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ABSTRACT: The von Mises distribution for circular data, also known as the natural circular analogue of the normal
distribution on the real line, has two parameters, namely, the concentration parameter and the circular mean. The solution
of the maximum likelihood estimate (MLE) for the concentration parameter, κ, however, is analytically intractable. Thus
some approximations are applied instead. In this article we propose an improved efficient approximation of κ obtained from
the MLE. Unlike other estimations that have been shown to be only applicable for either large or small κ, the proposed
approximation is found to be suitable for all values of κ. The improved approximation is obtained by solving piecewise
polynomial equations involving the ratio of modified Bessel functions. The results of the simulation studies show that the
improved approximation has a small bias and is superior to the traditional ones. Furthermore, the results obtained have been
used in constructing the confidence interval for the concentration parameter, κ. Based on the simulation results, it is found
that the confidence interval obtained based on the circular variance population method is superior to the confidence interval
based on the normal distribution as it has smaller expected length.
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INTRODUCTION

Circular or directional data occurs in many disci-
plines; for example the earth sciences, meteorol-
ogy, biology, physics, psychology, image analysis,
medicine, astronomy, and genetic studies1–3. The data
are measured in the form of angles or two-dimensional
orientations with the position of the zero degrees being
arbitrary. This means the summary statistics used
for linear data such as the arithmetic mean and the
standard deviation which do not have this rotational
invariance cannot be used for directional data4–7.

For directional data, the distribution that is often
used to describe its physical properties is the von
Mises distribution. As a continuous probability dis-
tribution, the von Mises distribution is analogous to
the normal distribution for linear data and has some
similar characteristics with the normal distribution.
Thus the von Mises is also known as the circular
normal distribution.

A circular random variable θ follows the
von Mises distribution, denoted by M(µ0, κ),
with probability density function g(θ;µ0, κ) =
{2πI0(κ)}−1 exp{κ cos(θ − µ0)}, where µ0 (0 6
µ0 < 2π) is the mean direction and κ is known as

the concentration parameter. I0 denotes the modified
Bessel function of the first kind and order zero. The
Bessel functions are solutions of a second-order differ-
ential equation known as Bessel’s differential equation
and the probability density can also be expressed as a
series of Bessel functions8.

For large κ, the distribution becomes very con-
centrated around the angle µ0 with κ being a measure
of the concentration. As κ increases, the distribution
of θ approaches a normal distribution with mean µ0

and variance 1/κ. As κ approaches 0, the distribution
tends to converge to a uniform distribution4–6, 9.

Some of the recent work on the von Mises distri-
bution include a restricted maximum likelihood esti-
mator (MLE) based on the assumption of large con-
centration parameters and when it is known a priori
that the concentration parameters are subjected to a
simple order restriction10. Also, an iterative algorithm
using fixed points to obtain the MLE for κ in the
von Mises-Fisher distribution11 is used. Recently, the
generalized von Mises12 is extended. Matlab was used
to handle the computational aspect of the parameter
estimation using MLE and the trigonometric method
of moments. Some applications of the von Mises
distribution can be found in circular regression models
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and circular linear functional models13–15.
When estimating a parameter value, the confi-

dence interval of the parameter provides a measure
of the precision. For circular data, the confidence
interval of the concentration parameter of the von
Mises distribution5, 6 is often used. In some studies, a
bootstrap method is used to measure the convergence
of the confidence interval for a preferred direction16.

PARAMETER ESTIMATION OF THE VON
MISES DISTRIBUTION

Suppose θ1, . . . , θn is a random sample from
M(µ0, κ), the MLE of the mean direction, θ̄ is given
by

θ̄ =

 tan−1(S/C), S > 0, C > 0,
tan−1(S/C) + π, C < 0,
tan−1(S/C) + 2π, S < 0, C > 0,

where C̄ = n−1
∑n
i=1 cos θi, and S̄ =

n−1
∑n
i=1 sin θi. The MLE for κ, denoted by κ̂

is given by the solution of A(κ̂) = R̄ = (C̄2 + S̄2)
1
2 ,

where R̄ is the mean resultant length and
A(κ) = I1(κ)/I0(κ). By considering the inverse
of the Fisher information matrix of the MLE, the
variance of κ̂ is given by

Var(κ̂) =

{
n

[
1−

(
A(κ̂)

κ̂

)
−A2(κ̂)

]}−1

.

