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ABSTRACT: Some uncertainties can be represented by random sets, while some others may be in the form of probability
intervals. Even though random sets and probability intervals are defined differently, we may be able to represent a given
probability interval as a unique random set when this probability interval satisfies some conditions. In this paper, we present
these conditions which will check whether or not there is a unique random set expressing the same information as a given
probability interval. We construct the random set when the conditions are satisfied. We also give examples of when a user
should use a random set over a given probability interval.
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INTRODUCTION

Probability intervals1 and random sets2–4 are two
examples of many interpretations of uncertainty5–9.
Probability intervals are easy to present and users can
readily understand them. However, a user may not
want to interpret their probability interval information
when they know that the probability interval provides
the same information as a random set. Hence the user
may wish to use the random set to represent the data.
For example, instead of telling others that a loaded die
has a probability interval (based on statistical experi-
ments) information, it is perhaps better for a casino to
provide a random set version of this information.

The definitions of a probability interval and a
random set are not equivalent. Shafer4 proved that a
belief measure associated with a random set has an∞-
monotone capacity, while De Campos et al1 proved
that a reachable probability interval can be expressed
using its tight bounds on probabilities as Choquet ca-
pacity of order 2. Lemmer and Kyburg10 developed an
inner approximate transformation of a set PL of prob-
abilities generated by a reachable probability interval
into a set PBel of probabilities that was generated by
a random set. In addition to an inner approximation,
Deneoeux11 studied the transformation of a set PL

into a set of probabilities generated by a random set
using an outer approximation. Thipwiwatpotjana and
Lodwick12, 13 provided a construction of a random set
for a given probability interval that is easier to apply
than the existence construction in Ref. 10. However,

there has been no attempt to find conditions for which
these two sets are equal. Hence if we can find the
conditions for which PL = PBel, it means that a
reachable probability interval with these conditions
can extend its Choquet capacity to be∞-monotone.

This paper develops the conditions for which a
given probability interval represents the same infor-
mation as that of a unique random set enabling us
to extend the 2-monotone capacity of this probability
interval to the ∞-monotone capacity. Furthermore,
if we have such information, we could use either a
probability interval or a random set to represent this
information. The paper is divided as follows. We
provide the definitions of a probability interval and
a random set in the next section. Then we present
conditions for which a probability interval is a random
set. These conditions lead to the construction of the
associated random set given in Theorem 1. Finally, an
example and conclusion of this paper are provided.

DEFINITIONS AND NOTATION

We first provide definitions of a probability interval,
a random set, and other related terms needed in this
paper. The scope of our work is limited to the finite
case of uncertainty information realizations.

Definition 1 (see Section 2 of Ref. 5) Given X =
{x1, x2, . . . , xn} as the set of realizations of uncer-
tainty information, a capacity on X is a function
µ, defined on the set of subsets of X , such that:
(i) µ(∅) = 0, µ(X) = 1; (ii) A ⊆ B −→ µ(A) 6
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µ(B). A capacity such that

µ(A ∪B) > µ(A) + µ(B), ∀A,B ⊆ X,

and A ∩ B = ∅, is said to be super-additive. A
capacity µ is said to be sub-additive when µ(A ∪
B) 6 µ(A) + µ(B), ∀A,B ⊆ X and A ∩ B = ∅.
Also, a super-additive capacity µ defined on X is n-
monotone, where n > 0 and n ∈ N, if and only if for
any set A = {Ai | 0 6 i 6 n,Ai ⊂ X}, we have

µ

( ⋃
Ai∈A

Ai

)
>
∑
I⊆A

(−1)|I|+1µ

( ⋂
Ai∈I

Ai

)
.

An n-monotone capacity is also called a Choquet
capacity of order n.

Definition 2 (see Section 2 of Ref. 1) Given X =
{x1, x2, . . . , xn} as the set of realizations of uncer-
tainty information and a family of intervals L =
{[li, ui], i = 1, 2, . . . , n|0 6 li 6 ui 6 1}, we define
the set PL of probability distributions on X as

PL =

{
p | li 6 p({xi}) 6 ui,

n∑
i=1

p({xi}) = 1,

∀i = 1, 2, . . . , n

}
, (1)

where p({xi}) is a probability density of {xi}.
The set L is called a set of probability intervals,

or a probability interval, in short. The set PL is the
set of all possible probabilities associated with L.

