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ABSTRACT: A Diophantine quadruple is a set of four positive integers such that the product of any two increased by one
is a perfect square of an integer. Here we find general families of the Diophantine quadruple problem using solutions of a
second order recurrence relation over a ring of integers in a number field and a polynomial ring over a field of characteristic
zero.

KEYWORDS: generating function, linear second order recurrence relation

INTRODUCTION

The Diophantine quadruple problem (DQP) asks for
four positive integers with the property that the prod-
uct of any two increased by one is a square. Con-
nections among solutions of the DQP with Fibonacci
numbers were first noted by Hoggatt and Bergum1.
This direction has been much generalized. Shannon2

showed that the product of any two distinct elements
of the set

{Wn,Wn+2r,Wn+4r, 4Wn+rWn+2rWn+3r} (1)
(n, r ∈ N)

increased by qmt (WhWk − aWh+k)
t is a perfect

square where Wj is the generalized Fibonacci se-
quence. Morgado3 further generalized the set (1) to

{Wn,Wn+2r,Wn+2r+2s, 4Wn+rWn+r+sWn+2r+s}
(2)

(n, r, s ∈ N) with the conclusion that the product
of any two elements of the set (2) increased by
qnt (Wh′Wk′ −WhWk)

t is a perfect square, where
t = 1, h′ = k′ = h+k

2 if there are only two W -factors
in the product and t = 2, h+ k = h′ + k′ if there are
four W -factors in the product. There is also a related
result in Ref. 4.

Besides real numbers, Udrea5 considered a poly-
nomial DQP and showed that if (Un)n>0 is the se-
quence of Chebyshev polynomials of the second kind,
then the product of any two distinct elements taken
from the set

{Um, Um+2r, Um+4r, 4Um+rUm+2rUm+3r},
(m, r ∈ N)

increased by U2
a ·U2

b for suitable a, b ∈ N, is a perfect
square. Udrea’s approach is based on identities satis-
fied by Chebyshev polynomials of the second kind.
Morgado6 gave a similar result for the Chebyshev
polynomials of the first kind (Tn)n>0 which asserts
that the product of any two distinct elements of the set

{Tn, Tn+2r, Tn+4r, 4Tn+rTn+2rTn+3r} (n, r ∈ N)

increased by [(Th−Tk)/2]t is a perfect square, where
Th, Tk (k > h > 0) are suitable terms of the sequence
(Tn) and t = 1 or 2 if the number of T -factors in
the product is 2 or 4, respectively. The approach of
Morgado is based on solving a second order recur-
rence and establishing a crucial identity involving four
specific elements which forms a solution to the DQP.
The above results were put into a unified perspective
in Ref. 7 which is based on identities satisfied by
solutions of a linear second order difference equation.
These identities were derived purely in the spirit of
real and complex numbers and applications to the
matrix DQP were given7.

Since the set of integers is the ring of integers
of the field of rational numbers, it is natural to ask
whether a solution for the DQP can be found by ap-
propriately finding four elements among the solutions
of a linear second order recurrence relation in a ring
of integers over any algebraic number fields. Our
objective here is to give an affirmative answer. We
also find here the DQP over the ring of polynomials
over a field of characteristic zero.

Throughout, let F be an algebraic number field
or a field of rational functions over a field of charac-
teristic 0 and let OF denote its ring of integers, and
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F [§] its polynomial ring. We consider a sequence
(An)n>0 ⊂ OF satisfying a second order recurrence
of the form
An+1 = pAn − qAn−1 (n ∈ N), A0 = a,A1 = b,

where a, b, p, q ∈ OF .
(3)

THE MAIN THEOREM

Our main result is a generalization of Theorem 2 in
Ref. 3. The proof here is done via a generating
function approach.

Theorem 1 Let m, r, s ∈ N. Assume that the se-
quence (An)n>0 ⊂ OF satisfies (3). If p2 − 4q 6= 0,
then each product of any two distinct elements of the
set

{Am, Am+2r, Am+2r+2s, 4Am+rAm+r+sAm+2r+s}
(4)

increased by qmt(Ah′Ak′ − AhAk)
t, for explicitly

given t, h, k, h′, k′, is a perfect square. In addition,
t = 1, h′ = k′ = h+k

2 if there are only two A-factors
in the product and t = 2, h+ k = h′ + k′ if there are
four A-factors in the product.

