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ABSTRACT: The clinical recognition of abnormal retinal tortuosity enables the diagnosis of many diseases. Tortuosity is
often interpreted as points of high curvature of the blood vessel along certain segments. Quantitative measures proposed so
far depend on or are functions of the curvature of the vessel axis. In this paper, we propose a parallel algorithm to quantify
retinal vessel tortuosity using a robust metric based on the curvature calculated from an improved chain code algorithm.
We suggest that the tortuosity evaluation depends not only on the accuracy of curvature determination, but primarily on the
precise determination of the region of support. The region of support, and hence the corresponding scale, was optimally
selected from a quantitative experiment where it was varied from a vessel contour of two to ten pixels, before computing the
curvature for each proposed metric. Scale factor optimization was based on the classification accuracy of the classifiers used,
which was calculated by comparing the estimated results with ground truths from expert ophthalmologists for the integrated
proposed index. We demonstrate the authenticity of the proposed metric as an indicator of changes in morphology using
both simulated curves and actual vessels. The performance of each classifier is evaluated based on sensitivity, specificity,
accuracy, positive predictive value, negative predictive value, and positive likelihood ratio. Our method is effective at
evaluating the range of clinically relevant patterns of abnormality such as those in retinopathy of prematurity. While all the
proposed metrics are sensitive to curved or kinked vessels, the integrated proposed index achieves the best sensitivity and
classification rate of 97.8% and 93.6%, respectively, on 45 infant retinal images.
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INTRODUCTION

Retinal fundus images provide important information
for early detection of many retinal and systemic dis-
eases. Examination of the appearance of the retinal
blood vessels is therefore of immense clinical impor-
tance. Buckling in the blood vessel network of the
retina may be due to dilation (radial stretching in the
vessels) or longitudinal stretching. They are mark-
ers of not only retinal pathologies but also of other
systemic diseases originating in the cardiovascular,
central nervous, and endocrine-metabolic systems1.
Twisted appearance of vessel course is rightly termed
as tortuosity. Increase in vessel tortuosity is the first
manifestation of the changes in vessel morphology.
Tortuosity could be produced due to several causes
akin to high blood flow, angiogenesis, or blood vessel
congestion. It could be concentrated or focal or stretch
along the entire retinal vasculature.

Since tortuosity feature is a very important cue for
eye diseases, its severity and progression with time,
there is a need for the measurement of tortuosity in

a consistent, repeatable manner. A basic ability to
investigate the sign of disease would be to detect the
vascular structure and measure the tortuosity. Hence
this paper concentrates on the task of vessel detection
and tortuosity measurement of vascular structure in
retinal fundus images.

Tortuosity has been shown to be a more reliable
vascular parameter in differentiating retinopathy of
prematurity (ROP) severity than vessel width2. ROP
is a developmental disease of eye in premature infants
characterized by increased dilation and tortuosity of
the retinal blood vessels. The exact causes of ROP
are not completely understood, however it could be
classified into three stages as active, non active, and
very active ROP. The tortuosity attribute provides
relevant estimates of the degree of prematurity.

Several possible measures of tortuosity and vessel
diameter have been proposed3–5 (each with its own
constraints). However, relatively few attempts6–8 have
been made to quantify tortuosity in case of infant
retinal blood vessels. In order to assess the clinical
significance of tortuosity changes with time and to
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relate different levels of the same retinopathy, there
is a dire need to devise a new approach for tortuosity
evaluation that matches the clinical perception of
ophthalmologists.

Tortuosity evaluation relevant to the clinical acu-
ity of the ophthalmologists still remains an open
problem and varies from disease to disease3. Grad-
ing of tortuosity in clinical practice is usually done
using a gross qualitative scale (e.g., mild, moderate,
severe and extreme)6; as a result the analysis remains
subjective. A reliable quantitative measure would
provide an objective assessment thereby enable the
automated measurement of retinal vascular tortuosity
and its progression to be more easily discerned. A
range of tortuosity measure based on ratio of the arc
length and chord length4, 7, was commonly used5, 8, 9,
though it was recognized as inconsistent2; since it
provided similar numeric values for a gradual bending
vessel and for the one that bends more frequently. Au-
tomated measurement using seven integral estimates
of tortuosity based on the curvature of vessels was for-
mulated5. However, it could not differentiate the tor-
tuosity of structures that had different perceived tor-
tuosity. This was generalized to 3D images obtained
by means of the magnetic resonance angiography
to achieve better accuracy of tortuosity calculation3.
Measurement of tortuosity based on relative length
variation was proposed10, which include relationships
between tortuosity, diameter and pressure which pro-
duce change in the shape of artificial latex vessels.
Measurement of tortuosity by using Fourier analysis
was proposed long ago11 but Fast Fourier transform
of the vessel’s curvature as a measure of tortuosity
has been introduced lately12. Method to compute
tortuosity using second derivatives along central axis
of the blood vessels was proposed13. An interface
based on MIDAS was developed14, but it proved to
be subjective and time consuming. Few authors15

proposed to measure vessel diameter using two dif-
ferent methods to estimate profile width, but in this
case bifurcations and crossings were not considered
while choosing the vessel segment. Then an alterna-
tive method to calculate tortuosity of each individual
segment was proposed16. The idea behind is to use
the points of changing curvature sign. Nonetheless,
this algorithm required manual vessel tracing and it
cannot distinguish tortuosity of vessel with constant
curvature. In Ref. 17, the length of the smooth curve
was estimated by choosing points along the vessel that
were about 40 pixels apart, and tortuosity was evalu-
ated by the ratio of the total length of the vessel to
the length of the smooth curve. It was assumed that it
gives a more accurate measure of tortuosity. However,

in this study the plus disease threshold value had to be
set a priori at a tortuosity index of 9 because it proved
more accurate in pilot studies. Lately, computer-aided
image analysis of the retina was developed for the
measurement of tortuosity and width of retinal veins
and arteries using simulated vessels18. Robust metrics
employing unit speed parametrization for quantifying
vascular tortuosity in terms of 3-D curvature is also
defined19.

In previous work, we have defined and evaluated
methods for automatic measurement of retinal vessel
tortuosity in infant retinal images using PCA20 and
combination of inflection count and curvature of im-
proved chain code21, and curvature based on chain
code rules22. In experiments on comparable data sets,
the accuracy for these methods was 100%21, 22. While
these results are encouraging, they are limited by
suboptimal feature selection and unsupervised classi-
fication techniques. Here, we take a machine learning
approach to the problem of tortuosity classification.
Our method performs tortuous vessel feature selection
and classification using a naı̈ve Bayes (NB) classifier
and a nearest neighbour (NN) classifier. We prepro-
cess the images to extract the blood vessel network,
remove noise, reduce it to a single pixel skeleton
network, segment it into sub vessel samples, calculate
tortuosity by the proposed approach, then classify
those features using a model built from a training set.

