barbara, baboon, and Lena images).
Rather than providing all 50 compression ratios, we
have included the Barbara, baboon, and Lena image
compression ratios separately and then have an aver-
age value for the other 47 images as well as an overall
average for all images and all compression methods.

We can see from Table 1 that our new method
has a better compression ratio than the previous meth-
ods. Lossless JPEG has the lowest complexity among

Table 2 Average compression ratio of the 10 different
remote sensing greyscale images.

Image JPEG JPEG2000 EDT

1 1.31 1.41 1.46
2 1.38 1.38 1.73
3 1.31 1.25 1.76
4 1.24 1.29 1.46
5 1.19 1.20 1.34
6 1.48 1.47 1.90
7 1.34 1.42 1.57
8 1.49 1.38 1.95
9 1.23 1.23 1.57
10 1.32 1.40 1.60
Average 1.33 1.34 1.63

these three methods. However, it also leads to the
lowest compression ratio. JPEG2000 has a higher
compression ratio than Lossless JPEG but lower than
the proposed EDT method for most of the test cases.
The overall average compression for the EDT method
is much higher than the lossless JPEG and JPEG2000
methods. It should be noted that, to have the same
experimental situation for each image, the equation
used in the predictor block of our transformation is
the same.

Remote sensing greyscale images

Our main focus was on lossless compression of RS
images and, to provide lossless compression, we
picked n = 2 as the divisor and save the remainder
as the overhead. Table 2 illustrates the compres-
sion ratios achieved for the 10 greyscale satellite
test images. For the different test images, results
indicate that the proposed compression method im-
proved compression by about 23% over lossless JPEG
compression method and by around 22% over the
JPEG2000 method. According to a detailed analysis
of JPEG2000’s transformation scheme, JPEG2000 is
efficient in high detail images. However, the proposed
method generally gives better results than JPEG2000.
T-Test results show that the compression ratio for EDT
is significantly different from JPEG2000 and lossless
JPEG.

LiDAR rasterized data

To see the efficiency of the proposed method, 4
LiDAR rasterized images, such as that shown in
Fig. 7, were compressed by the three methods and
the compression ratios were compared. To achieve
the adaptive compression, adaptive EDT (AEDT) is
used for the transformation step. AEDT is obtained
by using the adaptive equation of JPEG-LS, which
have been shown in (1), for the prediction step of
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Table 3 Compression ratio of different standard test images
of LiDAR rasterized data.

Image JPEG JPEG2000 EDT AEDT

1 1.23 1.28 1.43 1.64
2 1.34 1.34 1.72 1.97
3 2.48 2.56 2.96 3.40
4 1.33 1.33 1.71 1.95

EDT. Hence the transformation uses efficient predic-
tion equations for each specific pixel. The predictor
detects if the pixel lies on vertical or horizontal edge.
These statistics are kept to improve the value of the
entropy encoder parameter. Table 3 illustrates the
results. The images number one and two are the
two related images of Fig. 7a and b. As can be
seen from Table 3, the proposed method is efficient
in the compression ratio and improves on the previous
methods quite considerably. The average percentage
increase in the compression ratio of EDT over JPEG
was 22%, while that of EDT over JPEG2000 was 21%.
With AEDT, the improvement over JPEG was 41%,
over JPEG2000 39% and over EDT 15%. The ability
of EDT in energy compaction, suitability of prediction
schemes for high correlated images and using the
optimized Huffman encoder were the main reasons
in achieving such results. In addition, computational
complexity of the new lossless compression method is
low and causes high speed hardware implementation.
Complexity is less than JPEG2000 and is approxi-
mately similar to lossless JPEG. Hence the proposed
method is efficient for lossless compression of RS
images and LiDAR rasterized data and especially for
real time applications due to its compression ratio and
low computational complexity.

Hyperspectral images

We applied the compression techniques on two dif-
ferent Hyperspectral datasets. Fig. 9 illustrates the en-
tropy value of all the bands of these two Hyperspectral
data test cases. In our test cases, it can be seen that
there are just a few bands with an entropy equal to
zero, as well as some bands with low entropy values.
These are highly correlated in the neighbouring pixels
and include less information than the other bands.
The proposed methods include the predictive scheme,
and due to the neighbouring correlation of the large
number of bands, it can be efficient for this test case
as well.

