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ABSTRACT: Two new nonlinear spectral conjugate gradient methods for solving unconstrained optimization problems are
proposed. One is based on the Hestenes and Stiefel (HS) method and the spectral conjugate gradient method. The other
is based on a mixed spectral HS-CD conjugate gradient method, which combines the advantages of the spectral conjugate
gradient method, the HS method, and the CD method. The directions generated by the methods are descent directions for
the objective function. Under mild conditions, we prove that the spectral conjugate gradient methods with an Armijo-type
line search are globally convergent. Numerical results show the proposed methods are promising.
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INTRODUCTION

Unconstrained optimization problems have extensive
applications, for example, in petroleum exploration,
aerospace, and transportation1–3. The purpose of this
paper is to study the global convergence properties and
practical computational performance of two Hestenes
and Stiefel (HS) spectral conjugate gradient methods
for unconstrained optimization without restarts, and
with suitable conditions.

Consider the following unconstrained optimiza-
tion problem:

min
x∈Rn

f(x) (1)

where f : Rn → R is continuously differentiable and
its gradient is available. Iterative methods are widely
used and the iterative formula is given by

xk+1 = xk + αkdk (2)

where xk ∈ Rn is the kth approximation to the
solution, αk is a positive scalar and called the step-
size which is determined by some line search and dk
is a search direction. There are many kinds of itera-
tive methods that include Newton method4, 5, steepest
descent method6, and nonlinear conjugate gradient
method7, 8. The conjugate gradient methods are the
most famous methods for solving (1), especially in the
case of large scale optimization problems in scientific
and engineering computation due to the simplicity of
their iteration and low memory requirements. The

search direction dk is defined by

dk =

{
−gk, k = 1,

− gk + βkdk−1, k > 2,
(3)

where gk = ∇f(xk) and βk is a scalar which
determines the different conjugate methods. The well-
known formulae for βk such as βHS

k
9, βFR

k
10, βPRP

k
11,

βCD
k

12, βLS
k

13, βDY
k

14 can be found in many related
papers. The convergence behaviour of conjugate
gradient methods with these formulae under some dif-
ferent line search conditions has been widely studied
by many authors (see Refs. 12–15). In the original
HS method proposed by Hestenes and Stiefel9 βk is
defined by

βHS
k =

gTk yk
yTk dk−1

, (4)

where yk = gk − gk−1. In practical computation, the
HS method is generally believed to be one of the most
efficient conjugate gradient methods. Recently, some
modified HS formulae have been proposed16–18. In
these methods, the search direction is constructed to
possess the sufficient descent property, and the theory
of global convergence is established with different line
search strategies. Zhang17 proposed a three-term HS
conjugate gradient method (called TTHS), in which
the direction dk is given by

dk = −gk + βHS
k dk−1 + θkyk−1, θk =

gTk dk−1
dTk−1yk−1

.

(5)
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Fletcher12 proposed the CD method, in which βk is
defined by

βCD
k = −

‖gk‖2

dTk−1gk−1
, (6)

where ‖.‖ denotes the Euclidean norm of vectors.
An important property of the CD method is that the
method will produce a descent direction under the
strong Wolfe line search:

f(xk + αkdk) 6 f(xk) + δαkg
T
k dk, (7)

dTk g(xk + αkdk) > σdTk gk, (8)

where 0 < δ < σ < 1. Some good results from
the CD method have also been reported in recent
years19–21. Another popular method of solving prob-
lem (1) is the spectral gradient method, which was
developed originally by Barzilai and Borwein22. Ray-
dan23 further introduced the spectral gradient method
for potentially large-scale unconstrained optimization
problems. Recently, Birgin and Martinez24 proposed
a spectral conjugate gradient method by combining
the conjugate gradient method and spectral gradient
method. The direction dk is given by

dk = −θkgk + βksk−1 (9)

where sk = xk − xk−1 and

βSP
k =

(θkyk−1 − sk−1)Tgk
sTk−1yk−1

,

βSPR
k =

θky
T
k−1gk

αkθk−1gTk−1gk−1
,

βSFR
k =

θkg
T
k gk

αkθk−1gTk−1gk−1
, (10)

and θk is taken to be the spectral gradient and is
computed from

θk =
sTk−1sk−1

sTk−1yk−1
. (11)