Proof : Let

g(y) = A0 +A1y +A2y
2 + · · ·+Any

n + · · ·

be the generating function of the sequence (An)n>0.
Then, using (3), we get

(1− py + qy2)g(y)

= A0 + y(A1 − pA0) + y2(A2 − pA1 + qA0)+

y3(A3 − pA2 + qA1) + . . .

= A0 + y(A1 − pA0) = a+ y(b− ap).

Working formally in the ring of the formal power
series we let

L =
p+

√
p2 − 4q

2
, R =

p−
√
p2 − 4q

2

be the two roots of the characteristic equation of
the recurrence relation (3). Both roots exist in the
algebraic closure of F since p2 − 4q 6= 0. We have

g(y) =
a+ y(b− ap)
1− py + qy2

=
1√

p2 − 4q

(
(b− ap) + aL

1− yL
+
−(b− ap)− aR

1− yR

)
=

1√
p2 − 4q

(
(b− ap)

∑
n>0

Lnyn + a
∑
n>0

Ln+1yn

− (b− ap)
∑
n>0

Rnyn − a
∑
n>0

Rn+1yn
)
.

Equating the coefficient of yn and setting c0 = b −
ap+ aL, c1 = b− ap+ aR, we have

An =
1√

p2 − 4q
(c0L

n − c1Rn) (n > 0). (5)

This formula forAn is all we need here. An alternative
approach avoiding the above formal calculation is to
directly check it with (3) and use the initial values
to ensure its uniqueness. We next show that the
following crucial identity holds.

AmAm+r+s + qm(ArAs − aAr+s) = Am+rAm+s.
(6)

To prove this identity, we first note that LR = q. For
s > r, we have

AmAm+r+s −Am+rAm+s

=
1

p2 − 4q
(−c0c1qmLr+s − c0c1qmRr+s

+ c0c1q
m+rLs−r + c0c1q

m+rRs−r)

=
qm

p2 − 4q
(−c0c1Lr+s − c0c1Rr+s + c0c1R

rLs

+ c0c1L
rRs)

=
qm

p2 − 4q
(−c0c1Lr+s − c0c1Rr+s+

(c0c1R
rLs + c0c1L

rRs − c20Lr+s − c21Rr+s)

+ c20L
r+s + c21R

r+s)

= − qm

p2 − 4q
(c0L

r − c1Rr)(c0L
s

− c1Rs) +
qm

p2 − 4q
(−c0c1Lr+s − c0c1Rr+s

+ c20L
r+s + c21R

r+s)

= −qmArAs +
qm

p2 − 4q
(c0 − c1)(c0Lr+s − c1Rr+s)

= −qmArAs + qmaAr+s.

The proof for the case s < r is similar.
We are now ready to prove our theorem. Letting

s = r in (6), we have

AmAm+2r + qm(A2
r − aA2r) = A2

m+r. (7)

Replacing r by r + s in (7), one gets

AmAm+2r+2s + qm(A2
r+s − aA2r+2s) = A2

m+r+s.
(8)

Let r′, s′ ∈ N be such that r + s = r′ + s′. In (6),
substituting r and s by r′ and s′, respectively, and then
subtracting and adding it to (6), we get

qm(ArAs −Ar′As′)

=Am+rAm+s −Am+r′Am+s′ (9)
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2AmAm+r+s + qm(ArAs +Ar′As′ − 2aAr+s)

=Am+rAm+s +Am+r′Am+s′ . (10)

In (9), replacing r, s, r′ and s′ by 2r + s, 2r + s, 2r
and 2r + 2s, respectively, we have

Am+2rAm+2r+2s + qm(A2
2r+s −A2rA2r+2s) =

A2
m+2r+s. (11)

Squaring (9) and (11) and subtracting, we get

4Am+rAm+sAm+r′Am+s′ + q2m(ArAs −Ar′As′)
2

=(2AmAm+r+s + qm(ArAs +Ar′As′ − 2aAr+s))
2.

(12)

Letting r′ = 0 and replacing s and s′ by r + s and
2r + s, respectively, in (12), we get

4Am+rAm+r+sAmAm+2r+s + q2m(ArAr+s − aA2r+s)
2

= (2AmAm+2r+s + qm(ArAr+s − aA2r+s))
2.