Definition 3 (see Section 2 of Ref. 1) A probability
interval L = {[li, ui] ⊆ [0, 1], i = 1, 2, . . . , n} such
that

n∑
i=1

li 6 1 6
n∑

i=1

ui, (2)

is called proper probability interval, which means that
its associated set PL is nonempty.

It is clear that PL would be empty if
∑n

i=1 li >
1 or

∑n
i=1 ui < 1, since any probability function

p({xi}) in PL is defined between li and ui. For
a nonempty bounded feasible region PL, we always
have minp∈PL p(A) and maxp∈PL p(A); i.e.,

min
p∈PL

p(A) 6 p(A) 6 max
p∈PL

p(A), ∀A ∈ P (X),

where P (X) is the power set of the set X . This
means that for any given subsets A and Ac of X ,
where A ∩ Ac = ∅, there exist probabilities pA and

qAc ∈ PL such that pA(A) = minp∈PL p(A) and
qAc(Ac) = minp∈PL p(Ac). Hence, 1 = pA(A) +
pA(Ac) > pA(A) + qAc(Ac). The inequality 1 >
pA(A) + qAc(Ac) is viewed as the avoid sure loss
property proposed by Walley8. Hence the condition
(2) is a requirement of this property. We define

l(A) = min
p∈PL

p(A) and

u(A) = max
p∈PL

p(A), ∀A ∈ P (X). (3)

Functions l and u are not probabilities in general,
since l(A) + l(Ac) may be less than 1 and u(A) +
u(Ac) could be greater than 1.

Definition 4 (see Section 2 of Ref. 1) A proper prob-
ability interval L = {[li, ui], i = 1, . . . , n} is called
reachable if∑

j 6=i

lj + ui 6 1 and
∑
j 6=i

uj + li > 1, ∀i. (4)

The definition of a reachable probability interval
implies that ∃ pi and pi ∈ PL such that li = pi({xi})
and ui = pi({xi}), for all i. Normally, l({xi}) > li
and u({xi}) 6 ui as defined in (3). However, when L
is a set of reachable probability interval, it was proved
in Ref. 1 that: (i) l({xi}) = li and u({xi}) = ui for
all i; (ii) l(A) and u(A) can be calculated using the
values li and ui as

l(A) = max

(∑
xi∈A

li, 1−
∑

xi∈Ac

ui

)
, (5)

u(A) = min

(∑
xi∈A

ui, 1−
∑

xi∈Ac

li

)
, (6)

∀A ∈ P (X). The l and u functions in (5) and (6) were
proven in Ref. 1 to be Choquet capacity of order 2,
which resembles ‘coherence’ in Ref. 8. This implies
that the condition (4) is required for ‘coherence con-
straints’- super additive and sub additive constraints.
‘Avoid sure loss’ and ‘coherence’ concepts are fully
explained in Chapters 1 and 2 of Ref. 8.

Hence, if we have a reachable probability interval,
then{

p | li 6 p({xi}) 6 ui,
n∑

i=1

p({xi}) = 1,∀i
}

= {p | l(A) 6 p(A) 6 u(A),∀A ∈ P (X)},

where l(A) and u(A) are defined by (5) and (6). We
use the notation PL to represent the set {p|l(A) 6
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p(A) 6 u(A),∀A ∈ P (X)}. Note that the set PL

in (1) was written to represent the set of probabilities
of an arbitrary probability interval, while the set PL

is more specific for any reachable probability interval.
In PL, the largest lower bound and the smallest upper
bound of p(A) are clearly given by l(A) and u(A), for
each A ∈ P (X).

Next, we give the definitions of a σ-algebra,
a measurable space, a measurable mapping, and a
probability space. They are used in the definition of
a random set. Readers can also find the definitions
of these terms in many standard probability measure
textbooks, e.g., Ref. 14. Then, we discuss belief and
plausibility measures.