Any proposed measure must satisfy some intuitive
properties to procure clinical recognition of a valid
tortuosity metric. To make it explicit, any measure
should be invariant to similarity transformations of
a vessel: translation, rotation, and scaling. The
position and orientation of a vessel do not affect the
perception of tortuosity; nor should the scaling, so
that the image of a vessel can be viewed at different
resolution without affecting its perceived degree of
tortuosity. However, if scale does affect, (that is scale
space transformation), it does so in multiples. A valid
tortuosity measure should be sensitive to changes in
the patterns of the vessel, i.e., to the shape of its path
in space. It should be susceptible to the amplitude
and changes in convexity (twists) of the vessel, collec-
tively termed as modulation property. An ideal index
should be additive, i.e., the tortuosity of a composite
vessel, consisting of several parts, should be equal to
the sum of the tortuosity of those parts.

This paper proposes a suite of tortuosity metrics
based on curvature calculated by improved chain-
code. The curvature estimate is based on proper
pairing of chain codes and related chain-code rules.
We give a brief overview of the method and refer
the readers to Ref. 23 for further details. Earlier
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proposed measures on curvature5, 24 were not well-
defined because they used arbitrary parametrization.
To avoid this, work based on certain geometric con-
cepts related with straightness and non-straightness
of a digital curve is employed. This is realized effi-
ciently with chain code representation. The measure
of k-curvature, used in Ref. 25 for the detection
of high curvature points referred to as corners or
dominant points, has been modified in three stages
in Ref. 23. It is used in the proposed approach to
achieve an appreciable improvement for evaluating the
curvature of arbitrary shaped vessel curve. The basic
problem dealing with 2D projection images is that
vessel crossings cannot be resolved. This problem is
taken care of by proposing a new method for vessel
partitioning based on improved branching and ending
point detection technique. It is to be noted that for 2D
data sets an estimation of dilation as well as tortuosity
is required to completely define the morphology of the
vessel network.

The efficacy of the proposed metrics in matching
the medical insight of tortuosity is investigated using
simulated curves of varying curvatures and shapes
and infant retinal images at different resolutions. We
demonstrate that our proposed metrics preserve addi-
tive property, modulation, and sensitivity to shapes.
One of the proposed measures is invariant to scale.

MATERIALS AND METHODS

Putative tortuosity indices

The most prevalent index of tortuosity, probably be-
cause of its conceptual simplicity and ease of com-
putation, is the arc-chord ratio factor4, 7 (referred as
L-C in this study). It has a value of unity for a
straight vessel and increases with vessel elongation.
However, it provides no information as regards the
morphology or haemodynamic consequences and fails
to differentiate between vessels of similar arc length
but different perceived tortuosity. It only indicates
vessel elongation, since it depends on total curve
length independent of shape.

Other putative indices include measures that in-
volve the use of the integral of the absolute curvature
(tc) or of the squared curvature (tsc)5. These involve
direct measurement of discrete curvature or functions
of discrete curvature. The idea behind this is to
measure the variability in vessel direction. Another
approach based on second differences of the coordi-
nates of the vessel midline (TC) was proposed13. All
these metrics required a somewhat arbitrary smooth-
ing scheme or a sufficiently high sampling frequency
during digitization and do not consider the changes in

the convexity of the curve, i.e., the curvature sign is
not taken into account.

A tortuosity metric based on the number of inflec-
tion points (twists) was proposed3, 24 to incorporate
changes between smoothly curved vessel and vessels
that make abrupt changes in direction. It was referred
as the Inflection Count Metric (ICM), defined in terms
of the ratio of the straight-line distance between the
end points of the vessel C to the meandering vessel
length L. Specifically

ICM = (nic + 1)C/L,

where nic is the number of twists.
However, it failed in depicting the clinician’s

perception of tortuosity, since evaluation of retinal tor-
tuosity by humans is based more on the local winding
of a vessel than on an overall difference between a
straight line and the curve under examination.

Proposed tortuosity metrics

Definitions: A vessel is defined as a curve

y = f(x) : D ⊂ R→ R

with y ∈ R and the coordinates of y defined on an
interval domainD ofR. The chord lengthC is defined
as the distance between the end points of the curve and
the arc length L is the distance along the curve. The
curvature at a point p (x, y) ∈ R is expressed as

κ(p) =
y′′

(1 + y′2)3/2
, (1)

where y′ and y′′ are the first and second derivative
with respect to x, respectively.

For a digital curve, small changes in slope are
difficult to estimate by (1), simply by replacing
the derivatives by first-and-second order differences
(k = 1), since the successive vectors for such a curve
differ in direction only by a multiple of 45°. This prob-
lem is overcome by considering the differences for
k > 1, i.e., a smoothed version of discrete curvature is
measured as in Refs. 23, 25. This k-curvature measure
is defined as the difference in mean angular direction
of k vectors (eq. (3.2) of Ref. 25) on the leading and
trailing curve segment of the point of interest, pi, is
marked by its provision of modifying the value of
k. The decision is based on k pair of chain codes,
k is relatively a small integer in the interval [1, 16].
Smaller value of k considers smaller number (e.g.,
k = 6) of points leading to and following pi, thus
overlooking the parts of the curve lying far off from pi
(Fig. 1). On the other hand, a large value of k, allows
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Fig. 1 A segment of a digital curve showing pair of chain
codes for k = 8.

a large number of points to decide the curvature at pi.
The discrete curvatures are estimated using the flow
pattern of the constituent curve points in and around
the concerned point, pi, by:

κ (pi, k) =

1

k

k∑
j=1

min


min(f ′i+j , 8− f ′i+j),

min(f ′(+1)

i+j , 8− f
′(+1)

i+j ),

min(f ′(−1)

i+j , 8− f ′(−1)

i+j )

 , (2)

where

f ′i+j = |fi+j − fi−j+1| ,
f ′(+1)

i+j = |fi+j+1 − fi−j+1| ,
f ′(−1)

i+j = |fi+j − fi−j | .

fi+j and fi−j are the chain code of the jth leading
and following point with respect to point of interest
pi, respectively (refer to eq. (5) in Ref. 23), where
fi+j is an integer given by f = 0, 1, 2, . . . , 7. k is
the number of points used for curvature calculation,
it can be viewed as a smoothing parameter. In this
work, the value of k is experimentally determined.
The value of k can be varied for more accuracy
of curvature depending upon the applicability, but it
leads to increase in computational cost.