The numerical results show that these methods are
very effective. Unfortunately, the spectral conjugate
gradient method24 cannot guarantee to generate de-
scent directions. Hence, based on the FR formula,
Zhang et al25 modified the FR method so that the
direction generated is always a descent direction. The
dk is defined by the following

dk =

{
−gk, k = 1,

− θkgk + βFR
k dk−1, k > 2,

(12)

where θk = (dTk−1yk−1)/(‖gk−1‖2). They proved
that this method can guarantee to generate descent
directions and is globally convergent. In this paper,
motivated by the success of the spectral gradient
method, we first propose a new spectral conjugate
gradient method by combining the HS method and the
spectral gradient method. The direction is given by (3)
and

βk =

{
βHS
k , gTk dk−1 > 0,

0, otherwise,
(13)

θk = 1− |g
T
k dk−1|

gTk−1dk−1
. (14)

Then, another new spectral conjugate gradient method
obtained by combining the HS method and CD is
proposed. The direction is given by (3) and

βk =

{
βHS
k , gTk dk−1 > 0,

βCD
k , gTk dk−1 6 0.

(15)

θk = 1− gTk dk−1
gTk−1dk−1

. (16)

Under some mild conditions, we give the global con-
vergence of the new spectral conjugate gradient meth-
ods with an Armijo-type line search26. The rest of this
paper is organized as follows. First, we propose the
corresponding algorithms and give some assumptions
and lemmas, which are usually used in the proof of the
global convergence properties of nonlinear conjugate
gradient methods. Then, the global convergence of
the new spectral conjugate methods will be proven.
Some numerical experiments will be done to test the
efficiency, especially in comparison with the modified
FR25 and the spectral PRP methods26 in the last part
of the paper.

ALGORITHMS AND LEMMAS

In this section, we will give the following assumption
on objective function, which have often been used
in the literature to analyse the global convergence of
nonlinear conjugate gradient method and the spectral
conjugate gradient method with inexact line searches.

Assumption 1: the level set Ω = {x|f(x) 6
f(x1)} is bounded, where x1 is the starting point.

Assumption 2: in some neighbourhood N of Ω,
the objective function is continuously differentiable
and its gradient is Lipschitz continuous, namely, there
exists a constant L > 0 such that

‖g(x)− g(y)‖ 6 L ‖x− y‖ for x, y ∈ N. (17)

Now we present the new spectral conjugate gradi-
ent method.
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Algorithm 1 (Spectral HS Conjugate Gradient)
Step 1: Given constant δ1, ρ ∈ (0, 1), δ2 > 0, ε > 0.

Choose an initial point x1 ∈ Rn, let k = 1.
Step 2: If ‖gk‖ 6 ε, then the algorithm stops. Other-

wise, compute dk by (3), (14) and βk by (13).
Step 3: Compute step-size αk = max{ρj , j =

0, 1, 2, . . .} such that

f(xk+αkdk) 6 f(xk)+δ1αkg
T
k dk−δ2α2

k ‖dk‖
2

(18)
Step 4: Set xk+1 = xk+αkdk, and k = k+1. Return

to Step 2.

Algorithm 2 (Spectral HS-CD Conjugate Gradient)
Whole steps of the spectral HS-CD algorithm are
defined as Algorithm 1 except dk and βk in Step 2
that are computed by (3), (16) and (15), respectively.

The following theorem shows that both Algorithms 1
and 2 possess a descent direction in each iteration.

Theorem 1 Let the sequences gk and dk be generated
by Algorithms 1 and 2 and let the step-size αk be
determined by any line search, then

gTk dk < 0. (19)

Proof : We can prove the conclusion by induction.
From ‖g1‖2 = −gT1 d1, the conclusion (19) holds for
k = 1. Now we assume that the conclusion is true
for k − 1 and gk 6= 0, that is gTk−1dk−1 < 0. In the
following, we need to prove that the conclusion holds
for k. If gTk dk−1 > 0, then, from both Algorithms 1
and 2 βk = βHS

k . From (4), (3), (14), (16) and our
assumption gTk−1dk−1 < 0 we have

gTk dk = −
(

1− gTk dk−1
gTk−1dk−1

)
‖gk‖2

+
gTk (gk − gk−1)

(gk − gk−1)Tdk−1
gTk dk−1

= −‖gk‖2 +
gTk dk−1
gTk−1dk−1

gTk gk

+
gTk (gk − gk−1)

(gk − gk−1)Tdk−1
gTk dk−1

= −
dTk−1(gk − gk−1)

(gk − gk−1)Tdk−1
‖gk‖2

+
gTk dk−1
gTk−1dk−1

gTk gk

+
gTk (gk − gk−1)

(gk − gk−1)Tdk−1
gTk dk−1

=
gTk dk−1
gTk−1dk−1

gTk gk < 0. (20)

If gTk dk−1 6 0 then from Algorithm 2 βk = βCD
k .