Definition 5 (see Chapters 1 and 2 of Ref. 14) Let Ω
be a nonempty set. A σ-algebra on Ω, denoted by σΩ,
is a family of subsets of Ω that satisfies the properties:
(i) ∅ ∈ σΩ; (ii) B ∈ σΩ ⇒ Bc ∈ σΩ; (iii) Bi ∈ σΩ,
for any countable family {Bi}∞i=1 of subsets of σΩ ⇒
∪iBi ∈ σΩ. A pair (Ω, σΩ) is called a measurable
space.

Definition 6 (see Chapters 1 and 2 of Ref. 14) Let
(Ω, σΩ) be a measurable space. By a measure on this
space, we mean a function µ : σΩ → [0,∞] with
the properties: (i) µ(∅) = 0; (ii) if Bi ∈ σΩ,∀i =
1, 2, . . ., are disjoint, then

µ
( ∞⋃

i=1

Bi

)
=

∞∑
i=1

µ(Bi).

We refer to the triple (Ω, σΩ, µ) as a measure space.
If µ(Ω) = 1, we refer to it as a probability space and
write it as (Ω, σΩ, P rΩ), where PrΩ is a probability
measure.

Definition 7 (see Chapters 1 and 2 of Ref. 14) Let
(Ω, σΩ) and (X,σX) be measurable spaces. A func-
tion f : Ω → X is said to be a (σΩ, σX)-measurable
mapping if for each A ∈ σX ,

f−1(A) = {ω ∈ Ω : f(ω) ∈ A} ∈ σΩ.

Definition 8 (see Chapter 5 of Ref. 15) Let
(Ω, σΩ, P rΩ) be a probability space and (F , σF ) be
a measurable space, where F ⊆ σX , X 6= ∅, and
(X,σX) is a measurable space. A random set Γ is a
(σΩ, σF )-measurable mapping

Γ : Ω→ F
ω 7→ Γ(ω).

A random set can be represented as a basic prob-
ability assignment function m over P (X):

m(E) = p({ω,Γ(ω) = E}), ∀E ∈ P (X),

such that
∑

E∈P (X)m(E) = 1 and m(∅) = 0 when
X is finite. A set E ∈ P (X), where m(E) > 0 is
called a focal element of m. We denote F as the set of
all focal elements. Hence, we could define a random
set using the ordered pair (F,m). We will see that we
can formulate belief and plausibility measures from a
given basic assignment m.

Definition 9 (See Chapter 7 of Ref. 16) Let X be a
finite set of realizations. A belief measure is a function

Bel : P (X)→ [0, 1]

such that Bel(∅) = 0, Bel(X) = 1, and it contains
a super-additive property for all possible families of
subsets of X , that is,

Bel(A1 ∪ . . . ∪An) >
∑
j

Bel(Aj)

−
∑
j<k

Bel(Aj∩Ak)+. . .+(−1)n+1Bel(A1∩. . .∩An)

where A1, A2, . . . , An ⊆ X . This property of belief
measures is a weaker version of the additive property
of probability measures. Thus for any A,Ac ⊆ X ,

Bel(A) + Bel(Ac) 6 1.

A plausibility measure, Pl, is defined by

Pl(A) = 1− Bel(Ac),∀A ∈ P (X).

Similarly, Bel(A) = 1− Pl(Ac), ∀A ∈ P (X).

Belief and plausibility measures can be charac-
terized by a basic probability assignment function m,
which is defined on P (X) to [0,1], such that m(∅) =
0 and

∑
E∈P (X)m(E) = 1. For any A ∈ P (X), it

can be seen in Ref. 4 that

Bel(A) =
∑

E,E⊆A

m(E), and

Pl(A) = 1− Bel(Ac) =
∑

E,E∩A 6=∅
m(E).

Also, the Bel function is ∞-monotone (the proof is
found in Ref. 4).

A random set induces the following set of all
probabilities,

PBel = {p|∀A ∈ P (X),Bel(A) 6 p(A) 6 Pl(A)}.
(7)

An approximation of a belief function Bel con-
structed from a reachable probability interval L was
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given by Lemmer and Kyburg10. Their method
showed that Bel(A) > l(A), so we have PBel ⊂ PL.
Hence this belief function Bel is an inner approxima-
tion of the probability interval L. On the other hand,
an outer approximation of the probability interval L
developed by Deneoeux11 is a belief function Bel such
that Bel(A) 6 l(A). This means PL ⊂ PBel. The aim
of this paper is to find conditions on a reachable prob-
ability intervalL necessary so that l(A) = Bel(A) and
u(A) = 1 − Bel(Ac) = Pl(A) for all A ∈ P (X). If
this is the case, PL = PBel. This also means that we
have found the conditions for probability intervals to
be∞-monotone. In the next section, we will discuss
these conditions of a probability interval.

