
R ESEARCH ARTICLE

doi: 10.2306/scienceasia1513-1874.2011.37.268

ScienceAsia 37 (2011): 268–276

On efficiency improvement of grid applications
Sirod Sirisup∗, Suriya U-ruekolan

Large-Scale Simulation Research Laboratory, National Electronics and Computer Technology Center,
112 Thailand Science Park, Phahon Yothin Rd., Klong 1, Klong Luang, Pathumthani 12120 Thailand

∗Corresponding author, e-mail: sirod.sirisup@nectec.or.th
Received 9 Aug 2010

Accepted 31 Aug 2011

ABSTRACT: Grid computing technology addresses the growing need for computing resources in simulation-based
engineering and science (SBES). However, optimal performance of grid computing technology requires ‘virtually tightly
coupled’ computing resources. This, though, may not be economically available in many research societies. In this work,
we propose a new approach to improve performance of a typical parallel application for SBES on a ‘virtually not tightly
coupled’ grid computing environment. To this end, we have proposed, implemented, and investigated the performance of
a new grid programming technique based on the Global Arrays toolkit and multi-level topology-aware approach. We have
found that performance of the evaluating application implemented with this new technique outperforms both MPICH-G2
and native Global Arrays implementations, but is still comparable to that of the application implemented with OpenMP, the
native Symmetric-Multi Processors programming.

KEYWORDS: grid computing, Global Arrays toolkit, multi-level parallelism, multi-level topology-aware

INTRODUCTION

Grid computing1 enables the development of large
scientific applications on large scale computing re-
sources. Most grid applications in simulation-based
engineering and science (SBES) make use of coupled
computational resources that cannot be replicated at
a single site. Thus grids allow scientists to solve
large scale problems by involving aspects of scientific
computing and data management.

Most grid applications in SBES, e.g., computa-
tional fluid dynamics, computational chemistry, and
bioinformatics, have been implemented in the form of
parallel applications. The algorithms in the applica-
tions typically need immense interprocess communi-
cations. The typical requirements in grid computing
environment include both low latency and high-speed
interconnection which usually are not so easy to estab-
lish in some research societies. Thus applications that
run on grid computing environment may be degraded.
A way to resolve this problem is to reduce network use
of interprocess communications in the parallel appli-
cation, thus efficient network use on grid computing
environment can be accomplished.

Typical parallel grid applications on grid comput-
ing environment are developed through MPI standard
libraries which contain a message passing point-to-
point communication (Isend/Ircev). The use of point-
to-point communications can affect parallel grid appli-

cation on grid computing environment in terms of in-
terconnect network use. Hence, implementing parallel
grid application with one-sided communication can
deliver better performance compared to implementing
with point-to-point communication2. There are very
few parallel libraries that provide one-sided communi-
cation capability. These are MPI-2 and Global Arrays
toolkit. However, the Global Arrays toolkit offers a
simpler and lower-level model of one-sided commu-
nication than MPI-2 does through the Aggregate Re-
mote Memory Copy Interface (ARMCI)3. Moreover,
the MPI-2 library is not currently supported in the
Globus Grid toolkit. Another approach to improve the
efficiency of the grid application is to employ multi-
level topology-aware technique4–6. In this paper, we
propose, implement, and investigate the performance
of a new grid programming technique based on the
Global Arrays toolkit and multi-level topology-aware
approach. Specifically, we investigate the perfor-
mance of a parallel application implemented with this
new technique on a grid computing environment as
well as compare the performance of same applica-
tion implemented with MPICH-G2 library and native
Global Arrays toolkit. The grid environment used
in the current investigation is “virtually not tightly
coupled” i.e., with low bandwidth and high latency
network to resemble the current grid computing en-
vironment in Thailand. Nonetheless, as a Symmetric
Multi Processors (SMP) cluster is included in grid

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.268
http://www.scienceasia.org/2011.html
mailto:sirod.sirisup@nectec.or.th
www.scienceasia.org

ScienceAsia 37 (2011) 269

computing environment, one may ask the following
question. In order to achieve the peak performance
of the application, which approach should one employ
for that SMP cluster: the native SMP programming
or this newly proposed programming technique? Our
current investigation also addresses this situation as
well.