The parameter estimate κ̂ = A−1(R̄) however,
cannot be evaluated simply. This is due to the presence
of the modified Bessel functions in the formulation.
Instead, an approximation of A−1 is used. The
approximation can be obtained using iterative proce-
dures in which the early version5 includes tabulation
of certain values of A−1. From there on, several ap-
proximation of A−1 have been proposed17–21. Some
can be quite complicated in their derivation using
sophisticated computer algorithms, while some are
simple and easy to derive. This paper extends previous
work20 that proposed an efficient estimate for A−1

for only large κ. In this study, we improve the
approximation by considering both small and large
values of κ. The improved estimate is compared with
several approximations given in the literature. Using
several measurements such as mean, bias and standard
error, the performance of the proposed approximation
of A−1 is obtained.

APPROXIMATIONS FOR THE VON MISES
CONCENTRATION PARAMETER

As mentioned earlier, several approximations for
A−1(x) for all x in (0, 1) can be found in the liter-

ature. In early studies, Amos17 proved

x
1
2 +

(
x2 + 9

4

)2 < A(x) <
x

1
2 +

(
x2 + 1

4

) 1
2

, (1)

for x > 0 and hence A−1(x) is approximately given
by

f(x) =
x

1− x2

{
1

2
+

[
1.46(1− x2) +

1

4

] 1
2

}
.

(2)
Later on, Mardia and Zemroch21 provided an al-
gorithm for calculating A−1(x) together with tables
which were obtained iteratively. Meanwhile, by using
the power series for I0(x) and I1(x), Dobson19 gave
the approximation of A−1(x) as

f(x) =

 2x+ x3 +
5x5

6
, x < 0.65,

9−8x+3x2

8(1−x) , x > 0.65,
(3)

and has shown that the approximation gives a lower
maximum relative error than the method of Amos17.
An improved approximation for A−1(x) was given by
Best and Fisher18 which is

f(x) =


2x+ x3 +

5x5

6
, x < 0.53,

−0.4 + 1.39x+ 0.43
1−x , 0.53 6 x < 0.85,

1
x3−4x2+3x , x > 0.85,

(4)
in which tabulated values are given in Ref. 6.

In the following section, we describe an improve-
ment of the approximation by identifying a threshold
for values of A(κ) in which the formulation as given
by Hussin and Mohamed20 can be applied.

PROPOSED METHOD FOR
CONCENTRATION PARAMETER
APPROXIMATION

In this section, we will propose the new method in
approximating the concentration parameter. The new
method will be validated via simulation studies with
tabulated values of the concentration parameter and
sample sizes.

Improved approximation based on modified
Bessel functions

By definition, A(κ) = I1(κ)/I0(κ) = t and from the
power series for I0(κ) and I1(κ), it is found that for
small κ,

As(κ) ≈ κ

2

{
1− 1

8
κ2 +

1

48
κ4 − . . .

}
, (5)
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Table 1 Numerical approximation of A(κ).

κ Al(κ) As(κ) |Al(κ)−As(κ)|

1.40 0.5335 0.5845 0.0510
1.45 0.5547 0.6012 0.0465
1.50 0.5741 0.6182 0.0441
1.55 0.5918 0.6355 0.0436
1.60 0.6082 0.6532 0.0451
1.65 0.6232 0.6716 0.0484
1.70 0.6372 0.6908 0.0537

while for large κ,

Al(κ) ≈ 1− 1

2κ
− 1

8κ2
− 1

8κ3
− . . . . (6)

In order to find κ such that As(κ) and Al(κ) are close
to each other, it is necessary that As(κ)/Al(κ) ≈ 1.
In our case, we will consider the first term of As(κ)
and the first two terms of Al(κ). Thus

As(κ)

Al(κ)
≈

κ
2

1− 1
2κ

≈ 1 (7)

or κ2 − 2κ + 1 ≈ 0. Hence κ2 − 2κ + δ = 0 or
κ = 1±

√
1− δ for small δ.

The above results indicate that the threshold value
is in the interval [0, 2]. In order to find the threshold
value, a simulation study is performed for various κ
that lie within the interval [0, 2]. The values of ts and
tl where As(κ) = ts and Al(κ) = tl are obtained
where the difference between As(κ) and Al(κ) is the
smallest.

From Table 1, it can be seen that κ0 = 1.55,
where Al(κ0) = 0.5918 = tl and As(κ0) =
0.6355 = ts give the smallest value of the absolute
difference of tl and ts. By taking the average of tl and
ts, we obtain a threshold value of about 0.6137.