Table 4 gives the compression ratios of the 3 com-
pression techniques on the two hyperspectral test im-
ages. In the first test case, the proposed method with
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Fig. 9 The entropy values of all the bands of (a) first test
case (b) second test case.

Table 4 Lossless compression ratio of both test cases
obtained by different compression algorithms.

Test Case JPEG JPEG2000 EDT

First 2.38 2.78 2.58
Second 2.38 2.04 3.76

EDT works better than the lossless JPEG. However,
JPEG2000 has a better compression ratio than the
EDT based method. The only advantage of EDT is its
simplicity, which is suitable for real-time systems that
need simple and fast algorithms. As shown in Fig. 10,
in the corrupted bands (bands with lower information
or lower entropy), JPEG2000 works better than the
EDT. On the other hand, the proposed method
with EDT acts more efficiently than JPEG2000 for
compression of bands with more information.

EDT demonstrates the best result in the second
test case. One of the differences here is that JPEG2000
shows the worst result among the three methods. It
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Fig. 10 The compression ratio of different methods for all
the bands of the first test case.

Fig. 11 The compression ratio of different methods for all
the bands of the second test case.

shows that a predictive scheme is better for this test
case. Also, due to the improvement of the new method
from lossless JPEG, the improvement in the compres-
sion ratio is predictable. The compression ratio plot is
shown in Fig. 11. As expected, the compression ratios
are high in the low-detail bands that had lower entropy
values. Furthermore, in the second test case, about
50% improvement in the compression ratio could be
observed.

It should be noted that, to have a better view of the
values in Figs. 10 and 11, the compression ratio with a
value greater than 5 is not included in the plot since the
values of the compression ratio of the corrupted bands
are high. For instance, band number 75, which is a

Table 5 Computation complexity of different transforma-
tions.

transformation order compression type

DPCM n lossless
EDT n lossy/lossless
DWT n log2 n lossy/lossless

corrupted band, has a compression ratio of 8.25 and
1190 for lossless JPEG and JPEG2000, respectively.

COMPUTATIONAL COMPLEXITY

Table 5 illustrates the computational complexity of the
different transformation methods and the compression
type which is used for comparison. The order of
algorithm isO(n) in which n = MN is the number of
pixels. The comparison is based on the order of each
transformation that may increase if a time-consuming
loop occurs. Due to the fact that EDT and DPCM
do not have any filter banking procedure or convolu-
tion, they are less computationally complex than the
transformation of JPEG2000 (DWT). EDT has the
same order as DPCM since there is no hierarchical
loop added to the old DPCM algorithm. According
to the additional division and multiplication process
in EDT, it has a slightly higher computational com-
plexity than lossless JPEG. To avoid this problem
and to have a less complex lossless scheme, shift
with carry is used. So the remainder of the dividing
process is saved in carry. Then, in the rescaling
process, one left shift with carry would be used to
add the remainder to the predicted matrix. Hence,
the process of reconsidering the remainder would be
omitted and the total computational complexity will
decrease. Hence it can be concluded that our proposed
lossless transformation is achieved by adding only
two shift registers to transformation of lossless JPEG
and as a result, complexity stays low. It should be
noted that selecting a less complex predictor such
as X = B, can decrease the total computational
complexity and accelerate the transformation process.
For example, predictor X = (B +D)/2 needs a one
bit shift register and an adder block, but X = B
can be implemented by only one selector. Because
of the high neighbouring correlation of RS images,
predictor X = B is an efficient choice for the purpose
of redundancy reduction too.

CONCLUSIONS

In this paper, an efficient method for lossless com-
pression of a wide variety of RS images has been
introduced. Our proposed EDT-based compression
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method is more efficient for all types of images
tested. Large improvements in the compression ratio
over the Lossless JPEG and JPEG2000 methods were
achieved. In other words, the new method has a great
potential to compress different types of images in less
CPU computational time. The proposed method is
based on an enhanced DPCM transformation and an
optimized Huffman entropy encoder. Future studies
would look at hardware implementation, testing and
evaluation.
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