(13)

Replacing s, r′ and s′ by 2r + s, 2r and r + s,
respectively, in (12), we get

4Am+rAm+2r+sAm+2rAm+r+s

+ q2m(ArA2r+s −A2rAr+s)
2

= (2AmAm+3r+s + qm(ArA2r+s +A2rAr+s

− 2aA3r+s))
2. (14)

Replacing s, r′ and s′ by 2r + 2s, r + s and 2r + s,
respectively, in (12), we get

4Am+rAm+2r+2sAm+r+sAm+2r+s+

q2m(ArA2r+2s −Ar+sA2r+s)
2

= (2AmAm+3r+2s+

qm(ArA2r+2s +Ar+sA2r+s − 2aA3r+2s))
2. (15)

The identities (7), (8), (11), and (13)-(15) prove the
theorem. �

The case s = 1; a, b, p, q ∈ Z is due to Horadam8

and the case s = r; a, b, p, q ∈ Z is due to Shannon2.

COROLLARIES

The crucial identity (6) in Theorem 1 can be simplified
when A0 and A1 are explicitly given.

Proposition 1 Let m, r, s ∈ N. If (An)n>0 is a
sequence defined by (3) with A0 = 1 and A1 = p,
then

AmAm+r+s + qm+1Ar−1As−1 = Am+rAm+s.
(16)

Proof : If A0 = 1 and A1 = p, then (5) becomes

An =
1√

p2 − 4q
(Ln+1 −Rn+1).

Thus for s > r,

ArAs −Ar+s

=
1

p2 − 4q
(Lr+s+2 − qr+1Ls−r − qs+1Rs−r

+Rr+s+2)− 1√
p2 − 4q

(Lr+s+1 −Rr+s+1)

=
q

p2 − 4q
(−qrLs−r − qsRs−r)

+
Lr+s+1

p2 − 4q
(L−

√
p2 − 4q)

+
Rr+s+1

p2 − 4q
(R+

√
p2 − 4q)

=
q

p2 − 4q
(−qrLs−r − qsRs−r)

+
q

p2 − 4q
(Lr+s +Rr+s)

=
q

p2 − 4q
(Lr −Rr)(Ls −Rs)

= qAr−1As−1. (17)

The proof for the case s < r is similar. Substituting
(17) into (6), the desired assertion follows. �

Using the identity (16), Theorem 1 takes a slightly
simplified form.

Corollary 1 Let m, r ∈ N. Assume (An)n>0 ⊂ OF
satisfies (3) with A0 = 1 and A1 = p. If p2 − 4q 6= 0,
then each product of any two distinct elements of the
set

{Am, Am+2r, Am+4r, 4Am+rAm+2rAm+3r},

increased by qcA2
d · A2

e, for explicitly given c, d, and
e ∈ N, is a perfect square.

Proof : Putting s = r, the identity (16) becomes

AmAm+2r + qm+1A2
r−1 = A2

m+r. (18)

Replacing r by 2r in (18), we get

AmAm+4r + qm+1A2
2r−1 = A2

m+2r. (19)

Replacing m by m+ 2r in (18), we get

Am+2rAm+4r + qm+2r+1A2
r−1 = A2

m+3r. (20)

From (16), we have

4AmAm+rAm+sAm+r+s + q2m+2A2
r−1A

2
s−1

= (Am+rAm+s +AmAm+r+s)
2. (21)
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Putting s = 2r in (21), we get

4AmAm+rAm+2rAm+3r + q2m+2A2
r−1A

2
2r−1

= (Am+rAm+2r +AmAm+3r)
2. (22)

Replacing m by m+ r in (22), one gets

4Am+rAm+2rAm+3rAm+4r + q2m+2r+2A2
r−1A

2
2r−1

= (Am+2rAm+3r +Am+rAm+4r)
2. (23)

Replacing m by m + r and letting s = r in (21), we
have

4Am+rAm+2rAm+2rAm+3r + q2m+2r+2A2
r−1A

2
r−1

= (Am+2rAm+2r +Am+rAm+3r)
2. (24)

The identities (18)-(20) and (22)-(24) prove the corol-
lary. �

With another set of initial values, we deduce the
following proposition.

Proposition 2 If (An)n>0 is a sequence defined by
(3) with A0 = 1 and A1 = p/2, then

AmAm+r+s +
qm

2
(qsAr−s −Ar+s) = Am+rAm+s

(r > s > 0,m > 0).

(25)

Proof : Putting A0 = 1 and A1 = p/2 in the proof of
Theorem 1, the expression (5) becomes

An =
1

2
(Ln +Rn).

