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ABSTRACT: The purpose of this paper is to give inequalities related to matrix versions of the classical Pólya inequality for
scalars and discuss the relations between our results and some existing matrix inequalities.
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INTRODUCTION

Throughout this paper, Mn denotes the space of n ×
n complex matrices and Hn denotes the set of all
Hermitian matrices in Mn. For A,B ∈ Hn, the order
relationA > B means, as usual, thatA−B is positive
semidefinite. If A,B ∈ Mn are positive definite and
0 6 t 6 1, the t-weighted geometric mean of A and
B, denoted by A#tB, is defined as

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2.

When t = 1
2 , this is the geometric mean, denoted by

A#B. A norm ‖·‖ on Mn is called unitarily invariant
if

‖UAV ‖ = ‖A‖

for all A ∈ Mn and for all unitary matrices U, V ∈
Mn. Throughout, ‖·‖ denotes an arbitrary unitarily
invariant norm on Mn. For A = [aij ] ∈ Mn, the
Hilbert-Schmidt norm is defined by

‖A‖2 =

 n∑
i,j=1

|aij |2
1/2

.

It is known that the Hilbert-Schmidt norm is unitarily
invariant.

A,B,X ∈ Mn such that A and B are pos-
itive semidefinite. Twenty years ago, Bhatia and
Kittaneh1, 2 formulated some matrix versions of the
arithmetic-geometric mean inequality, one of which is∥∥∥A1/2XB1/2

∥∥∥ 6 ∥∥∥∥AX +XB

2

∥∥∥∥ . (1)

After that, a lot of interesting inequalities for ma-
trices resulted from some classical inequalities for
scalars3–6.

Hiai and Kosaki7 obtained the following inequal-
ity:∥∥∥A1/2XB1/2

∥∥∥ 6 ∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
6

∥∥∥∥AX +XB

2

∥∥∥∥ . (2)

Meanwhile, these authors also presented a strengthen-
ing of the second inequality in (2):∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
6

1

2

∥∥∥∥A1/2XB1/2 +
AX +XB

2

∥∥∥∥ . (3)

The inequality (2) is a refinement of the inequality (1).
It is also a matrix version of the following inequality:

√
ab 6

∫ 1

0

atb1−t dt 6
a+ b

2
, a, b > 0.

Bhatia8 proved that if 1
2 6 α 6 1, then∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
6

∥∥∥∥(1− α)A1/2XB1/2 + α
AX +XB

2

∥∥∥∥ . (4)

Obviously, it is a generalization of the inequality (3).
The classical Pólya inequality9 says that if a, b >

0, then ∫ 1

0

atb1−t dt 6
1

3

(
2
√
ab+

a+ b

2

)
. (5)

In this paper, we present some matrix versions
of the classical Pólya inequality and discuss the
relationship between our results and some existing
inequalities which are introduced above.
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MAIN RESULTS

In this section, we shall present some matrix inequal-
ities of the Pólya type and show some related matrix
inequalities.

Theorem 1 LetA,B ∈Mn be positive definite. Then∫ 1

0

A#tB dt 6
1

3

(
2A#B +

A+B

2

)
. (6)

Proof : For a positive definite matrix T , it follows
by the spectral theorem that there exists a unitary
matrix U ∈ Mn such that T = UDU∗, where
D = diag (λ1, · · · , λn), λj > 0, 1 6 j 6 n. By
inequality (5), we have∫ 1

0

at dt 6
1

3

(
2
√
a+

a+ 1

2

)
.

Hence ∫ 1

0

Dt dt 6
1

3

(
2D1/2 +

D + I

2

)
.

Premultiplying the above inequality by U and post-
multiplying by U∗ gives∫ 1

0

T t dt 6
1

3

(
2T 1/2 +

T + I

2

)
.

Putting T = A−1/2BA−1/2 in this last inequality, we
obtain∫ 1

0

(
A−1/2BA−1/2

)t
dt 6

2

3

(
A−1/2BA−1/2

)1/2
+
A−1/2BA−1/2 + I

6
.

Then, we have

A1/2

(∫ 1

0

(
A−1/2BA−1/2

)t
dt

)
A1/2

6
2

3
A1/2

(
A−1/2BA−1/2

)1/2
A1/2 +

A+B

6
.