WHEN A PROBABILITY INTERVAL IS A
RANDOM SET

We suppose that l(A) = Bel(A) and u(A) = Pl(A),
∀A ∈ P (X) in order to verify that PL = PBel. Thus
we need the conditions that can check the following
equations:

Bel(A) = max

(∑
xi∈A

li, 1−
∑

xi∈Ac

ui

)
, and

Pl(A) = min

(∑
xi∈A

ui, 1−
∑

xi∈Ac

li

)
.

However, we have l(Ac)+u(A) = 1 by observing
the calculation of l(Ac) and u(A) in (5) and (6).
Then, we can compute the value of u(A) as u(A) =
1 − l(Ac). Also, since Pl(A) = 1 − Bel(Ac) is
calculated in a similar way to u(A), we consider only
the conditions of when l(A) and Bel(A) have the same
value.

Suppose l(A) = Bel(A), ∀A ⊂ X . This means
that the basic assignment function m needs to have a
special pattern. We analyse this pattern through all
sizes of the nonempty subset A.

When |A| = 1, A = {xi}. The equa-
tion Bel(A) =

∑
E,E⊆Am(E) can be written as

Bel({xi}) = m({xi}). Since we consider only the
reachable probability interval, we get l({xi}) = li and
u({xi}) = ui for all i. Thus we must set m({xi}) =
li for all i, so that Bel({xi}) = l({xi}).

When |A| = 2, A = {xi, xj}. We know that
Bel({xi, xj}) = m({xi}) +m({xj}) +m({xi, xj}).
Hence

m({xi, xj}) = l({xi, xj})−m({xi})−m({xj})
= l({xi, xj})− li − lj .

When |A| = 3, A = {xi, xj , xk}. We
know that Bel({xi, xj , xk}) = m({xi}) +

m({xj}) +m({xk}) +m({xi, xj}) +m({xi, xk}) +
m({xj , xk}) +m({xi, xj , xk}). Hence

m({xi, xj , xk})

= l({xi, xj , xk})−
∑

i,j∈{i,j,k}

m({xi, xj})

−
∑

i∈{i,j,k}

m({xi})

= l({xi, xj , xk})−
∑

i,j∈{i,j,k}

m({xi, xj})−
∑

i∈{i,j,k}

li.

By induction, we can compute m(A) when 1 6
|A| 6 n− 1 as follows:

m({xi, xj , . . . , xs︸ ︷︷ ︸
|A|

})

= l({xi, xj , . . . , xs︸ ︷︷ ︸
|A|

})−
∑

m({xi, xj , . . . , xr︸ ︷︷ ︸
|A|−1

})−. . .

−
∑

i,j∈{i,j,...,s}

m({xi, xj︸ ︷︷ ︸
2

})−
∑

i∈{i,j,...,s}

li.

When A = X , we can compute m(X) by using
the fact that for a random set,

∑
E∈P (X)m(E) = 1.

Hence,

m(X) = 1−
n∑

i=1

li −
∑

xi,xj∈X
m({xi, xj})

− . . .−
∑

m({xi, xj , . . . , xs︸ ︷︷ ︸
n−1

}).

We conclude the pattern of the basic assignment
function m that provides l(A) = Bel(A) for all
nonempty set A ∈ P (X), by the following system
of equations:

m({xi}) = li, (8a)
m({xi, xj}) = l({xi, xj})− li − lj , (8b)

m({xi, xj , xk}) = l({xi, xj , xk})

−
∑

i,j∈{i,j,k}

m({xi, xj})

−
∑

i∈{i,j,k}

li, (8c)

...
m({xi, xj , . . . , xs︸ ︷︷ ︸

n−1

}) = l({xi, xj , . . . , xs})

−
∑

m({xi, . . . , xr︸ ︷︷ ︸
n−2

})
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− . . .−
∑

i∈{i,j,...,s}

li,

(8d)

m(X) = 1−
n∑

i=1

li

−
∑

xi,xj∈X
m({xi, xj})

− . . .