Curvature-based metrics

Curvature estimation is a vital task in shape analysis
in general, and tortuosity evaluation in particular. The
most important parameter characterizing tortuosity is
the curvature of the blood vessel. However, integra-
tion of the curvature along the blood vessel is not
the best option, since on average the curvature might

not be very large, but it can be large along certain
part of the vessel. Hence in this paper, replicating
ophthalmologists’ notion, we comprehend tortuosity
as points of high curvature of the blood vessel along a
certain segments.

In Ref. 16 the curve is partitioned into segments
using the points where the curvature changes the sign,
referred as turn points. On the contrary, our method
is based on evaluating the tortuosity by estimating
curvature of each point over some region of support
(2), i.e., is determined by using the neighbouring
points within the extent, and then summing curvature
at every pixels of the vessel. We believe that this
procedure closely resemble the manner the humans
evaluate tortuosity. We previously defined tortuosity
metrics, Ktc and Ktsc

22, in terms of curvature and
squared curvature given by

Kc = Ksub =

n∑
i=1

κ(pi, k),

Ksc =

n∑
i=1

κ2(pi, k),

where n is the number of pixels in each segmental ves-
sel samples. The curvature at each point is calculated
by (2) and is squared and then summed together to get
the squared curvature of a curve. The total curvature
and the total squared curvature of the blood vessel
network is given by

Ktc =

N∑
j=1

Kc, (3)

Ktsc =

N∑
j=1

Ksc, (4)

whereN = number of segmental vessel (a segment of
the vessel tree delimited by two end points or a branch
point and an end point) samples in the whole vascular
network. Kc and Ksc represent curvature and squared
curvature of each vessel curve. For large N , the sum
is equivalent to numerical integration.

Note that for k = 1, Kc becomes the measure
recommended by Hart et al5.

Integrated proposed index

We proposed an efficient technique based on curvature
calculated from improved chain-code to estimate the
tortuosity of blood vessel21 expressed as

τ =

(
nic − 1

nic

)
1

L

n∑
i=1

κ (pi, k), (5)
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where nic and L are the number of inflection points
and arc length, respectively; n is the number of pixels
in the segmental vessel considered. The proposed
index takes a value of zero when nic is equal to 1 (a
smoothly curved vessel with no change in curvature
sign), and is always greater than zero when the curva-
ture changes sign.

In this integrated proposed index, the number
of inflection or twists points is taken into account
to distinguish between smoothly curved blood vessel
and vessels that make abrupt changes in direction.
Inflection points of a vessel curve is defined as the
curvature value decreases to zero, similar to a change
in sign of the curvature for planar curves (curvature
of a curve defined as in (2)). To overcome small
oscillations (that perhaps affect the precise inflection
number of the vessel) along the vessel that occur due
to noise, we set threshold on curvature (in this study
threshold = 0.18).

This index has an advantage over arc-chord ratio
which fails to distinguish between long segments as it
does not analyse tortuosity along the segments.

The index produces the expected estimate irre-
spective of the fact that the concerned point has
an extreme curvature or the concerned segment has
a constant or changing curvature unlike the metric
proposed by Grisan et al16. To allow comparison
of vessel of different length, a normalization factor
is introduced. This method alleviates the problem
associated with the method used for vessel segmen-
tation, that is, it is independent of the vessel sub
segmentation. Moreover, it takes into account both,
the number of inflection points (twists) and amplitude
of each segmental-vessel.

Experiments

Performance of the proposed tortuosity indices are
tested and compared with other available indices,
(L-C and ICM in this study), by experiments that are
performed in two phases.

In the first phase, vessels are simulated in different
forms to evaluate the compliance of various methods
with the abstract properties of tortuosity. Values for
the proposed indices (τ , Ktc, and Ktsc) are calculated
for each case. Ktc and Ktsc are the tortuosity based
on total curvature and total squared curvature as ex-
pressed by (3) and (4), respectively. τ is the tortuosity
measure as defined by (5).

In the second phase, we further extend our ex-
periments using a suite of proposed metrics. We
use Ktc/L, Ktc/C, Ktsc/L, and Ktsc/C as length-
normalized measures. In this part, vessel centreline of
a set of retinal images from infant retina is extracted

Fig. 2 The example images from (a) tortuous image,
(b) normal image.

and segmented according to improved branching point
and ending point detection technique and analysed by
the proposed indices. The results are verified by two
expert ophthalmologists.

Simulated vessels

To test the variations in the performance of the various
proposed tortuosity measures when single parame-
ters that influence the clinical acumen of tortuosity
changes, various sine waves and derived shapes are
simulated with same frequency f (or time period T )
and chord length L, but different amplitude A, A ∈
{15, 25, 30, 40, 50}, L ∈ [0, 128], f = 1 or T = 1;
and with the same amplitude A and chord length L,
but different frequency f ; A = 15, L ∈ [0, 128],
f ∈ { 12 , 1,

3
2 , 2} or T ∈ {2, 1, 23 ,

1
2}.

Processing of retinal images

Image acquisition: In this work, images were
obtained from Digital Imaging Research Centre,
Kingston University, London, Department of Ophthal-
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a b

c

Fig. 3 A digital curve vessel segment.

mology, Imperial College, London and Thammasat
Hospital, Thailand. The example of retinal images in
ROP infants are (Fig. 2). They are representative sam-
ples of a set of normal retinal images and abnormal
ones taken from infant born at mean gestational age
of 28.5± 1.0 week and with a mean birth weight of
1080± 80 g. The images were captured by Ret Cam
120 digital camera. The system produced images of
640× 480 pixels of 24 bit RGB bitmaps. All images
were JPEG compressed.

Description of images: Images of 60 eyes from 50
different infants (right eye of 40 different infants and
both eyes of 10 different infants) screened during 18–
24 months time period were graded by two expert
ophthalmologists. The experts graded the images
as normal, mild and extreme tortuous following the
international classification of ROP revisited26.

Image preprocessing

Before tortuosity calculation, image preparation is
required. Infant images usually have low contrast;
therefore, to extract centreline of blood vessel, the
Laplacian of Gaussian to grey scale of an RGB image
is applied, followed by Otsu thresholding. Then, a
set of morphological operations were carried out fol-
lowing to the technique by Lassada et al9 to eliminate
noise and get a single-pixel skeleton of the vessel tree.