Hence we propose

κ̂ =

{
A−1
s (t) t < 0.6137

A−1
l (t) t > 0.6137,

(8)

where

As(κ) =
κ

2

{
1− 1

8
κ2 +

1

48
κ4 + . . .

}
and

Al(κ) = 1− 1

2κ
− 1

8κ2
− 1

8κ3
. . . . (9)

For t < 0.6137,

κ

2

{
1− 1

8
κ2 +

1

48
κ4 + . . .

}
= t or

κ5 − 6κ3 + 48κ− 96t = 0. (10)

The solution of the polynomial in (9) com-
prises of a real root and four complex roots.
The solution can be obtained numerically from
several mathematical packages. E.g., in R,
polyroot(c(-96*t,48,0,-6,0,1)) would give the
desired solution. The real root is the estimated value
for the concentration parameter. For t > 0.6137, we
obtain

1− 1

2κ
− 1

8κ2
− 1

8κ3
= t or

(8t− 8)κ3 + 4κ2 + κ+ 1 = 0. (11)

Similarly, the real root of the cubic polynomial in
(10) corresponds to the value of the concentration
parameter.

Simulation study

Computer programs were written using R to carry out
the simulation study to assess the efficiency of the four
different methods of approximating the concentration
parameter, namely, the Amos’, Dobson’s, Best &
Fisher’s ((2)-(4)), respectively, and the new proposed
method (7). Circular samples of length n = 30, 50,
and 100 were generated from von Mises distribution
with mean 0 and κ = 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0,
and 10.0, respectively. Let s be the number of simula-
tions and the following quantities were obtained from
the simulation study:

1. Mean, ¯̂κ = 1/s
∑
κ̂j ,

2. Absolute Relative Estimated Bias
(AREB)=

(
(
∣∣¯̂κ− κ∣∣)/κ)× 100%,

3. Estimated Standard Errors
(SE)=

√
1/(s− 1)

∑
(κ̂j −¯̂κ)2,

4. Estimated Root Mean Square Errors
(RMSE)=

√
1/(s− 1)

∑
(κ̂j − κ)2.

The simulation results with s = 5000 for various
true values of the concentration parameter and n =
30, 50, and 100 are shown in Tables 2, 3, and 4,
respectively. The values of the mean, absolute relative
estimated bias (AREB), estimated standard error (SE)
and estimated root mean square error (RMSE) were
computed for all the methods. When considering
mean alone, Tables 2, 3, and 4 show that the estimated
mean obtained using the proposed method is very
close to the true mean in most of the given κ values
compared with the other three methods.

To evaluate the performance indicator of the sim-
ulation studies, the value of AREB give a better
measure. From the simulation results in Tables 2, 3,
and 4, it is observed that the measures of AREB for
the proposed method are closer to zero for most of
the values of κ as compared to the other estimates.
However, it can be seen that for n = 30 and 50,
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Table 2 Simulation results for various values of parameter
concentration, κ and n = 30.

Performance κ κ̂New κ̂Amos κ̂Best&F κ̂Dob

indicator

0.5 0.5950 0.5525 0.5956 0.5954
1.0 1.0568 1.0357 1.0776 1.0736
1.5 1.4620 1.6048 1.6036 1.5982

Mean 2.0 2.1175 2.2066 2.1300 2.1261
4.0 4.3814 4.8218 4.4030 4.3922
6.0 6.5931 7.1735 6.6005 6.5977
8.0 8.8172 9.4770 8.8211 8.8197
10.0 11.0779 11.7895 11.0804 11.0795
0.5 18.9900 10.5100 19.1300 19.0800
1.0 5.6800 3.5700 7.7600 7.3600
1.5 2.5400 6.9800 6.9000 6.5500

AREB 2.0 5.8700 10.3300 6.5000 6.3000
4.0 9.5400 20.5500 10.0700 9.8100
6.0 9.8800 19.5600 10.0100 9.9600
8.0 10.2100 18.4600 10.2600 10.2500
10.0 10.7800 17.9000 10.8000 10.8000
0.5 0.2568 0.2519 0.2589 0.2582
1.0 0.2868 0.3429 0.3258 0.3219
1.5 0.2740 0.4604 0.4099 0.4143

SE 2.0 0.4825 0.6081 0.5190 0.5110
4.0 1.1833 1.3090 1.1692 1.1776
6.0 1.7931 1.9080 1.7889 1.7906
8.0 2.3841 2.4865 2.3820 2.3827
10.0 3.0345 3.1253 3.0332 3.0337
0.5 0.2728 0.2545 0.2750 0.2742
1.0 0.2919 0.3434 0.3340 0.3294
1.5 0.2500 0.4685 0.4186 0.4219