−
∑

m({xi, . . . , xs︸ ︷︷ ︸
n−1

}).

(8e)

Also, we must verify that m(A) > 0, ∀A ∈
P (X), to satisfy the random set property. This is not
difficult to see when the size of X is one or two, as we
show below.

Case X = {x1}. Since we only consider
the reachable probability intervals, we have only
p({x1}) ∈ [1, 1]. Then we get m({x1}) = 1.

Case X = {x1, x2}. Let p({x1}) ∈ [l1, u1] and
p({x2}) ∈ [l2, u2] of a reachable probability interval.
We get l2 + u1 6 1 and u1 + l2 > 1, so l2 + u1 = 1.
Similarly, we have l1 + u2 = 1, and l1 + l2 6 1 since
l1 6 u1. Let m({x1}) = l1 and m({x2}) = l2. So
m(X) = m{x1, x2} = 1− l1 − l2 > 0.

However, it may turn out that m(A) < 0 using
the system of (8) for a given probability interval that
has |X| > 3. Hence we need to find the conditions
of a probability interval to make sure that m(A) > 0.
These conditions are stated in Theorem 1 but we need
Lemma 1 in order to prove the theorem.

Lemma 1 Let X = {x1, x2, . . . , xn} with n >
3. For a given reachable probability interval L =
{[li, ui], i = 1, 2, . . . , n|0 6 li 6 ui 6 1}, if
m({xi}) = li and there exists an index i such that∑

j 6=i lj +ui = 1, then m(A) = 0∀A ∈ P (X \ {xi})
with |A| > 2.

Proof : Without loss of generality, we assume i = 1.
Hence l2 + l3 + . . . + ln + u1 = 1. We will prove
the lemma by mathematical induction on the size ofA.

Basic step. When |A| = 2. Let A = {xj1 , xj2},
j1 < j2. By assumption we get

lj1 + lj2 = 1− l2 − l3 − . . .− lj1−1 − lj1+1

− . . .− lj2−1 − lj2+1 − ln − u1

> 1− u2 − u3 − . . .− uj1−1 − uj1+1

− . . .− uj2−1 − uj2+1 − un − u1.

We get l({xj1 , xj2}) = lj1 + lj2 , due to (5). Also,
since we want Bel({xj1 , xj2}) = l({xj1 , xj2})
and we know that Bel({xj1 , xj2}) =
m({xj1}) + m({xj2}) + m({xj1 , xj2}), we get
m({xj1 , xj2}) = 0.

Induction step. Let m(A) = 0, ∀A ∈ P (X \
{x1}), where |A| = k, k 6 n − 2. Consider l2 +
l3 + . . .+ ln = 1− u1, we get l({x2, x3, . . . , xn}) =
l2 + l3 + . . .+ ln. From

m({xi, xj , . . . , xs︸ ︷︷ ︸
n−1

}) = l({xi, xj , . . . , xs})

−
∑

m({xi, xj , . . . , xr︸ ︷︷ ︸
n−2

})

− . . .−
∑

i∈{i,j,...,s}

li

and m(A) = 0 for all A ∈ P (X \ {x1}), where
|A| = k, k 6 n− 2, we have m({x2, x3, . . . , xn}) =
l({x2, x3, . . . , xn})−

∑
i∈{2,3,...,n} li = 0.

By induction, we conclude that if there exists an
index i such that

∑
j 6=i lj +ui = 1 then with |A| > 2,

m(A) = 0,∀A ∈ P (X \ {xi}). �

Remark 1 When |X| > 3, if we have
∑

j 6=i lj +ui <
1, ∀i, we may have m(A) < 0 for some subset A
of X , as shown in the following example in the case
when |X| = 3.

Example 1 Consider X = {x1, x2, x3} with a reach-
able probability interval L = {[li, ui]|0 6 li 6 ui 6
1, i = 1, 2, 3} where

∑
j 6=i lj + ui < 1, ∀i. Let

m({xi}) = li. Since li + lj < 1 − uk, we then get
l({xi, xj}) = 1− uk from (5). Hence

m({xi, xj}) = l({xi, xj})− li − lj
= 1− uk − li − lj
= 1− (uk + li + lj︸ ︷︷ ︸

<1

)

> 0.