From (6), (3), and (16), we have

gTk dk = −θk ‖gk‖2 + βCD
k gTk dk−1

= −
[
1− gTk dk−1

gTk−1dk−1

]
‖gk‖2 −

‖gk‖2 gTk dk−1
dTk−1gk−1

= −‖gk‖2 < 0. (21)

If gTk dk−1 6 0 then from Algorithm 1 βk = 0. From
(3) and (14), we have

gTk dk = −θk ‖gk‖2 = −
(

1 +
gTk dk−1
gTk−1dk−1

)
‖gk‖2

= −‖gk‖2 −
gTk dk−1
gTk−1dk−1

‖gk‖2

6 −‖gk‖2 < 0. (22)

From (20), (21) and (22), we know that the conclusion
(19) holds for all k. �

Proposition 1 (See Ref. 26). Let f : Rn → R be a
continuously differentiable function. Suppose that d is
a descent direction of f at x. Then there exists J0 such
that

f(x+ αd) 6 f(x) + δ1αg
Td− δ2α2 ‖d‖2 , (23)

where α = ρJ0 , g is the gradient vector of f at x, δ1,
ρ ∈ (0, 1), δ2 > 0 are given constant scalars.

Remark 1 From Proposition 1, it is known that both
Algorithms 1 and 2 are well defined. In addition,
it is easy to see that a larger descent magnitude can
be obtained at each step by the modified Armijo-type
line search (18). The following conclusion is given in
Lemma 3.3 of Ref. 26.

Lemma 1 With Assumptions 1 and 2 there exists a
constant m > 0 such that

αk > m
|gTk dk|
‖dk‖2

, (24)

holds for all sufficiently large k.

Lemma 2 Under Assumptions 1 and 2,∑
k>1

(gTk dk)2

‖gk‖2
<∞, (25)

lim
k→∞

α2
k ‖dk‖

2
= 0. (26)
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Proof : From the line search rule (18) and Assump-
tion 1, there exists a constant M such that

n−1∑
k=0

−δ1αkg
T
k dk + δ2α

2
k ‖dk‖

2

6
n−1∑
k=0

(f(xk)− f(xk+1)) < 2M. (27)

Then from Lemma 1 we have

2M >
n−1∑
k=0

(−δ1αkg
T
k dk + δ2α

2
k ‖dk‖

2
)

>
n−1∑
k=0

(
δ1m

(gTk dk)2

‖dk‖2
+ δ2m

2 (gTk dk)2

‖dk‖4
‖dk‖2

)

>
n−1∑
k=0

(δ1m+ δ2m
2)

(gTk dk)2

‖dk‖2
. (28)

Hence the first conclusion is proven. Since

2M >
n−1∑
k=0

(−δ1αkg
T
k dk + δ2α

2
k ‖dk‖

2
)

> δ2

n−1∑
k=0

α2
k ‖dk‖

2
. (29)

The series
∑n−1

k=0 α
2
k ‖dk‖

2 is convergent. Thus
limk→0 α

2
k ‖dk‖

2
= 0. The second conclusion is

obtained. �

Lemma 3 Suppose that Assumptions 1 and 2 hold.
Consider both Algorithms 1 and 2, where αk is obtain
by the modified Armijo line search (18). If there exists
a constant ε > 0 such that for all k > 0, ‖gk‖ > ε.
Then there exists a sufficiently large number k0 such
that for k > k0, the scalars βk in Algorithms 1 and 2
satisfy

|βk| 6

∣∣∣∣∣ gTk dk
gTk−1dk−1

∣∣∣∣∣ . (30)

Proof : If gTk dk−1 > 0, from (2), (3), (17) and using
the Cauchy-Schwarz inequality, we have

|βk| =
∣∣∣∣ gTk (gk − gk−1)

(gk − gk−1)Tdk−1

∣∣∣∣
6
|gTk (gk − gk−1)|
| − gTk−1dk−1|

6
‖gk‖ ‖gk − gk−1‖
|gTk−1dk−1|

6
‖gk‖ Lαk−1 ‖dk−1‖
|gTk−1dk−1|.