RMSE 2.0 0.4941 0.6379 0.5333 0.5244
4.0 1.2239 1.5005 1.2191 1.2228
6.0 1.8679 2.1852 1.8669 1.8674
8.0 2.4948 2.8321 2.4944 2.4946
10.0 3.1993 3.5474 3.1991 3.1992

and for very small values of κ, that is, for κ 6 1.0,
the approximations by Amos seem to show the small-
est AREB value. Nevertheless, as the sample size
increase, specifically when n = 100 (see Table 4),
the Amos method performs better only for κ = 0.5.
It can be inferred that for large values of κ, that is
for κ > 1.0, the proposed method is consistently
better than the other estimates with the smallest AREB
when the sample size is n 6 50. As the sample size
increases to 100, the proposed method seems to give
the best estimate with the inclusive value of κ = 1.
Thus it can be deduced that for sample size n 6 50
and κ > 1.0, the proposed method is the best and as
the sample size increase to 100 the proposed method
is even better with a bigger range of values of κ, that
is, κ > 1.0.

Table 3 Simulation results for various values of parameter
concentration, κ and n = 50.

Performance κ κ̂New κ̂Amos κ̂Best&F κ̂Dob

indicator

0.5 0.5525 0.5096 0.5526 0.5526
1.0 1.0409 1.0050 1.0513 1.0478
1.5 1.4520 1.5496 1.5577 1.5506

Mean 2.0 2.0594 2.1413 2.0763 2.0773
4.0 4.1747 4.6051 4.1959 4.1856
6.0 6.3509 6.9265 6.3582 6.3555
8.0 8.4384 9.0931 8.4424 8.4410

10.0 10.5931 11.3004 10.5956 10.5947
0.5 18.9900 10.5100 19.1300 19.0800
1.0 5.6800 3.5700 7.7600 7.3600
1.5 2.5400 6.9800 6.9000 6.5500

AREB 2.0 5.8700 10.3300 6.5000 6.3000
4.0 9.5400 20.5500 10.0700 9.8100
6.0 9.8800 19.5600 10.0100 9.9600
8.0 10.2100 18.4600 10.2600 10.2500

10.0 10.7800 17.9000 10.8000 10.8000
0.5 0.2031 0.1960 0.2033 0.2032
1.0 0.2282 0.2572 0.2459 0.2404
1.5 0.2144 0.3356 0.3021 0.3114

SE 2.0 0.3493 0.4483 0.3817 0.3730
4.0 0.8341 0.9501 0.8208 0.8288
6.0 1.3271 1.4410 1.3235 1.3249
8.0 1.7397 1.8442 1.7379 1.7386

10.0 2.1748 2.2700 2.1737 2.1741
0.5 0.2089 0.1929 0.2091 0.2090
1.0 0.2308 0.2544 0.2497 0.2439
1.5 0.2030 0.3370 0.3042 0.3128

RMSE 2.0 0.3523 0.4666 0.3883 0.3801
4.0 0.8227 1.0647 0.8170 0.8213
6.0 1.3408 1.6389 1.3400 1.3404
8.0 1.7614 2.0657 1.7610 1.7612

10.0 2.2286 2.5457 2.2284 2.2285

Other measures of the performance, namely the
SE and RMSE are used. From Tables 2, 3, and 4, we
can see that the values of SE and RMSE for the new
proposed method are generally consistent for most
of the tabulated κ values. Amos estimates give the
smallest SE and RMSE for small value of κ, which is
for κ 6 1.0, but become large as compared to other
methods for κ > 1.0. Consistent with the earlier
measure of AREB, it can be deduced that the Amos
estimate gives the best estimate for small κ (i.e., for
κ 6 1.0) but performs poorly for κ > 1.0. This
suggests the superiority of the new proposed method
as compared to the other two methods.

Using the measures of SE and RMSE, we note
that the new proposed method gives similar values to
Best & Fisher’s as well as Dobson’s method. How-
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Table 4 Simulation results for various values of parameter
concentration, κ and n = 100.