CORE TECHNOLOGIES AND APPROACHES

In this paper, we propose a new technique to im-
prove performance of a typical parallel application
for SBES on a “virtually not tightly coupled” grid
computing environment. To achieve that, many core
technologies and approaches must be concurrently
recruited. Those technologies and approaches are grid
computing, MPICH-G2, multi-level topology-aware,
Global Arrays, ARMCI programming model. In order
to provide the comparison for the case that an SMP
cluster is included in the grid computing environment,
the OpenMP API will be also briefly introduced here.
The details of each technologies and approaches are
briefly described next.

Grid computing and MPICH-G2

High-performance ‘computational grids’ involve het-
erogeneous collections of computers that may reside
in different administrative domains, run different soft-
ware, be subject to different access control policies,
and be connected by networks with widely varying
performance characteristics1. By using communi-
cation mechanisms for a grid environment, such as
MPICH-G2 to use services provided by the Globus
toolkit, any application can run across clusters spread
over campus-area, metropolitan-area or wide-area net-
works. The MPICH-G2 uses the Globus toolkit’s
Resource Specification Language (RSL)7 to describe
the resources required to run an application. User
write RSL scripts, which identify resources and spec-
ify requirements and parameters for each. An RSL
script can be used as the user interface to globusrun, an
upper-level Globus service that first authenticates the
user by using Grid Security Infrastructure (GSI)8 and
the schedules and monitors the job across the various
machines by using two other Globus toolkit services:
the Dynamically-Updated Request Online Coalloca-
tor and Grid Resource Allocation and Management7.
RSL is designed to be an easy-to-use language to
describe multi resource multi site jobs while hiding
all the site-specific details associated with requesting
such resources.

Multi-level topology-aware

The multi-level topology-aware approach minimizes
messaging across the slowest links at each level by
clustering the processes at the wide-area level into site
groups, and then within each site group, clustering
processes at the local-area level into machine groups.
One benefit of using a multi-level topology-aware tree
to implement a collective operation is that we are free
to select different subtree topologies at each level.
This technique thus allows developer to create a multi-
level parallelism application based on a proper parallel
tools in each machine group. The MPICH-G2 ad-
dresses this issue within the standard MPI framework
by using the MPI communicator construct to deliver
topology information to an application. It associates
attributes with the MPI communicator to communi-
cate this topology information, which is expressed
within each process in terms of topology depths and
colours used by MPICH-G2 to represent network
topology in a computational grid4. MPICH-G2 intro-
duced the concept of colours to describe the available
topology. It is limited to at most four levels, that
MPICH-G2 call: WAN, LAN, system area and, if
available, vendor MPI9. Those four levels are usually
enough to cover most use cases. However, one
can expect finer-grain topology information and more
flexibility for large-scale grid systems. Topology-
discovery features in Globus have been used to im-
plement a topology-aware hierarchical broadcast algo-
rithm in MPICH-G2. However, complex applications
require a larger diversity of collective operations,
including reductions, barrier, and sometime all-to-all
communications.

Global Arrays and ARMCI

The Global Arrays10 was designed to simplify the
programming method on distributed memory systems.
The most innovative idea of Global Arrays is that it
provides an asynchronous one-sided, shared memory
programming environment for distributed memory
systems. The Global Arrays has included the ARMCI
library which provides one-sided communication ca-
pabilities for distributed array libraries and compiler
run-time systems. ARMCI offers a simpler and
lower-level model of one-sided communication than
MPI-22, 3. Global Arrays reduces the effort required
to write parallel program for clusters since they can
assume a virtual shared memory. Part of the task of
the user is to explicitly define the physical data locality
for the virtual shared memory and the appropriate
access patterns of the parallel algorithm11. There is
also another package that is closely related to Global

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

270 ScienceAsia 37 (2011)

Fig. 1 An example of multi-level parallelism in Global
Arrays.