Now, let us consider m(X).

m(X) = 1−
3∑

i=1

m({xi})−
∑
i6=j

m({xi, xj})

= 1− l1 − l2 − l3 − (1− u1 − l2 − l3
+ 1− u2 − l1 − l3 + 1− u3 − l1 − l2)

= l1 + l2 + l3 + u1 + u2 + u3 − 2

=

3∑
i=1

li +

3∑
i=1

ui − 2.
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Since we do not know the value of
∑3

i=1 li+
∑3

i=1 ui,
we could not conclude that m(X) is nonnegative.

Theorem 1 Let X = {x1, x2, . . . , xn}, n > 3. For a
given reachable probability interval L = {[li, ui]|0 6
li 6 ui 6 1, i = 1, 2, . . . , n}, if there are at most
two indices, say i1, i2, such that

∑
j 6=i1

lj + ui1 < 1
and

∑
j 6=i2

lj + ui2 < 1, then we can construct the
unique random set that has the same information as
the probability interval L, i.e., PBel = PL, which
means Bel(A) = l(A) and Pl(A) = u(A), ∀A ∈
P (X).

Proof : If we have an extra index called i3, where i3 6=
i1 or i2, such that

∑
j 6=i3

lj +ui3 < 1, then we cannot
construct the random set that has the same information
as the probability interval L, in general, as shown in
Remark 1 and Example 1. Thus we organize our proof
into the following three cases.

Case 1. There are two indices, say i1, i2, such that∑
j 6=i1

lj + ui1 < 1 and
∑

j 6=i2
lj + ui2 < 1. Without

loss of generality, let i1 = 1 and i2 = 2.
(i) When n = 3. Since

∑
j 6=1 lj + u1 < 1 and∑

j 6=2 lj + u2 < 1, we get
∑

j 6=3 lj + u3 = 1 by
the property of reachable probability intervals. Let
m({xi}) = li. By Lemma 1, we get m({x1, x2}) =
0. Next, we will show that m({x1, x3}),m({x2, x3})
and m(X) have nonnegative values, to complete this
part. Since l1 + l3 < 1 − u2 and l2 + l3 < 1 − u1,
we then get l({x1, x3}) = 1 − u2 and l({x2, x3}) =
1− u1, using (5). Hence,

m({x1, x3}) = l({x1, x3})− l1 − l3
= 1− u2 − l1 − l3
= 1− (u2 + l1 + l3︸ ︷︷ ︸

<1

) > 0.

m({x2, x3}) = l({x2, x3})− l2 − l3
= 1− u1 − l2 − l3 > 0.

m(X) = 1−
∑

m({xi})−
∑

m({xi, xj})

= 1− l1 − l2 − l3 − (1− u2 − l1
− l3 + 1− u1 − l2 − l3)

= u2 + u1 + l3︸ ︷︷ ︸
>1

−1 > 0.

(ii) When n > 4. We have i = 1, 2 such that∑
j 6=i lj + ui < 1. Hence

l2 + l3 + . . .+ ln < 1− u1

l1 + l3 + . . .+ ln < 1− u2. (9)

Hence l({x2, x3, . . . , xn}) = 1 − u1 and
l({x1, x3, . . . , xn}) = 1 − u2 by (5). For i 6= 1, 2,

we get
∑

j 6=i lj + ui = 1. Set m({xi}) = li, we
obtain m(A) = 0, ∀A ∈ P (X \ {xi})i 6= 1, 2, by
Lemma 1. Hence we have m(A) = 0,∀A ∈ P (X) \
{X, {x3, . . . , xn}, {x1, x3, . . . , xn}, {x2, x3, . . . , xn}}
Hence, we must find the value of m({x3, . . . , xn}),
m({x1, x3, . . . , xn}), m({x2, x3, . . . , xn}) and
m(X). From (8), we obtain

l3 + l4 + . . .+ ln +m({x3, . . . , xn})
= l({x3, x4, . . . , xn})

l1 + l3 + l4 + . . .+ ln +m({x3, . . . , xn})
+m({x1, x3, . . . , xn}) = 1− u2

l2 + l3 + l4 + . . .+ ln +m({x3, . . . , xn})
+m({x2, x3, . . . , xn}) = 1− u1

n∑
i=1

li +m({x3, . . . , xn}) +m({x1, x3, . . . , xn})

+m({x2, x3, . . . , xn}) +m(X) = 1.