That is,∫ 1

0

A#tB dt 6
1

3

(
2A#B +

A+B

2

)
.

This completes the proof. �

Corollary 1 Let A,B ∈ Mn be positive definite. If
1
3 6 α 6 1, then∥∥∥∥∫ 1

0

A#tB dt

∥∥∥∥ 6 ∥∥∥∥(1− α)A#B + α
A+B

2

∥∥∥∥ .

This inequality is related to the inequality (4).

Remark 1 By the same method used in the proof of
the inequality (6) and the following inequality∫ 1

0

a1−tbt dt =

∫ 1

0

atb1−t dt 6
1

3

(
2
√
ab+

a+ b

2

)
,

for positive definite matrices A,B ∈Mn, we have∫ 1

0

A#1−tB dt 6
1

3

(
2A#B +

A+B

2

)
. (7)

It follows from (6) and (7) that∫ 1

0

(
A#tB +A#1−tB

2

)
dt

6
1

3

(
2A#B +

A+B

2

)
,

which further implies∥∥∥∥∫ 1

0

(
A#tB +A#1−tB

2

)
dt

∥∥∥∥
6

1

3

∥∥∥∥2A#B +
A+B

2

∥∥∥∥ .
This inequality means that if 1

3 6 α 6 1, then∥∥∥∥∫ 1

0

(
A#tB +A#1−tB

2

)
dt

∥∥∥∥
6

∥∥∥∥(1− α)A#B + α
A+B

2

∥∥∥∥ .
Remark 2 By the same method used in the proof of
the inequality (6) and the following inequality

avb1−v + a1−vbv 6 2

∫ 1

0

atb1−t dt,

where
1

2
− 1

2
√

3
6 v 6

1

2
+

1

2
√

3
,

for positive definite matrices A,B ∈Mn, we have

A#vB +A#1−vB 6 2

∫ 1

0

A#tB dt.

This inequality implies

‖A#vB +A#1−vB‖ 6 2

∥∥∥∥∫ 1

0

A#tB dt

∥∥∥∥ ,
where

1

2
− 1

2
√

3
6 v 6

1

2
+

1

2
√

3
.
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Theorem 2 If A,B,X ∈ Mn such that A and B are
positive semidefinite, then∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
2

6
1

3

∥∥∥∥2A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

. (8)

Proof : Since A and B are positive semidefinite, it
follows by the spectral theorem that there exist unitary
matrices U, V ∈ Mn such that A = UΛ1U

∗ and
B = V Λ2V

∗, where Λ1 = diag (λ1, · · · , λn), Λ2 =
diag (µ1, · · · , µn), with λi, µi > 0, i = 1, . . ., n. Let
Y = U∗XV = [yij ]. Then∫ 1

0

AtXB1−t dt =

∫ 1

0

(UΛ1U
∗)
t
X (V Λ2V

∗)
1−t

dt

=

∫ 1

0

(
UΛt1U

∗)X (V Λ1−t
2 V ∗) dt

=

∫ 1

0

UΛt1 (U∗XV ) Λ1−t
2 V ∗ dt

=

∫ 1

0

UΛt1Y Λ1−t
2 V ∗ dt

= U

(∫ 1

0

Λt1Y Λ1−t
2 dt

)
V ∗.

Therefore∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥2
2

=

∥∥∥∥∫ 1

0

Λt1Y Λ1−t
2 dt

∥∥∥∥2
2

=

n∑
i,j=1

(∫ 1

0

λtiµ
1−t
j dt

)2

|yij |2.

Similarly, we have∥∥∥∥2A1/2XB1/2 +
AX +XB

2

∥∥∥∥2
2

=

 n∑
i,j=1

(
2
√
λiµj +

λi + µj
2

)2

|yij |2
 . (9)

By the Pólya inequality for scalars, we have

n∑
i,j=1

(∫ 1

0

λtiµ
1−t
j dt

)2

|yij |2

6
1

9

 n∑
i,j=1

(
2
√
λiµj +

λi + µj
2

)2

|yij |2
 .