Arrays in handling global address12.
The development of multi-level parallel algorithm

in SBES with the Global Arrays toolkit has been en-
abled by introduction of the Global Arrays processor
group. Due to the required compatibility of Global
Arrays with MPI, the MPI approach to the proces-
sor group management was followed as closely as
possible. However, in shared memory programming,
management of memory and shared data rather than
management of processor groups itself is the primary
focus. More specifically we need to determine how to
create, efficiently access, update, and destroy shared
data in the context of the processor management
capabilities that MPI already provides. For example,
Fig. 1 illustrates the concept of using shared arrays.
The three processor groups (Group1, Group2, and
Group3 in Fig. 1) execute tasks that operate on three
arrays: A, B, and C. Array A is in the scope of all three
processor groups. Array B is distributed on processor
Group 1. Array C is distributed on processor group 3.
All arrays can be accessed using collective (individual
and multiple arrays) and one-sided (non-collective)
operations.

OpenMP

OpenMP is an industry standard13 for shared memory
programming. OpenMP is based on a combination
of compiler directives, library routines and environ-
ment variables it is used to specify parallelism on
shared memory machines. Communication in the
OpenMP application is implicit and OpenMP appli-
cations are relatively easy to implement. In theory,
OpenMP makes better use of the shared memory
architecture. Runtime scheduling is allowed both
fine-grained and coarse-grained parallelism. OpenMP
codes will however only run on shared memory ma-
chines and the placement policy of data may cause

problems. Coarse-grained parallelism often requires a
parallelization strategy similar to an MPI strategy and
explicit synchronization is required.

SCHEME, EVALUATING APPLICATION, AND
IMPLEMENTATION

In order to evaluate the performance of the proposed
technique for a typical parallel application for SBES,
the structure of the parallel algorithm in the evaluating
problem should comprise of interprocess communica-
tions significantly and should not fall into the class
of embarrassingly parallel category. Besides, the
evaluating problem itself should also represent most
of the applications for simulation-based science and
engineering as well. To this end, in this study, a
program that finds steady-state heat distribution over
a thin plate is chosen to be the evaluating application
because the algorithm used in this application matches
the above requirements. The program essentially
solves the following governing partial differential
equations:

uxx + uyy = f(x, y), 0 6 x 6 a, 0 6 y 6 b.
(1)

The finite difference approximation discretizes the
computational domain into a set of discrete mesh
points (xi, yj) with evenly spaced of distance h. With
a zero source term, the finite difference equation
representing (1) is reduced to:

ûi,j =
ûi+1,j + ûi−1,j + ûi,j+1 + ûi,j−1

4
(2)

where ûi,j represents the approximation of u(xi, yj).
The solution process starts with initial estimates for
all ûi,j values, then the iterative process must be
performed until the values converge; we refer to this
process as the Jacobi method. The convergence of the
Jacobi method is guaranteed because of the diagonally
dominant structure; here, we set the number of the
iterations to be 2500. For the detailed description of
each implementation, suppose that we are working
with an n × n mesh with p processes, with the
row-wise block-stripped decomposition, each of the p
processes manages its own mesh of size n/p× n, see
Fig. 2. In each iteration, each interior process must
send and receive 2n values to and from its immediate
neighbours in order to update boundary cells in its
block, denoted as cells with dashed line in Fig. 2. The
detail of each implementation is described as follows.

MPICH-G2 implementation

For the MPICH-G2 implementation application, in
each iteration, each interior process must send and re-
ceive 2n values to and from its immediate neighbours

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 271

Fig. 2 A row-wise block-stripped decomposition of n × n

mesh with p processes.

in order to update boundary cells in its block. The
implementation of the algorithm with MPI library is
quite straight forward by simply using the MPI_Send
and MPI_Receive functions.