(31)

From (26) in Lemma 2, it follows that

lim
k→∞

α2
k−1 ‖dk−1‖

2
= 0. (32)

In particular, we have

lim
k→∞

αk−1 ‖dk−1‖ = 0. (33)

Thus there exists a sufficient large number k0 such that
for k > k0,

0 6 αk−1 ‖dk−1‖ <
|gTk dk|
‖gk‖ L

. (34)

Hence by substituting (34) in (31), we have (30).
If gTk dk−1 6 0, then from (6), (15), (13) and (21),

we have (30). �

GLOBAL CONVERGENCE PROPERTY

Theorem 2 Under Assumptions 1 and 2,

lim inf
k→∞

‖gk‖ = 0. (35)

Proof : Suppose that there exists a positive constant
ε > 0 such that ‖gk‖ > ε for all k. From (3), it
follows that

‖gk‖2 = (−θkgk + βkdk−1)T(−θkgk + βkdk−1)

= θ2k ‖gk‖
2− 2θkβkd

T
k−1gk + β2

k ‖dk−1‖
2

= θ2k ‖gk‖
2− 2θk(dTk + θkg

T
k )gk + β2

k ‖dk−1‖
2

= θ2k ‖gk‖
2− 2θkd

T
k gk − 2θ2k ‖gk‖

2
+ β2

k ‖dk−1‖
2

= β2
k ‖dk−1‖

2 − 2θkd
T
k gk − θ2k ‖gk‖

2
.

(36)

Dividing (36) by (gTk dk)2 then from Lemma 3, there
exists a sufficient large k0 such that for k > k0, we
obtain

‖dk‖2

(gTk dk)2
=
β2
k ‖dk−1‖

2 − 2θkd
T
k gk − θ2k ‖gk‖

2

(gTk dk)2

6
(gTk dk)2

(gTk−1dk−1)2
‖dk−1‖2

(gTk dk)2
− 2θk
gTk dk

− θ2k
‖gk‖2

(gTk dk)2

=
‖dk−1‖2

(gTk−1dk−1)2
−
(
θk
‖gk‖
gTk dk

+
1

‖gk‖

)2

+
1

‖gk‖2

6
‖dk−1‖2

(gTk−1dk−1)2
+

1

‖gk‖2
.

(37)
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Table 1 The numerical results of the MFR (M), SHS-CD (C), SHS (S), and SPRP (P) methods.