Next, vessel partitioning is done by using im-
proved branching and ending point detection tech-
nique. Consider a segment of a digital curve (Fig. 3).
We track every vessel pixel and count the number
n of pixel around the eight neighbour of a current
location that has the same intensity as vessel pixel,
and use this number to classify the point as ending
point (n = 1), non-significant point (n = 2), and
candidate for branching point (n > 3). Branching
point is defined as n more than or equal to 327. Yet,
the results are flawed sometimes. In this study, we,
compute four connectivity of each eight neighbour of

 
Fig. 4 Branching and ending point detection.

branching point candidate (ignore the branching point
candidate). If there is no connectivity in each eight
neighbour, that branching point candidate is masked
as a branching point. In this case only point b is
considered as a branching point. Results of branching
point and ending point detection are shown in Fig. 4.

Tortuosity calculation

The quantitative definition of tortuosity in medical lit-
erature still remains vague. We propose an integrated
measure, τ and a suite of tortuosity metrics based
on curvature calculated from improved chain code
rules. To calculate curvature at each point on curve,
we applied the improved algorithm for estimating k-
curvature described in Pal et al23. A window size of
17 pixels achieved optimal results in our experiments
with ROP images. The window size was determined
experimentally by observing the curvature, Ktc, Ktsc,
as well as the τ values obtained with vessel contours
over a window of size 5, 7, 9, 11, 13, 15, 17, 21.
Nevertheless, this figure will vary for different image
resolutions. Tortuosity of all the vascular branches
was used in the calculations to avoid discrepancies in
the identification of arterioles and venules with respect
to clinical perception.

Classification

In our experiment, the classification is segmental
(segment-based), so each training or test sample rep-
resents one segment of the vessel in training and
testing set. Segmental vessels are assigned to one of
the three tortuosity classes, viz-a-viz; non, semi and
extreme tortuous class. Two experts were asked to
grade each of the segmental vessels into three classes
of tortuosity. Their judgement is based wholly on their
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experience and knowledge. A data set of 60 images,
made up of 2176 segmental vessels, depicting a range
of image quality and image type was given to the two
expert ophthalmologists for grading. The dataset con-
sists of images varying from fundus photos showing
no ROP to those exhibiting advanced ROP. The two
experts had difference in opinion for 15 infant images
(broken down into 676 segmental vessels), that is to
say, that there was inter-expert disagreement in the
three tortuosity classes, therefore these are excluded
from this study and only 45 infant images (comprising
1500 segmental vessels) are used for analysis. Out
of these 45 images, 5 images are determined to have
plus diseases, indicating advanced ROP, 19 images are
suspected of pre-plus disease and the rest 21 images
shows no-plus disease, indicating no ROP. These
45 images comprise images of right eye from 35
different infants and both eyes of 5 infants. The 45 im-
ages are the Ground truth data that is obtained from the
agreed judgement of two expert ophthalmologists. As
a simple baseline for comparison, we experiment with
two classifiers: the NB classifier and NN classifier.

The NB classifier28, 29 is the optimal method of
supervised learning if the values of the attributes of
an example are independent given the class of the ex-
ample. It estimates prior probabilities by calculating
simple frequencies of the occurrence of each feature
value given each class, then return a probability of
each class, given an unclassified set of features.

Bayes’ theorem relates on Bayes’ rule of a hy-
pothesis y and a finite set of features x which bears
on the hypothesis, then

P (y|x) = (P (x|y)P (y))/P (x) (6)

where P (y|x) is the parameter we want to estimate
and P (y) is the probability of class y. P (x|y) is
the likelihood of feature x given class y, P (x) is an
independent probability of feature x.

The NB classifier uses the principle of Bayesian
maximum a posteriori classification: measure the
feature data then select the class:

ŷ = argmax
y

P (y|x).

Bayes’ theorem is used in NB classifier to find
P (tortuous class|tortuosity value) as (P (tortuousity
value|tortuous class)P (tortuous class))/P (tortuosity
value). Here ‘tortuous class’ can be non-tortuous,
semi-tortuous, or extreme-tortuous. We estimate the
parameters P (x|y) and P (y) from training data.

The NN classifier classifies a test instance with the
class of the nearest training instance according to two

distance measures, Mahalanobis and Euclidean. We
use Euclidean distance method (k = 4) to measure the
distance between the test instance and training data:

Distance(x, y) =

[
n∑

i=1

(xi − yi)2
]1/2

, (7)

where x is the feature data vector of retinal vessel we
want to classify, y is the feature data vector of retinal
vessel in the training data set, xi is the feature data of
retinal vessel we want to classify, and yi is the feature
data of retinal vessel in the training data set.

Since we have nine metrics showing the tortuosity
level, we use all of them as a feature vector of the
retinal vessel for classification.

After finding all k instances retinal vessel in the
training data set, that has minimum distance to the
retinal vessel we want to classify, we determine the
class of retinal vessel by simply counting on the k
instances. The retinal vessel should belong to the class
having the maximum number of the k instances.

The data set of 45 images is split into training
and test set. The training set consists of 33 images
comprising 1075 segmental vessels consisting of 896
non tortuous samples, 140 semi tortuous samples and
39 extreme tortuous samples. The test set is made up
of 12 images broken down into 425 segmental vessels
consisting of 350 non tortuous samples, 50 semi
tortuous samples and 25 extreme tortuous samples.

Selecting a value for k

We compute the curvature κ at a point pi lying in
a locally straight segment, using (2), such that the
error due to inherent jaggedness of a digitally straight
piece is minimized. For example, in Fig. 3, we get
κ(a, 4) = (0 + 0 + 0 + 0)/4 = 0 and κ(b, 4) =
(0+0+0+0)/4 = 0, which conforms to the fact that
a and b lie on a straight piece (w.r.t. k = 4). However,
κ(c, 4) = (2+0+0+0)/4 = 0.5, which is alarmingly
low, as point c lies in the region of high curvature.
When curvature is computed for k = 8 as κ(c, 8) =
(3 + 3+ 3+ 3+ 3+ 4+ 4+ 4)/8 = 3.375. Thus we
get improvement over κ(c, 4) = 0.5. Also for point b,
κ(b, 8) = (4+4+4+4+3+4+2+2)/8 = 3.375,
which supports the fact that b and c are dominant
points or corner points with high curvature values.
Besides, we try to show the classification accuracy
over increasing values of k using two classifiers for
our integrated proposed measure. Table 1 depicts
the classification rates, i.e., the proportion of the
total number of correctly classified predictions. The
authors believe that a vessel of 10 pixels or less is
considered too small for tortuosity evaluation, thus
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Table 1 Classification accuracy of our integrated proposed
tortuosity metric, τ , for different values of k with NB and
NN classifiers.

k 2 3 4 5 6 7 8 10

τ , NB 71.4 80.7 74.3 78.6 85.0 85.3 91.4 89.3
τ , NN 68.6 80.7 82.9 81.4 85.7 87.9 93.6 86.4

perhaps provide misleading results. We find that the
maximum classification rate achieved, is for k = 8
using both the classifiers. We observe that increasing
the value of k further decreases the classification rate
of at least one class. These observations form the basis
on which k = 8 is the best value predicated in the
present work.