Global Arrays implementation

For Global Arrays implementation, in order to retrieve
and update data for each processor’s block, in con-
trast to the previous implementation, we specifically
employ the one-sided communication operations pro-
vided by the Global Arrays toolkit e.g., the NGA_Get
and NGA_Put functions. Here, each process individu-
ally updates and retrieves data needed for calculating
the finite difference equation (2), from the Global
Arrays blocks by individually calling NGA_Get and
NGA_Put functions; the data validity is handled by
ARMCI3. To illustrate this, we present the calls made
by each processor in Fig. 3. The Global Arrays block
updated by NGA_Put function called by processor
0 is shown as enclosed area in Fig. 3a which is its
own block. However, NGA_Get function called by
processor 0 retrieves the data from the Global Arrays
block shown as enclosed area in Fig. 3b which also
includes the data from processor 1. Like processor 0,
processor 1 can call NGA_Put function to update data
in its own block, Fig. 3c. However, being an interior
processor, processor 1 needs to retrieve data that also
include boundary data from processor 0 and processor
2 by calling NGA_Get function, Fig. 3d. Other interior
processors can directly employ the same strategy as
processor 1 does. However, a similar strategy as
processor 0 is employed for the other exterior process,
processor p− 1.

Global Arrays with multi-level topology-aware
implementation

This is our proposed technique, the key idea is to
separate processors into groups of processors that
belong to the actual cluster sites in the grid computing

Fig. 3 A row-wise block-stripped decomposition of n × n

mesh with p processes for Global Arrays implementation.

environment. We can then take advantages of the per-
formance of the Global Arrays toolkit on each cluster
individually3, by creating a Global Arrays block for
each group of processors. The group of processors
is defined as a process group in the Global Arrays
toolkit. In this scenario, we have one process group
per one cluster site and thus many process groups in
our grid computing environment. The communica-
tions for the boundary cells between process groups
are solely handled by the master of each process
group. Thus the communications between process
groups i.e., actual cluster sites can be greatly reduced
yielding a much improved performance.

Practically, the separation of processors in
our grid computing environment into groups of
processors can be accomplished by digesting
the topology depths and colors reported by
MPI_Attr_get function provided by MPICH-G2
library through the MPICHX_TOPOLOGY_DEPTHS,
MPICHX_TOPOLOGY_COLORS variables, see line
10 to 13 in Listing 1. Specifically, the variable
MPICHX_TOPOLOGY_DEPTHS represents number of
network levels and MPICHX_TOPOLOGY_COLORS

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

272 ScienceAsia 37 (2011)

Listing 1 A fragment of application code
that uses MPICHX_TOPOLOGY_DEPTHS and
MPICHX_TOPOLOGY_COLORS to create group
communicators.

...
int *depths;

3 int **colors;
MPI_Status status;
MPI_Comm comm_master, comm_lan;

6 MPI_Init (&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&me);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);

9 ...
MPI_Attr_get(MPI_COMM_WORLD, \
MPICHX_TOPOLOGY_DEPTHS,&depths,&flag);

12 MPI_Attr_get(MPI_COMM_WORLD, \
MPICHX_TOPOLOGY_COLORS,&colors,&flag);
...

15 MPI_Finalize();

Fig. 4 A row wise block-stripped decomposition of
(n/number of sites(S)) × n mesh with p processes in the
current technique.

represents information indicating that any two
processors with the same color can communicate
with each other in that network level i.e., processors
located on the same cluster site will have the same
color. For more information on these variables see
Ref. 9. We also assign the master processor of each
group of processors e.g., process group to be the
processor with the lowest world rank in each process
group. The specific communicator is then created
for these master processors in order to enable the
communication between them.

For our evaluating problem, the original mesh
of size n × n is reduced to a mesh of size

(n/number of sites(S)) × n which is handled indi-
vidually by a group of processors of size p on each
cluster site, see Fig. 4. It is noted that the number
of processors p on each site is not necessary the
same. However, for our proposed technique to be
applicable, the number of processors p on each site
must be at least two. This restriction directly comes
from the technical issue of the Global Arrays toolkit
for creating process group.