Performance κ κ̂New κ̂Amos κ̂Best&F κ̂Dob

indicator

0.5 0.5279 0.4848 0.5279 0.5279
1.0 1.0146 0.9684 1.0183 1.0171
1.5 1.5055 1.5063 1.5216 1.5072

Mean 2.0 2.0139 2.0893 2.0337 2.0443
4.0 4.0653 4.4907 4.0855 4.0763
6.0 6.1628 6.7345 6.1701 6.1674
8.0 8.2637 8.9170 8.2677 8.2663
10.0 10.3072 11.0122 10.3097 10.3089
0.5 10.5000 1.9100 10.5100 10.5100
1.0 4.0900 0.5000 5.1300 4.7800
1.5 3.2000 3.3100 3.8500 3.3700

AREB 2.0 2.9700 7.0700 3.8200 3.8700
4.0 4.3700 15.1300 4.9000 4.6400
6.0 5.8500 15.4400 5.9700 5.9300
8.0 5.4800 13.6600 5.5300 5.5100
10.0 5.9300 13.0000 5.9600 5.9500
0.5 0.1472 0.1423 0.1472 0.1472
1.0 0.1639 0.1788 0.1698 0.1671
1.5 0.2177 0.2263 0.2045 0.2140

SE 2.0 0.2343 0.3040 0.2590 0.2493
4.0 0.5945 0.7062 0.5831 0.5898
6.0 0.8990 1.0198 0.8960 0.8971
8.0 1.2223 1.3372 1.2207 1.2212
10.0 1.5120 1.6191 1.5111 1.5114
0.5 0.1482 0.1380 0.1482 0.1482
1.0 0.1628 0.1766 0.1688 0.1661
1.5 0.2176 0.2263 0.2052 0.2140

RMSE 2.0 0.2301 0.3118 0.2586 0.2509
4.0 0.5584 0.7808 0.5529 0.5569
6.0 0.8674 1.1563 0.8668 0.8670
8.0 1.2040 1.5178 1.2038 1.2039
10.0 1.5008 1.8085 1.5007 1.5007

ever, those measures did not elicit the superiority of
the new proposed method over the other two methods.

CONFIDENCE INTERVALS FOR
CONCENTRATION PARAMETER

In this section, we will propose two different ap-
proaches in constructing the confidence intervals for
the concentration parameter in von Mises distribution.
Method 1 (M1) is based on the circular variance for
population. Method 2 (M2) is confidence intervals
based on the distribution of κ̂ obtained from the Fisher
information matrix.

Method 1

The confidence interval (CI) of concentration param-
eter κ may be obtained by considering the wrapping

of the normal distribution, N(µ, σ2) around the cir-
cle which gives the wrapped normal WN(µ,A(κ)),
where A(κ) = exp{−σ2/2} or σ2 = −2 ln(A(κ))
and from the sample circular standard deviation, v is
given by v = {−2 ln(1−V )} 1

2 . However, V = 1−R̄,
and hence the sample circular standard deviation can
be written as

v = {−2 ln(1− (1− R̄))} 1
2

= {−2 ln(R̄)} 1
2 (12)

where R̄ is the mean resultant length. By using the
standard result, the 100(1 − α)% CI for the variance,
σ2 is given by

(n− 1)v2

χ2
n−1,α2

< σ2 <
(n− 1)v2

χ2
n−1,1−α

2

, (13)

Using (11) and σ2 = −2 ln(A(κ)), (12) can be written
as

(n− 1)v2

χ2
n−1,α2

< −2 ln(A(κ)) <
(n− 1)v2

χ2
n−1,1−α

2

, (14)

Alternatively, we may write

Y < A(κ) < Z, (15)

where Y = exp
(
−(n− 1)v2/(2χ2

n−1,1−α/2)
)

and

Z = exp
(
−(n− 1)v2/(2χ2

n−1,α/2)
)

. Thus we may
obtain the lower value, κL as well as the upper value,
κU such that Pr(κL < κ < κU ) = 1 − α where
κL = A−1(Y ) and κU = A−1(Z), respectively.
The values of A−1(Y ) and A−1(Z) in (14) may be
estimated based on the approximations in (9) and (10),
respectively.

Method 2

Another procedure for finding the confidence intervals
for κ is based on the normal distribution or asymptotic
covariance of parameter obtained via the Fisher infor-
mation matrix for the distribution of κ̂, which is

κ̂ ∼ N

(
κ,

1

n(1− R̄
κ̂ − R̄2)

)
.

The 95% confidence intervals is−B+κ̂ < κ < B+κ̂,
where B = 1.96/

[
n(1− R̄/κ̂− R̄2)

] 1
2 .