Performance measurement

We evaluate performance on the test set quantitatively
by comparing the classifiers’ result to ground truth.

To assess classifiers’ performance, we use sensi-
tivity, specificity, accuracy, positive predictive value
(PPV) and negative predictive value (NPV) on a seg-
mental basis. We also use positive likelihood ratio
(PLR) to access the performance of each classifier
for each of the tortuosity indices. All measures
are calculated based on four values namely the true
positive rate (the number of extreme and semi tortu-
ous segmental vessels correctly classified), the false
positive rate (the number of non tortuous segmental
vessels wrongly classified as semi or extreme tortuous
segmental vessels), the false negative rate (the number
of semi and extreme tortuous segmental vessels not
classified) and true negative rate (the number of non
tortuous segmental vessels correctly classified as non
tortuous segmental vessels).

Sensitivity is the percentage of actual semi and
extreme tortuous segmental vessels that are detected;
specificity is the percentage of non tortuous segmental
vessels that are correctly classified as non tortuous
segmental vessels. Accuracy is the overall success rate
of the classifiers. It gives the proportion of the test
samples that are correctly classified. The PPV is the
number of extreme, semi tortuous segmental vessels
and non-tortuous segmental vessels that are positively
detected and NPV is the proportion of extreme, semi
tortuous segmental vessels and non-tortuous segmen-
tal vessels that are negatively detected. They are
the (conditional) probabilities of the segmental vessel
being semi or extreme tortuous given that the test
result is positive (PPV), or non tortuous when the test
result is negative (NPV). The PLR is defined as the
ratio of TPR (equivalent to sensitivity) to the FPR
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Fig. 5 Plot of inflection count metric (ICM) and L-C (arc-
chord ratio) for (a) varying amplitude values and (b) varying
frequency values.

(equal to (1-specificity)). The larger the values of
PPV, NPV and PLR, the better the performance of the
tortuosity index using the given classifier. Using the
NB classifier, the maximum values of PPV, NPV and
PLR are for ‘τ ’ metric followed byKtc/C andKtc/L
and the minimum values of PPV, NPV, and PLR are
forKtc metric. Using the NN classifier, the maximum
values of PPV and PLR are for Ktc/C and Ktc/L
followed by ‘τ ’ metric and the maximum values of
NPV are for ‘τ ’ metric followed byKtc/C andKtc/L
and the minimum values of PPV, NPV and PLR are for
Ktsc andKtsc/L. The predictive values of a test result
are dependent on the prevalence of the disease in the
patients being tested unlike the area under the curve
(AUC), of the receiver operating characteristic plot.
The AUC does not take into account the prevalence
(prior probability) of the disease; it provides a com-
posite measure of test accuracy and is not dependent
on an arbitrary interpretive threshold, therefore it is
not used as a discriminability test in this work.

RESULTS

Simulation results

The various tortuosity measures evaluated on the sim-
ulated vessel sets are shown in Figs. 5–7.

In Fig. 5a, as the sinusoid amplitude changes, a
valid tortuosity measure is expected to increase with
increasing amplitude. The value of frequency is fixed
at f = 1. The figure indicates that L-C measure is
sensitive to such changes. Whereas ICM follows the
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Fig. 6 Plot of integrated proposed index, τ , for (a) varying
amplitude values and (b) varying frequency values.

reverse trend for amplitude modulation (changes in
amplitude), that is to say it decreases for increase in
amplitude at fixed frequency.

Fig. 5b demonstrates the course for the putative
indices, ICM and L-C for frequency changes. The
value of amplitude considered is A = 15. The ICM
index follows frequency modulation, except when
A = 40 is considered and for f = 4, indicating that
it does not prove reliable at higher amplitudes, on the
other hand, L-C measure follows the expected trend
for frequency modulation, that is to say it increases
for increase in frequency at fixed amplitude. Hence
it is concluded that both fulfil frequency modulation
criterion.

Fig. 6 shows the trend of the proposed index,
τ . It is observed that the index increases as the
amplitude is increased at fixed frequency. The value
of frequency, f = 1, (Fig. 6a). It depicts the same
trend for frequency changes, i.e., it increases as the
frequency of the simulated vessels are increased at
fixed amplitude, A = 15, indicating that it fulfils the
criterion of frequency modulation (Fig. 6b). Hence
the index fulfils the criteria of amplitude modulation
as well as frequency modulation.

Fig. 7a shows that the index, total curvature, Ktc

and total squared curvature; Ktsc follows the expected
trend for amplitude modulation, though the Ktsc mea-
sure shows somewhat small changes. Hence both
fulfil the criteria of amplitude modulation.

Fig. 7b depicts the trend for the indices, Ktc and
Ktsc for frequency changes. It increases in the same
manner as Fig. 7a, but with a better slope. Thus fulfils
the frequency modulation property.
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Fig. 7 Plot of total curvature, Ktc, and total squared
curvature, Ktsc, based on curvature estimates of improved
chain code, for (a) varying amplitude values and (b) varying
frequency values.
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Fig. 8 Sine waves flipped at (a) 0.7, (b) 0.6, and (c) 0.5,
respectively.

A special case of flipped sinusoids (Fig. 8) is
also tested on the available and the proposed indices
and found that the proposed indices are sensitive
to shape22. The metrics L-C, ICM, Ktsc are scale
invariant, since the values remains nearly the same,
whereas τ andKtc indices are scale-variant by a factor
1/γ 5. Another property which an ideal index should
satisfy is termed as additive property. The tortuosity
of a vessel comprising several parts should be given by
adding together the tortuosity values of the constituent
segments. We observe (from previous experiments)
that our proposed metrics are additive22.

Table 2 compares the properties of our proposed
metrics with two other previously proposed indices.
The L-C ratio commonly used as an index of tortuosity
only indicates vessel elongation and has no value
in measuring morphology or haemodynamic conse-
quences. The ICM measure also cannot differentiate
between different shapes as it remains constant. Our
proposed indices behave consistently with intuitive
notions of tortuosity.
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Table 2 A comparison of the tortuosity indices with respect
to the required properties (-do- indicates that an index shows
the required property; -x- indicates that it does not).