In each site, the Global Arrays is employed to
handle the mesh by creating Global Arrays blocks
handling exclusively by those processes in each
site. The exclusively handling mechanism is possible
through those Global Arrays process group APIs, see
line 6, 7, and 14 in Listing 2. The processes in
each site can thus use the one-sided communication
operations NGA_Get and NGA_Put locally in each
process group. In order to send and receive 2n values
to and from its immediate neighbour sites, a master
processor (processor with lowest rank in each site) is
designated to perform this task through the MPI_Send
and MPI_Receive functions. After the information
has been exchanged, the master processor thus ef-
fectively transfers the boundary data to the proper
processor in its site through Global Arrays block by
calling NGA_Put function. In order to retrieve the
boundary data, that corresponding processor needs to
call NGA_Get function.

OpenMP with multi-level topology-aware imple-
mentation

For comparison, we also perform the study for the
inclusion of an SMP cluster into the grid computing
environment. Here, we want to investigate the perfor-
mance of the evaluating application implemented with
our proposed technique compared to that implemented
with the SMP native implementation in such scenario.
In this case, instead of creating a Global Arrays
block on the SMP cluster, we rather implement the
evaluating application for that specific cluster based
on OpenMP. Specifically, complier directives e.g.,
#pragma omp parallel and #pragma omp for
have been specified in order to invoke and direct
OpenMP threads to perform calculations, see line 1,
3, and 9 in Listing 3. However, the communications
between neighbour processor groups are still handled
by the master processor of this SMP group with the
MPI_Send and MPI_Receive functions.

It is also noted that these algorithms also form a
multi-level parallelism because they are composed of
inter-site MPICH-G2 calls and intra-site Global Ar-
rays calls or inter-site MPICH-G2 calls and OpenMP

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 273

Listing 2 A fragment of application code that uses Global
Arrays process group APIs.

...
MPI_Init (&argc, &argv);

3 ...
GA_Initialize();
int group;

6 group= \
GA_Pgroup_create(site,numsite[0]);
...

9 gu=GA_Create_handle();
GA_Set_array_name(gu, "Array_U");
GA_Set_data(gu, 2, dims, C_DBL);

12 GA_Set_irreg_distr_(gu,map,nblock);
...
GA_Set_pgroup(gu, group);

15 GA_Allocate(gu);
...
GA_Pgroup_sync(group);

18 ...
if(my_group_id==0)
NGA_Put(GA_ghost,lo,hi,ghostR,ld);

21 GA_Pgroup_sync(group);
if(my_group_id==groupsize-1)
NGA_Put(GA_ghost,lo,hi,ghostR,ld);

24 ...
GA_Destroy(gu);
GA_Pgroup_destroy(group);

27 GA_Terminate();
...
MPI_Finalize();

Listing 3 A fragment of application code that uses OpenMP
directives.

#pragma omp parallel private(i,j)
{

3 #pragma omp for
for(i=starti; i<endi; i++)
for(j=1; j<N-1; j++)

6 {
...

}
9 #pragma omp for nowait

for(i=starti; i<endi; i++)
for(j=1; j<N-1; j++)

12 {
...

}
15 }

directives.
We want to emphasize that even though the se-

lected evaluating application is quite straightforward

Fig. 5 Experimental setting for the grid environment used
in this study.

however its linear solver algorithm and related rela-
tives are actually the cores of many SBES applica-
tions14.

EXPERIMENTAL SETTING

In this section, we provide a summary of experimental
setting description for the grid computing environ-
ment used in the current investigation. The grid
computing environment is composed of three clusters
consisting of two eight-host clusters and a two-host
SMP cluster connected through the ThaiSarn network
with the bandwidth of approximately 30 Mbit/s, see
Fig. 5 for full network map. We would like to also
emphasize that the current setting does reflect the
‘virtually not tightly coupled’ grid environment i.e.,
a grid environment with low bandwidth and high
latency network.

The specification of each individual node and its
interconnect network communication are as follows.
For cluster A and B (Non-SMP clusters), two Itanium
2 (IA64) 1.3 GHz CPUs per node with 4 GBytes of
RAM with Gigabit Ethernet network interface card on
Linux Kernel 2.6.9, MPICH 1.2.7 and GNU C and
Fortran compilers 3.2.3. For Cluster C (SMP cluster),
eight Xeon 2.0 GHz CPUs per node with 16 GBytes
of RAM with the exact same running environment and
interconnect network communication.

