
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2013.39.312

ScienceAsia 39 (2013): 312–315

A relaxation approximation of the incompressible
Navier-Stokes system
Hongli Wanga,∗, Huimin Liub

a College of Mathematics and Information Science,
North China University of Water Resources and Electric Power, Zhengzhou 450011, China

b General Subjects Department, Zhengzhou Chenggong University of Finance and Economics,
Zhengzhou 451200, China

∗Corresponding author, e-mail: wanghongli@ncwu.edu.cn
Received 17 May 2012
Accepted 20 Mar 2013

ABSTRACT: In this article, we consider a hyperbolic singular perturbation of the incompressible Navier-Stokes equations
in a d-dimensional unit periodic square. For well-prepared periodic initial data, we give a rigorous justification of the
diffusion relaxation limit towards the Navier-Stokes equations by using the energy method.
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INTRODUCTION

Let us consider the following system1:

∂tũ+ div Ṽ = ∇φ̃,

∂tṼ +∇ũ = −1

ε
(Ṽ − ũ⊗ ũ),

div ũ = 0,

(1)

for (x, t) ∈ Ω × [0, T ], where Ω = (0, 1]d is the unit
periodic square. The unknowns are ũ ∈ Rd, Ṽ ∈ Rd,d
and φ̃ ∈ R. Let us notice that, as ε → 0, we formally
obtain the incompressible system{

∂tũ+ div(ũ⊗ ũ) = ∇φ̃,
div ũ = 0.

Now, let us consider a diffusive relaxation scaling,
namely, for ε > 0, we set

ũ(x, t) = εu(x, εt),

Ṽ (x, t) = εV (x, εt),

φ̃(x, t) = ε2φ(x, εt).

Hence system (1) becomes

∂tu+
1

ε
div V = ∇φ, (2a)

∂tV +
1

ε
∇u = −V

ε2
+
u⊗ u
ε

, (2b)

div u = 0. (2c)

Applying the Maxwell iteration to (2b) gives

V = − ε∇u+ ε(u⊗ u)− ε2∂tV
= − ε∇u+ ε(u⊗ u) +O(ε3).

Substituting the truncation V = −ε∇u+ε(u⊗u) into
(2a), we arrive at the incompressible Navier-Stokes
equations

∂tu+ div(u⊗ u)−∆u = ∇φ,
div u = 0.

(3)

The goal of this paper is to justify the above
formal derivation of the incompressible Navier-Stokes
equations for periodic IVPs (initial-value problems)
with an emphasis on several space dimensions.

By using the modulated energy method, the dif-
fusive and relaxation limit of system (1) has been
investigated1, whose techniques were restricted to the
2-d case. With the help of the hyperbolic energy
methods for studying incompressible fluids, the above
limit for the compressible version of system (1) is
studied2. These papers all give a rigorous justification
of its asymptotic limit towards the incompressible
Navier-Stokes equations. For other diffusive relax-
ation models and approximations, we refer to Refs.
3–7 and the references therein for this topic.

In this paper, we study the relaxation limit prob-
lem of system (2) in the different scaling from1 and
obtain the different convergence result. Precisely, we
assume that incompressible Navier-Stokes (3) have
a smooth solution (u, φ) with initial data u(x, 0) =

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.312
http://www.scienceasia.org/2013.html
mailto:wanghongli@ncwu.edu.cn
www.scienceasia.org


ScienceAsia 39 (2013) 313

u0(x). Inspired by the Maxwell iteration above, we
construct a formal approximation

(uε, Vε, φε) = (u,−ε∇u+ ε(u⊗ u), φ)

for the solution (uε, V ε, φε) of (2) with initial data

(u(x, 0), V (x, 0)) = (u0(x),−ε∇u0 + ε(u0 ⊗ u0)).

Then, we will use energy methods to prove that
(uε, V ε, φε) exists in the finite time interval where u
is well defined and (uε, V ε, φε) can be expressed as

(uε, V ε, φε) = (uε, Vε, φε) +O(ε2)

in the Sobolev space Hs(Ω) with s > d
2 + 1.

Now we recall some results on the Moser-type
calculus inequalities in Sobolev spaces, and the local
existence of smooth solutions for symmetrizable hy-
perbolic equations for later use in this paper.