Thus for r > s,

ArAs −Ar+s

=
1

4
(Lr +Rr) (Ls +Rs)− 1

2

(
Lr+s +Rr+s

)
=
1

4
(qsLr−s + qsRr−s)− 1

4
(Lr+s +Rr+s)

=
1

2
qs
(
1

2
Lr−s +

1

2
Rr−s

)
− 1

2

(
1

2
Lr+s +

1

2
Rr+s

)
=
1

2
(qsAr−s −Ar+s).

Substituting ArAs − Ar+s into the identity (6), the
desired assertion follows. �

Using the identity (25), we obtain the following
corollary.

Corollary 2 Let m, r ∈ N. Assume that (An)n>0 ⊂
OF satisfies (3) with A0 = 1 and A1 = p/2. If p2 −

4q 6= 0, then each product of any two distinct elements
of the set

{Am, Am+2r, Am+4r, 4Am+rAm+2rAm+3r},

increased by
{

1
2 (q

cAd − qeAf )
}t

, for explicitly given
c, d, e, f , and t ∈ N, is a perfect square.

Proof : Letting s = r in (25), we have

AmAm+2r +
qm

2
(qrA0 −A2r) = A2

m+r. (26)

Replacing r by 2r in (26), one gets

AmAm+4r +
qm

2
(q2rA0 −A4r) = A2

m+2r. (27)

Replacing m by m+ 2r in (26), one gets

Am+2rAm+4r +
qm+2r

2
(qrA0 −A2r) = A2

m+3r.

(28)
From (25), we have

4AmAm+rAm+sAm+r+s

+

(
qm

2
(qsAr−s −Ar+s)

)2

= (Am+rAm+s +AmAm+r+s)
2. (29)

Observe that the recurrence (3) with two fixed initial
values uniquely determines the sequence elements An

for all integer indices both positive and negative, i.e.,
for all n ∈ Z. This is in agreement with defining the
sequence elements of negative suffixes as

A−n :=
1

2

(
1

Ln
+

1

Rn

)
and so

A−n =
1

2

(
Rn

qn
+
Ln

qn

)
=

1

qn
An. (30)

Letting s = 2r in (29) and using (30), we get

4AmAm+rAm+2rAm+3r +

(
qm

2
(qrAr −A3r)

)2

= (Am+rAm+2r +AmAm+3r)
2. (31)

Replacing m by m+ r in (31), we get

4Am+rAm+2rAm+3rAm+4r

+

(
qm+r

2
(qrAr −A3r)

)2

= (Am+2rAm+3r +Am+rAm+4r)
2. (32)
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Replacing m by m + r and letting s = r in (29), we
have

4Am+rAm+2rAm+2rAm+3r

+

(
qm+r

2
(qrA0 −A2r)

)2

= (Am+2rAm+2r +Am+rAm+3r)
2. (33)

The result follows from identities (26)-(28) and (31)-
(33). �

APPLICATIONS

A large number of known solutions are special cases
of our results as we now show.

Example 1 (Fibonacci Sequence)
Let F = Q. Taking

A0 = a = A1 = b = p = 1, q = −1,

the recurrence (3) becomes

An+2 = An+1 +An (n > 0).

The sequence (An) so obtained is the classical Fi-
bonacci sequence, (Fn). Corollary 1 shows that a
product of any two distinct elements of the set

S = {Fm, Fm+2r, Fm+4r, 4Fm+rFm+2rFm+3r}
(m, r ∈ N)

increased by F 2
d · F 2

e , for suitable positive integers
d and e, is a perfect square. Indeed, the proof of
Corollary 1 gives

FmFm+2r + (−1)m+1F 2
r−1 = F 2

m+r.

FmFm+4r + (−1)m+1F 2
2r−1 = F 2

m+2r.

Fm+2rFm+4r + (−1)m+1F 2
r−1 = F 2

m+3r.

4FmFm+rFm+2rFm+3r + F 2
r−1F

2
2r−1

= {Fm+rFm+2r + FmFm+3r}2 .
4Fm+rFm+2rFm+3rFm+4r + F 2

r−1F
2
2r−1

= {Fm+2rFm+3r + Fm+rFm+4r}2 .
4Fm+rFm+2rFm+2rFm+3r + F 2

r−1F
2
r−1

= {Fm+2rFm+2r + Fm+rFm+3r}2 .

The case where m is odd and r = 1, which shows the
set S is a solution of the DQP, is due to Hoggatt and
Bergum1. The case of even m is due to Morgado9.