L-C ICM Ktc Ktsc τ

Additive -x- -x- -do- -do- -do-
Modulation -do- -do- -do- -do- -do-
Shape -x- -x- -do- -do- -do-
Scaling -do- -do- -x- -do- -x-

Table 3 Classification accuracy of our Ktc and Ktsc

tortuosity metrics for different values of k using NB and NN
classifiers.

k 2 3 4 5 6 7 8 10

Ktc, NB 56.4 59.3 55.0 55.0 50.0 43.6 35.7 27.1
Ktc, NN 66.4 67.1 69.3 68.6 74.3 68.6 67.9 70.7

Ktsc, NB 53.6 50.7 38.6 40.7 45.0 42.1 40.1 38.6
Ktsc, NN 61.4 63.6 66.4 66.3 62.9 64.3 62.1 61.4

Classification results

Table 3 depicts the classification accuracy of our Ktc

andKtsc metrics for different values of k. Table 4 and
Table 5 give the performance comparison of the two
classifiers. We show results for our proposed metrics
and two existing measures, the L-C measure and
ICM. Results indicate that the NB classifier performs
substantially better in specificity, accuracy, PPV, NPV
and PLR than the NN classifier for the normalized
total squared curvature measure. Whereas, the NN
classifier performs better in accuracy and specificity
than NB for all the other proposed metrics with the
best sensitivity, specificity, accuracy, PPV, NPV, and
PLR values of 84.4%, 95.7%, 90.1%, 90.5%, 92.6%
and 19.4, respectively, for the chord length normalized
total curvature metric, Ktc/C, and the best sensitivity
and accuracy values of 97.8% and 93.6% for the
integrated proposed index, τ . However, values of PPV,
NPV, and PLR reveal that the best possible prediction
is achieved using NB classifier for the τ metric.

DISCUSSION

In this study, numerical methods are developed to
quantify deformity in the retinal blood vessels of
premature infants. It is to be noted that in two-
dimensional fundus images, vessels with high cur-
vature are an important attribute of tortuosity. The
location and the number of the highly kinked vessels
provide good representation of the tortuosity in the
image. The measure Ktsc differs from Ktc as it
places greater emphasis on parts of curve that have
high curvature and de-emphasizes the parts of the

Table 4 Performance comparison of the tortuosity indices
at segmental level using a naı̈ve Bayes classifier.

Metric Naı̈ve Bayes classifier

Sensi- Speci- Accu- PPV NPV PLR
tivity ficity racy (%) (%)
(%) (%) (%)

L-C 57.1 84.8 72.9 63.2 81.3 3.75
ICM 51.9 79.3 62.1 42.4 84.9 2.51
τ 86.7 96.7 91.4 92.9 93.7 26.5
Ktc 37.5 44.6 35.7 15.0 73.2 0.676
Ktsc 45.8 48.9 40.1 19.0 77.6 0.897
Ktc/L 82.6 94.6 89.3 88.4 91.6 15.2
Ktc/C 84.1 95.7 89.3 90.2 92.6 19.3
Ktsc/L 31.0 88.0 67.1 54.2 73.6 2.58
Ktsc/C 47.5 80.4 66.4 59.4 77.9 2.43

Average 58.3 79.2 68.3 58.3 82.9 8.20
S.D. 22.5 19.5 20.4 29.2 8.1 9.58

Table 5 Performance comparison of the tortuosity indices
at segmental level using KNN classifier.

Metric KNN classifier

Sensi- Speci- Accu- PPV NPV PLR
tivity ficity racy (%) (%)
(%) (%) (%)

L-C 46.5 89.1 72.9 66.7 78.1 4.28
ICM 77.3 90.2 83.6 79.1 89.2 7.89
τ 97.8 93.5 93.6 88.2 98.9 15.0
Ktc 30.4 88.0 67.9 56.0 71.7 2.54
Ktsc 57.1 68.5 62.1 45.3 77.8 1.81
Ktc/L 81.8 95.7 88.6 90.0 91.7 18.8
Ktc/C 84.4 95.7 90.1 90.5 92.6 19.4
Ktsc/L 37.0 79.3 64.3 47.2 71.6 1.79
Ktsc/C 50.0 76.1 65.0 48.8 76.9 2.09

Average 62.5 86.2 76.4 68.0 83.2 8.17
S.D. 23.6 9.5 12.5 19.3 10.0 7.50

curve with low curvature, similar to the measures τ3
and τ2 proposed by Hart et al5 except that the latter
directly calculated the curvature of the curve. Since
small vessels have greater curvature, the measureKtsc

emphasizes the tortuosity of such vessels more than
Ktc. Thus the proposed metric proved to be most
resilient to very noisy images and small or especially
tortuous blood vessels, which makes it well-suited
for implementation as a tortuosity assessment tool in
automatic software for retinal vessel analysis. Based
on experiments with simulated curves, it is inferred
that the metric is sensitive to changes in shape of
the vessels (Fig. 8) and fulfils additive property unlike
L-C and ICM metric and satisfies all the abstract
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properties of a valid tortuosity index as compared
to the previously proposed indices (Table 2). The
integrated proposed tortuosity index τ is tested for
different values of k using NB and NN classifiers
(Table 1). The value of k = 8 results in the highest
classification accuracy with both the classifiers. Thus
the highest values of different performance measures
for the τ metric (sensitivity, specificity, PPV, NPV,
PLR, and accuracy) are attributed to this fact. We
found that the sensitivity and specificity of the in-
tegrated proposed index was superior to that of the
two existent tortuosity metrics, L-C and ICM using
both classifiers. This implies that there are few
false negatives or few instances, where plus disease
exists and the proposed index fails to detect it and
very few false positives detected that could lead to
unnecessary laser treatment. High sensitivity and high
specificity is possibly the most desirable feature of a
diagnostic test for plus disease in ROP to reduce the
risk of delayed treatment and retinal detachment. It
should also be noted that the existent metric shows
reduced sensitivity and high specificity, indicating that
it results in more false positives. Even the less tortuous
segments are wrongly detected as tortuous segments,
which would consequently result in unnecessary laser
treatment. Other performance measures also show
improved performance as compared to the L-C and
ICM metrics on our experimental dataset.

Using the KNN classifier, the maximum values
of PPV and PLR are 90.5% and 19.4 for Ktc/C, and
those of accuracy and NPV are 93.6% and 98.9% for
the τ metric and the minimum values of accuracy,
PPV, NPV, and PLR are 62.1% and 45.3% for Ktsc

and 71.6% and 1.79 for Ktsc/L, respectively. Using
the NB classifier, the maximum values of accuracy,
PPV, NPV, and PLR are 91.4%, 92.9%, 93.7% and
26.5, respectively, for τ metric, and the minimum
values of accuracy, PPV, NPV, and PLR are 35.7%,
15.0%, 73.2% and 0.676 for Ktc metric. The detailed
results of performance measurements using NB and
NN classifiers, and average values and standard de-
viation using all of the nine metrics are presented in
Table 4 and Table 5.