Simulation study

Simulation studies were carried out for different sam-
ple sizes, namely n = 30, 50, and 100 with various
values of the concentration parameter, κ = 0.5, 1.0,
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Table 5 Expected length and coverage probability for
various values of κ for each sample size, n = 30, 50, and
100.

n = 30 n = 50 n = 100
κ M1 M2 M1 M2 M1 M2

0.5 0.761 1.026 0.587 0.810 0.415 0.583
1.0 0.948 1.261 0.742 0.961 0.534 0.670
1.5 1.133 1.553 0.834 1.169 0.562 0.812
2.0 1.559 1.973 1.140 1.467 0.777 1.010
4.0 3.880 4.196 2.850 3.110 1.941 2.132
6.0 6.195 6.457 4.590 4.815 3.120 3.291
8.0 8.484 8.704 6.267 6.468 4.274 4.432
10.0 10.796 10.981 7.935 8.118 5.421 5.569

1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 for the confidence
level, α = 0.05. Without loss of generality, the
mean direction will be taken as 0 during the simulation
study. Let s be the number of simulations and the
following computation were calculated.

1. Expected Length = Upper limit−Lower limit
2. Coverage Probability = q/s, where q =

number of true value falls in the CI
The simulation studies were repeated 10 000

times. Tables 5 and 6 show the expected length and
coverage probability, respectively, calculated from
the simulation studies for different sample size and
concentration parameter. Expected length can be
defined as the class size for each CI. Smaller values of
expected length imply better approximation of the CI.

From Table 5, as the value of κ increases, it can
be seen that the expected length for each method
increases as well. It also shows that a large con-
centration parameter will result in a larger expected
length. Apart from that, it also noted that an increase
of sample size will result in a decrease in expected
length. M1 gives a consistently smaller length and
hence a better approximation than M2.

For further evaluation, we also consider the cov-
erage probability for each method. The coverage
probability is the actual probability that the interval
contains the true concentration parameter for each
method. The simulation studies have been done at
95% of confidence level. Hence a good indicator
must give the coverage probability close to 0.95. This
is called the nominal coverage probability or target
value. From the results obtained for M1, it can
be seen that the coverage probability becomes much
closer to the target value as the value of concentration
parameter increases. On the other hand, M2 gives con-
sistently higher coverage probability than the target
values for all values of the concentration parameter.

Table 6 Coverage probability for various values of κ for
each sample size, n = 30, 50, and 100.

n = 30 n = 50 n = 100
κ M1 M2 M1 M2 M1 M2

0.5 0.880 0.974 0.862 0.962 0.853 0.955
1.0 0.885 0.966 0.910 0.957 0.908 0.968
1.5 0.866 0.972 0.843 0.965 0.802 0.956
2.0 0.846 0.965 0.897 0.960 0.911 0.970
4.0 0.928 0.960 0.925 0.954 0.920 0.947
6.0 0.939 0.960 0.937 0.958 0.939 0.954
8.0 0.947 0.962 0.940 0.952 0.944 0.954

10.0 0.947 0.961 0.947 0.958 0.941 0.951

Table 7 Estimates of κ using the new proposed method and
its confidence intervals.

Method Estimate

κNew 7.346
Expected length M1 3.839

M2 4.003
CI M1 (5.563, 9.402)

M2 (5.345, 9.348)

ILLUSTRATIVE EXAMPLES

As an illustration of the proposed method, a bivariate
data set was considered. The data was collected from
along the Holderness Coastline, which is the Hum-
berside Coast of the North Sea, UK in October 1994.
A total of 97 measurements of wind direction using
HF radar (x) and anchored buoy (y) were recorded
over a period of 22.7 days. The data was fitted using
the circular regression model proposed by Downs and
Mardia14 and the fitted model is

ŷi = 1.253 + 2 arctan

{
0.906 tan

1

2
(xi − 1.141)

}
.

In this study, we estimate the concentration parameter
for the circular residuals, θi = ŷi − yi based on the
fitted model. Table 7 shows the concentration param-
eter and its expected length as well as the confidence
intervals for the residuals.

From Table 7, the estimated value of the con-
centration parameter for the residuals is high and it
can be proved using the circular plot as shown in
Fig. 1. A higher concentration parameter implies that
the circular residuals are highly concentrated among
each other as can be seen from Fig. 1 where most of
the data are scattered around (−45◦, 45◦). Only a few
observations fall outside the range.

Apart from that, it can be seen that M1 gives a
shorter expected length (3.839) than M2 which gives
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Fig. 1 Circular plot of the residuals.

4.003. This result supports the findings from the
simulation results earlier, where M1 always gives the
smaller expected length for all values of the concen-
tration parameter.
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