Example 2 (Lucas sequence)
Let F = Q. Taking

A0 = a = 2, A1 = b = 1, p = 1, q = −1

the recurrence (3) is the same as the one in the last
example and the sequence (An) so obtained is the
Lucas sequence (Ln). From Theorem 1 and by setting
r = s, the product of any two distinct elements of the
set

{Lm, Lm+2r, Lm+4r, 4Lm+rLm+2rLm+3r},

increased by (−1)t(Lh′Lk′ − LhLk)
t, for explicitly

given h′, k′, h, k, and t ∈ N, is a perfect square. In
particular, if m = 2 and r = 1, the product of any
two distinct elements of the set S = {3, 7, 8, 1232},
increased by 25 or decreased by 5, is a perfect square.

Example 3 (Fibonacci polynomials)
Let F=Q(x). Taking

A0 = a(x) = 1, A1 = b(x) = p(x) = x, q(x) = −1,

the resulting sequence (An) in (3) is the sequence of
Fibonacci polynomials (Fn(x))n>0 defined by

Fn+2(x) = xAn+1(x) + Fn(x) (n > 0), (34)
F0(x) = 1, F1(x) = x. (35)

Corollary 1 implies that each product of any two
distinct elements of the set

{Fm(x), Fm+2r(x), Fm+4r(x),

4Fm+r(x)Fm+2r(x)Fm+3r(x)} (m, r ∈ N)

increased by ±F 2
d (x) · F 2

e (x), for suitable positive
integers d and e, is a perfect square. In particular,
taking m = r = 1, we deduce that the set

{F1(x), F3(x), F5(x), 4F2(x)F3(x)F4(x)}
= {x, 2x+ x3, 3x+ 4x3 + x5,

8x+ 36x3 + 48x5 + 24x7 + 4x9}

solves the DQP with

F1(x) · F3(x) + 1 = (x2 + 1)2

F1(x) · F5(x) + x2 = x2(x+ 2)2

F1(x) · 4F2(x)F3(x)F4(x) + x2 = x2(x+ 2)2

F3(x) · F5(x) + 1 = (1 + 3x2 + x4)2

F3(x) · 4F2(x)F3(x)F4(x) + 1

= (1 + 8x2 + 8x4 + 2x6)2

F5(x) · 4F2(x)F3(x)F4(x) + x2

= x2(5 + 14x2 + 10x4 + 2x6)2.

If we put x = 1, then the derived set {1, 3, 8, 120}
gives a Fibonacci quadruple.
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Example 4 (Chebyshev polynomials)
Let F=Q(x). Taking

A0 = a(x) = 1, A1 = b(x) = p(x) = 2x, q(x) = 1,

the resulting sequence (An) in (3) is the sequence
of Chebyshev polynomials of the second kind,
(Un(x))n>0. Corollary 1 gives the result proved by
Udrea5: the product of any two distinct elements of
the set

{Um(x), Um+2r(x), Um+4r(x),

Um+r(x)Um+2r(x)Um+3r(x)} (m, r ∈ N)

increased by U2
d (x) ·U2

e (x), for suitable d, e ∈ N, is a
perfect square.

Taking A0 = a(x) = 1, A1 = b(x) = x, p(x) =
2x, q(x) = 1, the resulting sequence (An) in (3) is the
sequence of Chebyshev polynomials of the first kind,
(Tn(x))n>0. Corollary 2 yields a result of Morgado6:
the product of any two distinct elements of the set

{Tm(x), Tm+2r(x), Tm+4r(x),

Tm+r(x)Tm+2r(x)Tm+3r(x)} (m, r ∈ N)

increased by
{

Th(x)−Tk(x)
2

}t

, for suitable integers
k > h > 0 where t is 1 or 2, is a perfect square.

Example 5 (Pell polynomials)
Let F = Q(§). Taking

A0 = a(x) = 0, A1 = b(x) = 1, p(x) = 2x, q(x) = −1,

the resulting sequence (An) in (3) is the sequence of
Pell polynomials, (Pn(x)) which satisfies

Pn+2(x) = 2xPn+1(x) + Pn(x) (n > 0).