Lemma 1 (Moser-type calculus inequalities, Refs. 8,
9). Let s > 1 be an integer. Suppose u ∈ Hs(T 3),
∇u ∈ L∞(T 3), and v ∈ Hs−1(T 3)∩L∞(T 3). Then
for all multi-indexes |α| 6 s, we have (∂αx (uv) −
u∂αx v) ∈ L2(T 3) and

‖∂αx (uv)− u∂αx v‖
6 Cs(‖∇u‖0,∞‖D|α|−1v‖+ ‖D|α|u‖‖v‖0,∞),

where

‖Dhu‖ =
∑
|α|=h

‖∂αx u‖, ∀h ∈ N.

Moreover, if s > 3, then the embeddingHs−1(T 3) ↪→
L∞(T 3) is continuous and we have

‖uv‖s−1 6 Cs‖u‖s−1‖v‖s−1,

‖∂αx (uv)− u∂αx v‖ 6 Cs‖u‖s‖v‖s−1.

PRELIMINARIES AND FORMAL
APPROXIMATIONS

First we shall state the existence of smooth local
solutions for system (2) (See Ref. 1).

Theorem 1 Let s > d
2 + 1 be an integer. Suppose

the initial data (u0(x), V0(x)) are smooth functions
belonging to Hs(Ω). Then, there exists a positive
time T ε, which depends only on the initial data, and
a solution (uε, V ε, φε) ∈ C([0, T ε]; (Hs(Ω))3) to
system (2). Moreover, if T ε <∞, then

lim
t→T ε

‖(uε, V ε)‖s =∞.

The proof follows easily by arguing as for the clas-
sical wave equation, by using energy estimates and
the Gagliardo-Nirenberg inequalities, see for instance
Ref. 10, and it is omitted.

Let (u, φ) solve the IVP of the incompressible
Navier-Stokes (3). Inspired by the Maxwell iteration,
we take

(uε, Vε, φε) = (u,−ε∇u+ ε(u⊗ u), φ) .

Define

Rε =
∂tVε
ε

= −∂t(∇u− u⊗ u).

Then we have

∂tuε +
1

ε
div Vε = ∇φε,

∂tVε +
1

ε
∇uε = −Vε

ε2
+
uε ⊗ uε

ε
+ εRε,

div uε = 0.

(4)

Obviously, (4) is equivalent incompressible Navier-
Stokes (3).

Recalling the classical result11, 12 on the existence
of sufficiently regular solutions of the incompressible
Navier-Stokes (3), we have the following regularity
result about (uε, Vε, φε).

Lemma 2 Let u0 satisfy u0 ∈ Hs+3 and div u0 = 0
for s > d/2+1. Then there exist 0 < T∗ 6∞ (ifd =
2, T∗ =∞), the maximal existence time, such that

sup
t∈[0,T0]

(‖uε‖s+2 +‖∇φε‖s+2 +‖Vε‖s+1 +‖Rε‖s)

6 C(T0) (5)

for any T0 < T∗.

THE MAIN RESULT

Having constructed the formal approximation
(uε, Vε, φε) for the periodic IVP of the system (2), we
prove here the validity of the approximation under
some regularity assumptions on the given data and an
existence result for the IVP. The main result of this
paper is stated as follows.

Theorem 2 Let s ∈ N with s > d
2 + 1. Suppose that

the incompressible Navier-Stokes (3) have a solution
(uε, φε) satisfying (5).

Then, for ε sufficiently small, problem (2) with
periodic initial data

(u(x, 0), V (x, 0))

= (u0(x),−ε∇u0(x) + ε(u0(x)⊗ u0(x)))
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has a unique solution (uε, V ε) ∈ C([0, T∗], H
s(Ω)),

and there exists a constant C1 > 0, independent of ε
but dependent on T∗, such that

‖(uε − uε, V ε − Vε)(·, t)‖s 6 C1ε
2, ∀t ∈ [0, T∗].

Moreover,

‖V ε − Vε‖L2([0,T∗],Hs(Ω)) 6 C1ε
3.

Proof : First, let us set the error

(Eu, EV , Eφ) = (uε − uε, V ε − Vε, φε − φε).