This completes the proof. �

Remark 3 The Pólya matrix inequality (8) is sharper
than the inequality (3) for the Hilbert-Schmidt norm.
In fact, in a manner similar to the steps used to obtain
(9), we have

l1 =
1

4

∥∥∥∥A1/2XB1/2 +
AX +XB

2

∥∥∥∥2
2

=
1

4

 n∑
i,j=1

(√
λiµj +

λi + µj
2

)2

|yij |2


and

l2 =
1

9

∥∥∥∥2A1/2XB1/2 +
AX +XB

2

∥∥∥∥2
2

=
1

9

 n∑
i,j=1

(
2
√
λiµj +

λi + µj
2

)2

|yij |2
 .

Hence

l1 − l2 =

n∑
i,j=1


(

1
2

√
λiµj + 1

2

(
λi+µj

2

))2
−
(

2

3

√
λiµj +

1

3

(
λi + µj

2

))2

 |yij |2

=
1

6

n∑
i,j=1


(
λi+µj

2 −
√
λiµj

)
7

6

√
λiµj +

5

6

(
λi + µj

2

)  |yij |2
> 0.

This inequality implies

1

3

∥∥∥∥2A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

6
1

2

∥∥∥∥A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

.

Remark 4 An inequality weaker than (8) is∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
2

6
2

3

∥∥∥A1/2XB1/2
∥∥∥
2

+

∥∥∥∥AX +XB

6

∥∥∥∥
2

. (10)

This is also a matrix version of the classical Pólya
inequality and it is a refinement of the second in-
equality in (2) for the Hilbert-Schmidt norm. In view
of the inequalities (3) and (10), we want to know
the relationship between them for the Hilbert-Schmidt
norm. It should be noticed that neither (3) nor (10) is
uniformly better than the other for the Hilbert-Schmidt
norm. We give two examples:
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Example 1 Let

A =

(
3.4029 3.6093
3.6093 3.8283

)
, X =

(
2.5870 0.9160
1.8520 4.6356

)
,

B =

(
2.5877 3.5370
3.5370 6.6191

)
.

We have

1

2

∥∥∥∥A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

= 40.1635

and

2

3

∥∥∥A1/2XB1/2
∥∥∥
2

+

∥∥∥∥AX +XB

6

∥∥∥∥
2

= 40.1940.

Example 2 Let

A =

(
4.7484 3.6017
3.6017 4.0032

)
, X =

(
0.1751 2.7032
0.3509 2.4482

)
,

B =

(
23.2871 11.8153
11.8153 6.0231

)
.

We have

1

2

∥∥∥∥A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

= 34.2681

and

2

3

∥∥∥A1/2XB1/2
∥∥∥
2

+

∥∥∥∥AX +XB

6

∥∥∥∥
2

= 331671.

Corollary 2 Let A,B,X ∈ Mn such that A and B
are positive semidefinite. If 1

3 6 α 6 1, then∥∥∥∥∫ 1

0

AtXB1−t dt

∥∥∥∥
2

6∥∥∥∥(1− α)A1/2XB1/2 + α
AX +XB

2

∥∥∥∥
2

. (11)

Proof : Let

f(x) =

∥∥∥∥(1− x)A1/2XB1/2 + x
AX +XB

2

∥∥∥∥2
2

where 0 6 x 6 1. Next, we prove that if 0 6 x1 6
x2 6 1, then f(x1) 6 f(x2). In a manner similar to
the steps used to obtain (9), we have

f (x1) =

∥∥∥∥(1− x1)A1/2XB1/2 + x1
AX +XB

2

∥∥∥∥2
2

=

n∑
i,j=1

(
(1− x1)

√
λiµj + x1

λi + µj
2

)2

|yij |2

and

f (x2) =

∥∥∥∥(1− x2)A1/2XB1/2 + x2
AX +XB

2

∥∥∥∥2
2

=

n∑
i,j=1

(
(1− x2)

√
λiµj + x2

λi + µj
2

)2

|yij |2.

By a small calculation, we have f(x2) − f(x1) equal
to

n∑
i,j=1


 2

√
λiµj + (x2 + x1)(
λi + µj

2
−
√
λiµj

) 
× (x2 − x1)

(
λi + µj

2
−
√
λiµj

)
 |yij |2

which is > 0. The inequality (8) then shows that (11)
is true for 1

3 6 α 6 1. This completes the proof. �
Obviously, the inequality (11) is a generalization

of the inequality (4) for the Hilbert-Schmidt norm.
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