In the current study, the Globus toolkit (4.0.5)
together with MPICH-G2 are used in the current grid
computing environment. The Global Arrays does not
require any specific configuration for compiling the
Global Arrays on Globus toolkit.

RESULTS AND DISCUSSION

We have implemented the evaluating application on
the grid computing environment in various imple-
mentation techniques described above. In order to

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

274 ScienceAsia 37 (2011)

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

Number of processors

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

 MPICHG2−216

MPICHG2−432
MPICHG2−864

GA−216

GA−432
GA−864

Current−216

Current−432
Current−864

Ideal−216

Ideal−432
Ideal−864

Fig. 6 Execution time of each implementation on the grid
computing environment.

understand the characteristic of the proposed tech-
nique, we separate the performance analysis into two
parts: first, the comparison of the proposed technique
to the other typical implementations and second, the
comparison of the proposed technique to the SMP
native implementation for the case of the inclusion of
an SMP cluster.

Comparison to typical parallel implementations

In this part, we focus on the performance comparison
of the evaluating application with the exact same algo-
rithm in three types of implementations: native Global
Arrays, MPICH-G2 and the proposed technique.
All implementations have been executed on various
resolutions ranging from 216× 216, 432× 432, to
864× 864 mesh resolutions. The numbers of pro-
cessors used here are 3(1–1–1), 6(2–2–2), 8(4–2–2),
10(4–4–2), 12(4–4–4), and 16(4–4–8) where (np1–
np2–np3) represents numbers of processors from
site 1, site 2, and site 3, respectively.

The results of execution time for all implemen-
tations on the grid computing environment and the
ideal performance is shown in Fig. 6. It is noted here
that in the case of three processors i.e., one processor
per site, implementations based on MPICH-G2 and
the proposed technique are actually identical. From
the figure, we can see clearly that the implementation
based on multi-level topology-aware implementation,
the proposed technique, greatly outperforms the other
two implementations. We also see that the native
Global Arrays implementation performs poorly com-
pared to MPICH-G2 implementation. This is the
expected result because there are large amount of
uncontrollable network communications between pro-
cessor p and other processors which are not the imme-
diate neighbours of processor p. These uncontrollable
communications can lead to a significant performance
drop if those processors are “virtually not tightly
coupled” as in this grid computing environment. In
the case of MPICH-G2 implementation, even though

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

Number of processors

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

 OpenMP−216

OpenMP−432
OpenMP−864

Current−216

Current−432
Current−864

Ideal−216

Ideal−432
Ideal−864

Fig. 7 Execution time of each implementation on the grid
computing environment focusing on SMP native implemen-
tation (OpenMP) and the current technique.

we can explicitly control the communication pattern
in this implementation technique, the MPICH-G2
Globus I/O uses SSL for securing messages and this
does take some overhead use. When we add that to the
cost from the synchronous function calls, it can result
in the performance degradation as well. Here, we see
that only multi-level topology-aware implementation,
the proposed technique, can provide a close agreement
to the ideal performance. However, this is only valid
for the cases that we have large enough data size for
each processor.

Comparison to SMP native implementation

We now move to the scenario that there is at least one
SMP cluster has been included in the grid environ-
ment. We also want to examine the efficiency of our
proposed technique, Global Arrays with multi-level
topology-aware implementation, compared to that of
the SMP native implementation on that SMP cluster
as well. To this end, we have also implemented
the evaluating application in OpenMP with multi-
level topology-aware technique for this case as well.
The detail of the implementation has already been
described above.

The results of execution time of both implemen-
tations is shown in Fig. 7. From the figure, we can see
that their performances are comparable. Besides, as
compared to the ideal performance, both implemen-
tations show super-linear speed up in 6,8 processors
where a proper data size is met.