From the equations in (2) and (4), it follows that the
error (Eu, EV , Eφ) satisfies

∂tE
u +

1

ε
divEV = ∇Eφ,

∂tE
V +

1

ε
∇Eu = −E

V

ε2

+
1

ε
((Eu + uε)⊗ Eu + Eu ⊗ uε)− εRε,

divEu = 0.

We differentiate the above equation with ∂αx for a
multi-index α satisfying |α| 6 s with s > d

2 +1 to get

∂tE
u
α +

1

ε
divEVα = ∇Eφα,

∂tE
V
α +

1

ε
∇Euα = −E

V
α

ε2
+

1

ε
Fα − εRεα,

divEuα = 0,

(6)

where

Fα = [(Eu + uε)⊗ Eu + Eu ⊗ uε]α.

Before performing the energy estimate, we set

Eα,s(t) = ‖Euα(t)‖2 + ‖EVα (t)‖2,

Es(t) =
∑
|α|6s

Eα,s(t).

Taking the L2 inner product of the first equation
in (6) with Euα, one gets, by using the third equation
in (6) and integration by parts that

1
2

d

dt
‖Euα‖2 = − 1

ε

∫
Ω

Euα divEVα dx+

∫
Ω

Euα∇Eφα dx

= − 1

ε

∫
Ω

Euα divEVα dx. (7)

Taking the L2 inner product of the second equation
in (6) with EVα , one gets, by integration by parts and

Cauchy-Schwarz’s inequality that

1
2

d

dt
‖EVα ‖2 +

1

ε2

∫
Ω

|EVα |2 dx

= − 1

ε

∫
Ω

EVα∇Euα dx+
1

ε

∫
Ω

EVα Fα dx

− ε
∫
RεαE

V
α dx

=
1

ε

∫
Ω

Euα divEVα dx+
1

ε

∫
Ω

EVα Fα dx

− ε
∫

Ω

EVα Rεα dx

6
1

ε

∫
Ω

Euα divEVα dx+
1

2ε2

∫
Ω

|EVα |2 dx

+ C

∫
Ω

|Fα|2 dx+ Cε4,

where, we have used the boundedness of the ‖Rε‖s in
inequality (5). Then, we have

1
2

d

dt
‖EVα ‖2 +

1

2ε2
‖EVα ‖2

6
1

ε

∫
Ω

Euα divEVα dx+ C‖Fα‖2 + Cε4. (8)

From (7) and (8), we have

d

dt
Eα,s(t) +

1

ε2
‖EVα ‖2 6 C‖Fα‖2 + Cε4.

For Fα, the Moser-type calculus inequality gives

‖Fα‖2 6 C((1 + ‖Eu‖s)‖Eu‖s)2

6 C(1 + Es(t))Es(t).

Then, Young inequality gives

d

dt
Eα,s(t) +

1

ε2
‖EVα ‖2 6 C(1 + Es(t))Es(t) + Cε4.

(9)
Integrating (9) over (0, t) with t ∈ (0, T ], T =
min{T ε, T∗} and summing up over α satisfying |α| 6
s, we obtain

Es(t) +
1

ε2

∫ t

0

‖EV (ξ)‖2s dξ

= C

∫ t

0

(1 + Es(ξ))Es(ξ) dξ + Cε4. (10)

Now we let

z(t) = C

∫ t

0

(1 + Es(ξ))Es(ξ) dξ + Cε4.
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Then it follows from (10) that

Es(t) 6 z(t),
1

ε2

∫ t

0

‖EV (ξ)‖2s dξ 6 z(t),∀t ∈ (0, T ],

(11)
and

z′(t) = C(1 + Es(t))Es(t) 6 Cz(t)(1 + z(t)),

with
z(0) = Cε4.

A straightforward computation yields

z(t) 6 Cε4 eCt 6 Cε4 eCT∗ , ∀t ∈ (0, T ].

Hence from (11) we obtain

Es(t) 6 z(t) 6 Cε4,∫ t
0
‖EV (ξ)‖2s dξ 6 ε2z(t) 6 Cε6,

∀t ∈ (0, T ]. In particular, this implies that (Eu, EV )
is bounded in L∞([0, T ], Hs(Ω)). By a standard
argument on the time extension of smooth solutions,
we obtain T ε > T∗, i.e., T = T∗. This completes the
proof of Theorem 2. �
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