Nonetheless, results obtained by our Ktc and
Ktsc metrics over varying regions of support, i.e., for
different values of k, using the two different classifiers
corresponds to different values of accuracy. The Ktc

metric attains the highest accuracy values for k = 3
with NB classifier and k = 6 with NN classifier
(Table 3). On the other hand, the Ktsc metric achieves
the best classification rate at k = 2 with NB and k = 4
with NN classifier (Table 3). We used k = 8 for our
analysis with all the metrics, since clinicians usually

do not consider vessels of pixels less than 10 for
tortuosity evaluation, consequently the Ktc and Ktsc

metrics result in low values of accuracy, sensitivity,
specificity, PPV, NPV, and PLR (Table 4 and Table 5).
Nevertheless, the corresponding normalized metrics
achieves appreciable improvement in the values of
different performance measures. This shows that
curvature-based (improved k-curvature) metrics rely
heavily on the accurate determination of the local re-
gion of support. We considered arterioles and venules
alike in this study following Johnston et al30, which
resulted in high diagnostic accuracy when considering
tortuosity sufficient for pre-plus or plus disease with
the assessment of arterioles alone and arterioles and
venules together.

In comparison to other published methods, the
proposed metrics can estimate appropriate tortuosity
for vessels with constant or changing curvature juxta-
posed the earlier proposed metrics3, 4. The proposed
approach provides good discrimination between ves-
sels of different tortuosity and hence could be used as
an analytical tool in automated software for grading
of tortuosity. The number of inflection points could
vary for images of different sizes and pathologies for
our τ metric. Notwithstanding the fact, the proposed
method depends on image resolution, it poses no
problem when comparing vessels of similar calibres.
The proposed metric is independent of the method of
segmentation of the vessel tree. Hence problems aris-
ing due to vessel bifurcation, crossing and branching
are correctly identified, so that vessel course may be
fully reconstructed. The method obviates the need of
smoothing required due to the presence of noise and
discrete nature of the pixel representation. It reduces
the error in tortuosity calculation arising due to low
quality image of the retina, since the algorithm used
to automatically extract the blood vessel segments
is quite accurate with a specificity of 98.8% and a
sensitivity of 89.4%9.

The proposed integrated index τ incorporates
number of inflection points that in turn depends on
image resolution, this limits the generalizability of the
proposed metric. Another limitation of this metric
is scale variance; therefore modifications would be
required when a global measure for the entire retinal
image needs to be computed. Our investigation on the
metric quantification of tortuosity of fundus images is
based on experts’ graded ground truth data. Hence the
issue of biased ascertainment poses limitation to this
study. The evaluation remains within the boundaries
of our experimental setup. All experiments are per-
formed with our own implementations of the various
measures. Comparisons are not candid as different
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measures have different parameters.
We attempt to solve queries related to whether

the segmentation method affects the tortuosity of the
extracted vessels, whether the length of the extracted
segments affects the utility of the tortuosity metrics,
and how much of a role the extraction procedures play
in the diagnosis. We conclude that the results would
be helpful for work related to exploring the morpho-
logical properties of vessel population for healthy and
diseased subjects.

CONCLUSIONS

In this paper, we have verified our integrated pro-
posed index τ and a suite of curvature based (on
improved chain code rules) tortuosity metrics quanti-
tatively by comparing results of tortuosity estimation
with ophthalmologists’ graded ground truth retinal
segmental vessels. Two of the methods proposed
in literature to estimate retinal vessel tortuosity have
been implemented and comparatively evaluated in the
present work (in terms of abstract properties of a
valid tortuosity metric). The proposed approach is
computationally simpler compared to other existing
measures and proved most accurate to describe the
ophthalmologist’s perception of retinal vessel tortuos-
ity, in case of ROP. Our approach aims to measure
the correctness of the algorithms at the segmental
level. While our results are encouraging, for other
diseases modifications could be made as appropriate.
Investigations are underway to assess the validity
of the proposed metrics in other retinopathies with
comparable vascular morphology changes, such as
diabetic retinopathy and cardiovascular diseases.

As part of our future work, that also includes
further validation on a larger number of vessel sam-
ples, validation from multiple clinicians, and a sound
understanding of the diagnostic values of automatic
tortuosity measures, we intend to provide a global
tortuosity index for the entire retinal image.
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M, Christofersen N, Skands U (2000) Quantitative
measurement of changes in retinal vessel diameter
in ocular fundus images. Pattern Recogn Lett 21,
1215–23.

16. Grisan E, Foracchia M, Ruggeri A (2008) A novel
method for the automatic grading of retinal vessel
tortuosity. IEEE Trans Med Imag 27, 310–9.