In order to provide a strategy on the proposed
technique for choosing an optimal combination of
numbers of processors in each site, we also investigate
the application performance with various combination
of numbers of processors in each site on this type
of grid environment as well. The results are pre-
sented in Table 1. From Table 1, for the OpenMP
implementation (i.e., the OpenMP with multi-level
topology-aware technique), we see that an increase

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org

ScienceAsia 37 (2011) 275

Table 1 Execution time (seconds) for various combination
of (np1–np2–np3) for implementations with the current
technique (A) and OpenMP (B).

p n = 216 n = 432 n = 864

A B A B A B

6(2–2–2) 9.49 9.90 15.84 15.83 49.41 49.48
8(4–2–2) 10.55 11.42 17.36 18.15 52.12 54.52
8(2–2–4) 9.95 9.59 18.27 15.64 53.15 49.32
10(4–4–2) 12.48 12.48 19.69 20.04 51.84 51.86
10(2–2–6) 11.79 10.38 19.15 15.78 53.67 49.57
12(4–4–4) 13.26 12.59 19.91 20.19 52.29 52.27
12(2–2–8) 12.71 9.90 19.54 16.44 54.39 49.67

in number of processors in SMP node results in a
decrease of the execution time. However, the decrease
of the execution time is not that significant (within
3%) and including even more threads does not help
improve application performance that much either.
Besides, a higher ratio of the number of processors
from non-SMP sites can bring unfavourable impact
to the overall performance as well. For the Global
Arrays with multi-level topology-aware implementa-
tion, the proposed technique, although the execution
time of the application is really close to that of
OpenMP implementation, still shows strong favour
of performing intra-machine computation to inter-
machine computation. Also, from Table 1, we can
see that the execution time of the proposed technique
gradually increases as more processors from other
nodes are added. This implies that to effectively use
the proposed technique on SMP architecture, we still
need some special techniques for properly handling
global address provided by Global Arrays. In the case
of availability of larger improvement margin which
is not our case here, one can include an SMP-aware
technique15 in the proposed technique to achieve that
improvement.

CONCLUSIONS

In this paper, we propose a new approach to improve
performance of a typical parallel SBES application
on a low bandwidth and high latency grid computing
environment. The newly proposed technique con-
sists of using Global Arrays toolkit with multi-level
topology-aware technique for implementing a parallel
application on such grid computing environment. We
have implemented the proposed technique for the
evaluating application based on an iterative solver for
a large system of linear equations. The performance
comparisons are done in twofold: comparison to
typical parallel implementations and comparison to

the system specific implementation. In the current
study, the OpenMP API is used for the system specific
implementation. From the first comparison, it is found
that the evaluating application implemented with the
newly proposed technique outperforms the other two
typical parallel implementations, the MPICH-G2 and
native Global Arrays implementations, in all studied
cases. This proves the efficiency of the proposed
technique. We have also found that, in the second
comparison, the evaluating application implemented
with this new proposed technique can perform very
close to that implemented with the system specific im-
plementation. It should be also noted that the applica-
tion implemented with the proposed technique can be
directly ported to a grid computing environment that
includes SMP clusters and its performance is almost
the same to that of the system specific programming.
This also proves the robustness of the proposed tech-
nique. However, to effectively use the Global Arrays
with the proposed technique, the developer must make
sure that the algorithm of the application is stable.
This is because the explicit control of the Global
Arrays (process groups) operations may not be easily
done. Moreover, the initial investment in re-coding
of the application based on Global Arrays with multi-
level topology-aware technique is quite considerable
compared to the MPICH-G2 implementation.

REFERENCES
1. Foster I, Kesselman C, Tuecke S (2001) The anatomy

of the Grid: Enabling scalable virtual organizations. Int
J High Perform Comput Appl 15, 200–22.

2. Thakur R, Gropp W, Toonen B (2005) Optimizing
the synchronization operations in message passing in-
terface one-sided communication. Int J High Perform
Comput Appl 19, 119–28.

3. Nieplocha J, Carpenter B (1999) ARMCI: A portable
remote memory copy library for distributed array li-
braries and complier run-time systems. In: Proceedings
of the 11th IPPS/SPDP’99 Workshops, Heidelberg,
pp 533–46.