problems Dim GV/10−6 number of iterations number of function evaluations

M C S P M C S P M C S P

Brown almost-linear 100 6.54 7.60 7.60 6.54 24 29 29 24 2161 2126 2126 2161
Trigonometric 100 9.99 9.87 9.64 7.24 589 818 239 146 18 959 26 211 1097 17 151
function
Linear function 100 9.78 9.78 8.28 9.78 169 169 89 169 70 70 90 70
full rank
Linear function 40 8.20 2.16 3.89 5.22 117 117 129 1499 23 383 23 305 33 553 469 714
- rank 1
Brown almost-linear 20 9.89 7.22 9.16 7.28 1254 833 1898 1680 63 366 33 982 93 890 89 935
Discrete boundary 20 9.57 9.84 9.66 8.61 1714 1769 7899 2699 38 461 47 241 166 750 50 001
Linear function 20 2.54 9.88 8.58 9.29 228 168 177 198 34 273 25 177 26 394 29 728
Penalty function II 20 5.91 6.97 5.65 9.23 250 899 699 4499 6948 51 848 22 771 140 659
Linear function 12 3.66 1.47 1.64 1.68 8 11 11 6 97 73 99 25
full rank
Linear function 10 7.40 1.29 2.64 9.48 42 44 35 74 4789 4843 3777 3026
- rank 1
Broyden tridiagonal 9 4.26 1.69 6.82 6.87 109 59 54 32 2125 2319 2121 6380
Variably dimensioned 8 1.33 1.47 2.32 4.25 45 21 21 21 1163 802 774 506
Extended power 8 9.76 9.74 3.84 2.57 846 526 9999 7899 10 199 5643 362 113 267 924
singular
Biggs EXP6 function 6 6.30 3.98 6.08 9.31 20 999 19 999 31 999 31 899 975 041 796 701 277 479 238 730
Penalty function I 5 4.45 4.45 9.56 10.00 11 999 11 999 8999 6486 333 012 333 012 22 596 6530
Broyden tridiagonal 4 9.93 1.24 9.16 7.14 119 42 37 43 2864 783 694 816
Extended power 4 9.23 9.98 9.31 6.93 863 406 5989 3899 10 199 6030 216 981 13 206
singular
Brown almost-linear 4 7.06 9.77 8.53 4.70 122 121 168 120 249 283 1984 1379
Discrete boundary 4 9.42 4.21 7.23 7.70 35 27 39 32 724 561 771 843
value
Powell singular 4 9.60 9.18 5.49 7.79 667 408 679 2369 10 824 6030 24 736 80 201
Brown and Dennis 4 9.85 9.45 2.56 9.74 239 262 262 338 791 519 882 281
Wood function 4 9.71 8.05 7.49 3.41 292 198 254 209 18 669 11 208 14 688 270 532
Kowalik and 4 6.92 7.80 8.18 9.78 9995 9899 2999 3044 416 535 415 016 28 014 24 340
Osboren function
Gaussian function 3 7.61 3.11 5.74 7.44 8 6 6 8 101 51 59 107
Bard function 3 9.78 9.81 6.33 - 715 614 1834 - 1102 590 36 939 -
Box three 3 9.16 9.26 2.72 9.13 597 579 599 677 1190 1100 4681 1124
-dimensional
Helical valley 3 9.63 8.39 5.94 9.29 19 31 30 19 879 1493 1400 2613
Jennrich 2 7.95 5.74 5.74 4.28 55 20 20 21 2183 1129 1129 882
and Sampson
Freudenstein 2 1.13 2.92 3.27 2.65 137 37 56 68 4739 1010 1461 704
and Roth
Rosenbrock 2 4.98 1.68 9.45 3.55 238 66 175 106 2598 1824 1639 1073
Beal 2 7.56 5.51 2.93 6.93 74 39 45 45 1920 1165 1063 1263
Brown badly 2 - 6.68 6.68 9.44 - 59 59 88 - 16 581 16 581 24 285
scan function

Dim: the dimension of the objective function; GV: the gradient value of the objective function when the algorithm stops;
MFR: the modified FR conjugate gradient method in Ref. 25; SHS-CD: the new spectral HS-CD method presented in
this paper; SHS: the new spectral HS method presented in this paper; SPRP: the spectral PRP conjugate gradient method
in Ref. 26.

Therefore

‖dk‖2

(gTk dk)2
6

‖dk−1‖2

(gTk−1dk−1)2
+

1

‖gk‖2

6 . . . 6
‖dk0‖

2

(gTk0
dk0)

+

k∑
i=k0+1

1

‖gk‖2

6
c0
ε2

+

k∑
i=k0+1

1

ε2
=
c0 + k − k0

ε2
,

where c0 = ε2 ‖dk0
‖2 /(gTk0

dk0
)2 is a nonnegative

constant. The last inequality implies

∑
k>1

(gTk dk)2

‖dk‖2
>
∑
k>k0

(gTk dk)2

‖dk‖2
> ε2

∑
k>k0

1

c0 + k + k0
.

The right-hand side of this is infinite which contradicts
the result of Lemma 2. Hence the conclusion (35)
holds. �

NUMERICAL EXPERIMENTS

In this section, we report some numerical results.
Under the modified Armijo line search (18), we com-
pare the performances of the iteration number and the

www.scienceasia.org

http://www.scienceasia.org/2013.html
www.scienceasia.org


ScienceAsia 39 (2013) 311

function evaluation number of the new methods with
that of modified FR25, spectral PRP26 on the given test
problems which come from27.

All codes were written in MATLAB 7.0.1 and
were implemented on a PC with 2.0 GHz CPU, 1 GB
RAM, and Windows 7. The parameters used were
ε = 10−5, ρ = 0.9, δ1 = 0.25, δ2 = 0.45.

Comparison of the results in Table 1 shows that
the proposed algorithms in this paper are promising.

CONCLUSIONS

In this paper, two new spectral HS conjugate gradient
algorithms have been developed for solving uncon-
strained minimization problems. Under some mild
conditions, the global convergence has been proven
with an Armijo-type line search rule. Compared with
the other similar algorithms, the numerical perfor-
mances of the developed algorithms are promising.
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