17. Wallace DK (2007) Computer-assisted quantification

www.scienceasia.org

http://www.scienceasia.org/2013.html
http://dx.doi.org/10.1016/S0140-6736(01)06253-5
http://dx.doi.org/10.1016/S0140-6736(01)06253-5
http://dx.doi.org/10.1016/S0140-6736(01)06253-5
http://dx.doi.org/10.1016/S0140-6736(01)06253-5
http://dx.doi.org/10.1016/S0140-6736(01)06253-5
http://dx.doi.org/10.1097/00006982-199515060-00006
http://dx.doi.org/10.1097/00006982-199515060-00006
http://dx.doi.org/10.1097/00006982-199515060-00006
http://dx.doi.org/10.1097/00006982-199515060-00006
http://dx.doi.org/10.1109/TMI.2003.816964
http://dx.doi.org/10.1109/TMI.2003.816964
http://dx.doi.org/10.1109/TMI.2003.816964
http://dx.doi.org/10.1109/TMI.2003.816964
http://dx.doi.org/10.1007/BF00414653
http://dx.doi.org/10.1007/BF00414653
http://dx.doi.org/10.1007/BF00414653
http://dx.doi.org/10.1016/S1386-5056(98)00163-4
http://dx.doi.org/10.1016/S1386-5056(98)00163-4
http://dx.doi.org/10.1016/S1386-5056(98)00163-4
http://dx.doi.org/10.1111/j.1755-3768.2008.01448.x
http://dx.doi.org/10.1111/j.1755-3768.2008.01448.x
http://dx.doi.org/10.1111/j.1755-3768.2008.01448.x
http://dx.doi.org/10.1111/j.1755-3768.2008.01448.x
http://dx.doi.org/10.1007/BF02150097
http://dx.doi.org/10.1007/BF02150097
http://dx.doi.org/10.1007/BF02150097
http://dx.doi.org/10.1016/S1361-8415(02)00058-0
http://dx.doi.org/10.1016/S1361-8415(02)00058-0
http://dx.doi.org/10.1016/S1361-8415(02)00058-0
http://dx.doi.org/10.1016/S1361-8415(02)00058-0
http://dx.doi.org/10.1093/ietisy/e91-d.12.2868
http://dx.doi.org/10.1093/ietisy/e91-d.12.2868
http://dx.doi.org/10.1093/ietisy/e91-d.12.2868
http://dx.doi.org/10.1093/ietisy/e91-d.12.2868
http://dx.doi.org/10.1007/BF02173368
http://dx.doi.org/10.1007/BF02173368
http://dx.doi.org/10.1007/BF02173368
http://dx.doi.org/10.1007/BF02173368
http://dx.doi.org/10.1016/j.medengphy.2011.01.008
http://dx.doi.org/10.1016/j.medengphy.2011.01.008
http://dx.doi.org/10.1016/j.medengphy.2011.01.008
http://dx.doi.org/10.1016/S1350-4533(00)00074-6
http://dx.doi.org/10.1016/S1350-4533(00)00074-6
http://dx.doi.org/10.1016/S1350-4533(00)00074-6
http://dx.doi.org/10.1016/S0169-2607(00)00082-1
http://dx.doi.org/10.1016/S0169-2607(00)00082-1
http://dx.doi.org/10.1016/S0169-2607(00)00082-1
http://dx.doi.org/10.1016/S0169-2607(00)00082-1
http://dx.doi.org/10.1016/S0167-8655(00)00084-2
http://dx.doi.org/10.1016/S0167-8655(00)00084-2
http://dx.doi.org/10.1016/S0167-8655(00)00084-2
http://dx.doi.org/10.1016/S0167-8655(00)00084-2
http://dx.doi.org/10.1016/S0167-8655(00)00084-2
http://dx.doi.org/10.1109/TMI.2007.904657
http://dx.doi.org/10.1109/TMI.2007.904657
http://dx.doi.org/10.1109/TMI.2007.904657
www.scienceasia.org


ScienceAsia 39 (2013) 277

of vascular tortuosity in retinopathy of prematurity (an
American Ophthalmological Society thesis). Trans Am
Ophthalmol Soc 105, 594–615.

18. Wilson CM, et al (2008) Computerized analysis of
retinal vessel width tortuosity in premature infants.
Investig Ophthalmol Vis Sci 49, 3577–85.

19. Johnson MJ, Dougherty G (2007) Robust measures of
three-dimensional vascular tortuosity based on the min-
imum curvature of approximating polynomial spline
fits to the vessel mid-line. Med Eng Phys 29, 677–90.

20. Turior R, Onkaew D, Uyyanonvara B (2013) PCA-
based retinal vessel tortuosity quantification. IEICE
Trans Info Syst E96.D, 329–39.

21. Onkaew D, Turior R, Uyyanonvara B, Akinori N,
Sinthanayothin C (2011) Automatic retinal vessel tor-
tuosity measurement using curvature of improved chain
code. In: Proceedings of the International Conference
on Electrical, Control and Computer Engineering (In-
ECCE 2011), pp 183–6.

22. Turior R, Onkaew D, Uyyanonvara B (2011) Robust
metrics for retinal vessel tortuosity measurement using
curvature based on improved chain code. In: Proceed-
ings of the International Conference on Biomedical
Engineering (ICBME 2011), pp 217–21.

23. Pal S, Bhowmick P (2009) Estimation of discrete cur-
vature based on chain-code pairing and digital straight-
ness. In: Proceedings of the 2009 IEEE International
Conference on Image Processing, pp 1097–100.

24. Smedby O, Hogman N, Nilsson S, Erikson U, Olsson
AG, Walldius G (1993) Two-dimentional tortuosity of
the superficial femoral artery in early atherosclerosis.
J Vasc Res 30, 181–91.

25. Teh CH, Chin RT (1989) On the detection of dominant
points on digital curves. IEEE Trans Pattern Anal Mach
Intell 11, 859–72.

26. An International Committee for the Classification of
Retinopathy of Prematurity (2005) The International
Classification of Retinopathy of Prematurity revisited.
Arch Ophthalmol 123, 991–9.

27. Trucco E, et al (2010) Modelling the tortuosity of
retinal vessels: Does calibre play a role? IEEE Trans
Biomed Eng 57, 2239–47.

28. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian
network classifiers. Mach Learn 29, 131–63.

29. Richard DD, Peter EH, David GS (2000) Pattern Clas-
sification 2nd edn, A Wiley-Interscience Publication,
pp 20–83.

30. Johnston SC, et al (2009) Tortuosity of arterioles and
venules in quantifying plus disease. J AAPOS 13,
181–5.

www.scienceasia.org

http://www.scienceasia.org/2013.html
http://dx.doi.org/10.1167/iovs.07-1353
http://dx.doi.org/10.1167/iovs.07-1353
http://dx.doi.org/10.1167/iovs.07-1353
http://dx.doi.org/10.1016/j.medengphy.2006.07.008
http://dx.doi.org/10.1016/j.medengphy.2006.07.008
http://dx.doi.org/10.1016/j.medengphy.2006.07.008
http://dx.doi.org/10.1016/j.medengphy.2006.07.008
http://dx.doi.org/10.1587/transinf.E96.D.329
http://dx.doi.org/10.1587/transinf.E96.D.329
http://dx.doi.org/10.1587/transinf.E96.D.329
http://dx.doi.org/10.1159/000158993
http://dx.doi.org/10.1159/000158993
http://dx.doi.org/10.1159/000158993
http://dx.doi.org/10.1159/000158993
http://dx.doi.org/10.1109/34.31447
http://dx.doi.org/10.1109/34.31447
http://dx.doi.org/10.1109/34.31447
http://dx.doi.org/10.1001/archopht.123.7.991
http://dx.doi.org/10.1001/archopht.123.7.991
http://dx.doi.org/10.1001/archopht.123.7.991
http://dx.doi.org/10.1001/archopht.123.7.991
http://dx.doi.org/10.1109/TBME.2010.2050771
http://dx.doi.org/10.1109/TBME.2010.2050771
http://dx.doi.org/10.1109/TBME.2010.2050771
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1016/j.jaapos.2008.10.019
http://dx.doi.org/10.1016/j.jaapos.2008.10.019
http://dx.doi.org/10.1016/j.jaapos.2008.10.019
www.scienceasia.org