4. Karonis N, Foster I, Gropp W, Lusk E, Bresnahan J
(2000) Exploiting hierarchy in parallel computer net-
works to optimize collective operation performance. In:
Proceedings of the International Parallel Processing
Symposium, pp 377–84.

5. Xavier C, Sachetto R, Vieira V, Weber dos Santos R,
Meira W (2007) Multi-level parallelism in the compu-
tational modeling of the heart. In: Proceedings 19th
International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD’07),
pp 3–10.

6. Dong S, Lucor D, Karniadakis GE (2003) Multi-level
parallel paradigms for flow-induced vibrations. NAVO
MSRC Navigator, Fall 2003, 5–8.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1177/1094342005054258
http://dx.doi.org/10.1177/1094342005054258
http://dx.doi.org/10.1177/1094342005054258
http://dx.doi.org/10.1177/1094342005054258
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
http://dx.doi.org/10.1109/SBAC-PAD.2007.19
www.scienceasia.org

276 ScienceAsia 37 (2011)

7. Czajkowski K, Foster I, Karonis N, Kesselman C,
Martin S, Smith W, Tuecke S (1998) A resource
management architecture for MetaComputing systems.
The Fourth Workshop on Job Scheduling Strategies for
Parallel Processing, pp 62–82.

8. Butler R, Welch V, Engert D, Foster I, Tuecke S,
Volmer J, Kesselman C (2000) A national-scale authen-
tication infrastructure. IEEE Computer 33, 60–6.

9. Karonis N, Toonen B, Foster I (2003) MPICH-G2: A
Grid-enabled implementation of the Message Passing
Interface. J Parallel Distr Comput 63, 551–63.

10. Nieplocha J, Harrison RJ, Littlefield RJ (1996) Global
Arrays: A nonuniform memory access programming
model for high-performance computers. J Supercomput
10, 169–89.

11. Nieplocha J, Palmr B, Tipparaju V, Krishnan M, Trease
H, Apra E (2005) Advances, applications and perfor-
mance of the Global Arrays shared memory program-
ming toolkit. Int J High Perform Comput Appl 20,
203–31.

12. Nomoto A, Watanabe Y, Kaneko W, Nakamura S,
Shimizu K (2004) Distributed Shared Arrays: Portable
shared-memory programming interface for multiple
computer systems. Cluster Comput 7, 65–72.

13. Dagum L, Menon R (1998) OpenMP: An industry
standard API for shared-memory programming. IEEE
Comput Sci Eng 5, 46–55.

14. Strang G (2007) Computational Science and Engineer-
ing. Wellesley-Cambridge Press.

15. Träff JL (2003) SMP-aware message passing program-
ming. In: Eighth International Workshop on High-
Level Parallel Programming Models and Supportive
Environments (HIPS’03), pp 56–65.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1109/2.889094
http://dx.doi.org/10.1109/2.889094
http://dx.doi.org/10.1109/2.889094
http://dx.doi.org/10.1016/S0743-7315(03)00002-9
http://dx.doi.org/10.1016/S0743-7315(03)00002-9
http://dx.doi.org/10.1016/S0743-7315(03)00002-9
http://dx.doi.org/10.1007/BF00130708
http://dx.doi.org/10.1007/BF00130708
http://dx.doi.org/10.1007/BF00130708
http://dx.doi.org/10.1007/BF00130708
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1177/1094342006064503
http://dx.doi.org/10.1023/B:CLUS.0000003944.78311.72
http://dx.doi.org/10.1023/B:CLUS.0000003944.78311.72
http://dx.doi.org/10.1023/B:CLUS.0000003944.78311.72
http://dx.doi.org/10.1023/B:CLUS.0000003944.78311.72
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/HIPS.2003.1196495
http://dx.doi.org/10.1109/HIPS.2003.1196495
http://dx.doi.org/10.1109/HIPS.2003.1196495
http://dx.doi.org/10.1109/HIPS.2003.1196495
www.scienceasia.org