Thus we can write this system of equations in
the form of matrix notation by using m(X),
m({x3, . . . , xn}),m({x1, x3, . . . , xn}), and
m({x2, x3, . . . , xn}) as unknown variables.

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1



m({x3, . . . , xn})
m({x1, x3, . . . , xn})
m({x2, x3, . . . , xn})
m(X)



=


l({x3, . . . , xn})− l3 − l4 − . . .− ln
1− u2 − l1 − l3 − l4 − . . .− ln
1− u1 − l2 − l3 − l4 − . . .− ln
1− l1 − l2 − l3 − . . .− ln

 ,
which means

m({x3, . . . , xn})
m({x1, x3, . . . , xn})
m({x2, x3, . . . , xn})
m(X)



=


l({x3, . . . , xn})− l3 − l4 − . . .− ln
− l({x3, . . . , xn}) + 1− u2 − l1
− l({x3, . . . , xn}) + 1− u1 − l2
l({x3, . . . , xn})− 1 + u1 + u2

 .
Since l(A) = max(

∑
xi∈A li, 1 −

∑
xi∈Ac ui), we

have

m({x3, . . . , xn})
= l({x3, . . . , xn})− l3 − l4 − . . .− ln > 0
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and

m(X) = l({x3, . . . , xn})− 1 + u1 + u2

> 1− u1 − u2 − 1 + u1 + u2 = 0.

We must show that m({x1, x3, . . . , xn}) > 0 and
m({x2, x3, . . . , xn}) > 0 to complete the proof of
this case. Consider when l({x3, . . . , xn}) = l3 + l4 +
. . .+ ln, so

m({x1, x3, . . . , xn})
= − l({x3, . . . , xn}) + 1− u1 − l2
= − (l2 + l3 + l4 + . . .+ ln + u1︸ ︷︷ ︸

<1

) + 1 > 0.

When l({x3, . . . , xn}) = 1− u1 − u2, then

m({x1, x3, . . . , xn})
= − l({x3, . . . , xn}) + 1− u1 − l2
= − 1 + u1 + u2 + 1− u1 − l2 = u2 − l2 > 0.

Hence −l({x3, . . . , xn}) + 1 − u2 − l1 > 0,
and m({x1, x3, . . . , xn}) > 0. We can obtain
m({x2, x3, . . . , xn}) > 0 in a similar fashion.

Case 2. There is only one index, say i1, such that∑
j 6=i1

lj + ui1 < 1. Without loss of generality, let
i1 = 1. Then we have l2 + l3 + . . . + ln < 1 − u1.
Hence l({x2, x3, . . . , xn}) = 1 − u1. For i 6= 1, we
get
∑

j 6=i lj + ui = 1. Let m({xi}) = li, we obtain
m(A) = 0, ∀A ∈ P (X \ {xi})∀i 6= 1, by Lemma 1.
Hence we have

m(A) = 0, ∀A ∈ P (X) \ {{x2, x3, . . . , xn}, X}.

Hence we must show that m({x2, x3, . . . , xn}) > 0
and m(X) > 0 to complete the proof. Eq. (8d)
provides

m({xi, xj , . . . , xs︸ ︷︷ ︸
n−1

})

= l({xi, xj , . . . , xs})−
∑

m({xi, xj , . . . , xr︸ ︷︷ ︸
n−2

})

− . . .−
∑

i∈{i,j,...,s}

li,

which means

m({x2, x3, . . . , xn})

= l({x2, x3, . . . , xn})−
∑

i∈{2,3,...,n}

li

= 1− u1 − l2 − l3 − . . .− ln
= 1− (u1 + l2 + l3 + . . .+ ln︸ ︷︷ ︸

<1

) > 0.

From the last equation of (8), we also have

m(X) = 1−
∑

li −
∑

m({xi, xj})

− . . .−
∑

m({xi, xj , . . . , xs︸ ︷︷ ︸
n−1

}).

Hence

m(X) = 1−
∑

li −m({x2, x3, . . . , xn})

= 1−
∑

li − (1− u1 − l2 − l3 − . . .− ln)

= u1 − l1 > 0.

Case 3. There is no index i such that∑
j 6=i

lj + ui < 1.

Hence we get
∑

j 6=i lj + ui = 1, ∀i. Let m({xi}) =
li, we obtain m(A) = 0, ∀A ∈ P (X \ {xi})∀i, by
Lemma 1. Hence we have m(A) = 0, ∀A ∈ P (X) \
X , and m(X) = 1−

∑
li > 0.

From all of these cases, we conclude that when
there are at most two indices, say i1, i2, such that∑

j 6=i1
lj + ui1 < 1 and

∑
j 6=i2

lj + ui2 < 1, we
can construct the unique random set that has the same
information such that PBel = PL, i.e., Bel(A) = l(A)
and Pl(A) = u(A), ∀A ∈ P (X), by defining m
according to (8). �

In the next section, we give an example of a
situation where we have probability interval informa-
tion and we do not want the other persons to have
a clear view of our information, since occasionally
this type of situation may yield a higher benefit/profit.
We then represent the information by using a random
set instead of a probability interval if our probability
interval satisfies the conditions in Theorem 1.

EXAMPLE

In a horse-racing field, suppose that an on-looker pays
$10 to bet on a particular horse. If that horse wins,
they will receive a return of $20. Suppose further
that a bettor in the horse-racing field has a probability
interval information about four exceptional horses, A,
B, C and D, as follows.

p({A will be the winner}) ∈ [ 1
4 ,

1
2 ],

p({B will be the winner}) ∈ [ 1
4 ,

7
16 ],

p({C will be the winner}) ∈ [ 1
8 ,

3
8 ],

p({D will be the winner}) ∈ [ 1
8 ,

5
16 ].
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Let X be the set of the exceptional horses, X =
{A,B,C,D}. We start by checking the reachability
of this probability interval. Since

lB + lC + lD + uA = 1, lA + lC + lD + uB = 15
16 ,

lA + lB + lD + uC = 1, lA + lB + lC + uD = 15
16 ,

l1 + u2 + u3 + u4 = 11
8 , l2 + u1 + u3 + u4 = 5

4 ,

l3 + u1 + u2 + u4 = 11
8 , l4 + u1 + u2 + u3 = 23

16 ,

this probability interval is reachable. Also, lA + lC +
lD + uB = 15

16 and lA + lB + lC + uD = 15
16 satisfy

the conditions stated in Theorem 1. Thus we can use
the basic assignment function in the proof of Case 1 of
Theorem 1 as follows. m({A}) = 1

4 , m({B}) = 1
4 ,

m({C}) = 1
8 , m({D}) = 1

8 , m({A,C,D}) = 1
16 ,

m({A,B,C}) = 1
16 , and m(X) = 1

8 . Hence the
belief that A will be the winner is 1

4 , which equals to
the belief that B will be the winner. The belief that
C will be the winner is 1

8 , which equals to the belief
that D will be the winner. The belief that the winner
will be one of the horses A, B, or C is 11

16 . The belief
that the winner will be one of the horses A, C, or D,
is 9

16 . Also, the belief that the winner is one of these
four horses is equal to 1, (as every one would know),
assuming that the race is among these four horses.

This random set information makes it harder for
an on-looker to interpret which horse would have the
best chance to win. However, if the bettor provides
the above probability interval to the on-looker, they
may easily guess that horseA has more chance to win.
Hence, the random set information would gain more
benefit for the bettor.

CONCLUSIONS

We obtain the conditions for which a given probability
interval can be transformed into a unique random set
with the same information. This probability inter-
val must be reachable and must have at most two
indices, say i1, i2, such that

∑
j 6=i1

lj + ui1 < 1
and

∑
j 6=i2

lj + ui2 < 1. It means that we found
the conditions sufficient for a probability interval to
be of ∞-monotone capacity. The construction of the
corresponding random set is provided in the proof of
Theorem 1. In a situation where a user wishes to
reveal a minimum of information, it would be better
if they prented the probability interval information as
the unique random set when these two uncertainties
refer to the same information.
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