By Corollary 2, the product of any two distinct ele-
ments of the set

{Pm(x), Pm+2r(x), Pm+4r(x),

Pm+r(x)Pm+2r(x)Pm+3r(x)} (m, r ∈ N)

increased by (−1)c {Pd(x)Pe(x)}2, for suitable pos-
itive integers c, d, and e, is a perfect square. In
particular, if m = 2, r = 1, then the set

{P2(x), P4(x), P6(x), 4P3(x)P4(x)P5(x)}
= {2x, 8x3 + 4x, 32x5 + 32x3 + 6x,

16x+ 288x3 + 1536x5 + 3072x7 + 2048x9}

solves the DQP because

P2(x)P4(x) + 1 = (1 + 4x2)2

P2(x)P6(x) + 4x2 = 16x2(1 + 2x2)2;

P2(x)(4P3(x)P4(x)P5(x)) + 4x2

= 4x2(3 + 24x2 + 32x4)2

P4(x)P6(x) + 1 = (1 + 12x2 + 16x4)2

P4(x)(4P3(x)P4(x)P5(x)) + 1

= (1 + 32x2 + 128x4 + 128x6)2

P6(x)(4P3(x)P4(x)P5(x)) + 4x2

= 4x2(5 + 56x2 + 160x4 + 128x6)2.

If we put x = 1
2 , the resulting set {1, 3, 8, 120}

gives a Fibonacci quadruple. If we put x = 1, then
the product of any two distinct elements of the set
{2, 12, 70, 6960}, increased appropriately by 1 or 4,
is a perfect square.

Example 6 (Quadratic number fields)
Let F = Q(

√
D) be a quadratic number field with

d ∈ Z, D square-free. Taking

A0 = a = A1 = b = p = 1, q = −
√
D

in (3), we have

An+2 = An+1 +
√
DAn (n > 0).

By Corollary 1, the product of any two distinct ele-
ments of the set

{Am, Am+2r, Am+4r, Am+rAm+2rAm+3r}
(m, r ∈ N)

increased by (−
√
D)cA2

dA
2
f , for suitable positive in-

tegers c, d, and f , is a perfect square. In particular, if
m = r = 1, then the set

{A1, A3, A5, 4A2A3A4}

solves the original DQP.
The reader may explore the Diophantine quadru-

ple problem over quadratic number fields in Refs. 10,
11 where the author studies the existence of Diophan-
tine quadruples in Z[(1 +

√
d)/2] and Z[

√
4k + 3].

Example 7 (Cyclotomic field)
Let x = ζm be a primitive mth root of unity and let
F = Q(ζm). Putting

A0 = a = 1, A1 = b = p = ζm, q = −1
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in (3), the derivations follow formally as in Example 3
and we deduce that the product of any two distinct
elements of the set

{1, 1 + 2ζm, 1 + 4ζm + 3ζ2m,

4 + 24ζm + 48ζ2m + 36ζ3m + 8ζ4m}

increased by 1 or ζ2m, is a perfect square of an element
in the ring of integers OF = Z[ζm]. If m = 2, then
we obtain a well known DQP set {1, 3, 8, 120} and
a set {1,−1, 0, 0} in which a product of two distinct
elements increased by 1 is a square.

As a final application of our approach, we derive
some analogues of Catalan’s identities and generalize
some identities for Chebyshev polynomials.

Example 8 (Catalan’s identity)
For a sequence (An)n>0 defined by (3) with A0 = 1,
A1 = p, replacing m by m − 1 in Proposition 1 we
have

Am−1Am+r+s−1+q
mAr−1As−1 = Am+r−1Am+s−1.

(36)
Taking p = 2x, q = 1, we get an analogue of the gen-
eralized Catalan’s identity for Chebyshev polynomials
of the second kind, namely,

Um−1(x)Um+r+s−1(x) + Ur−1(x)Us−1(x) (37)
= Um+r−1(x)Um+s−1(x). (38)

Taking p = 1, q = −1, we get an analogue
of the generalized Catalan’s identity for the shifted
Fibonacci sequence, namely,

Am−1Am+r+s−1 + (−1)mAr−1As−1

= Am+r−1Am+s−1.

Since Ak = Fk+1, we have

FmFm+r+s + (−1)mFrFs = Fm+rFm+s, (39)

which is a generalization of the Catalan’s identity due
to Everman, Danese, and Venkannayah12.

To get more Catalan type identities for Chebyshev
polynomials of the second kind and for the Fibonacci
sequence, putting m = n − r and r − s in (37) and
m = n− r and r = s in (36), we get, respectively,

Un−r−1(x)Un+r−1(x) + U2
r−1(x) = U2

n−1(x),

Fn−rFn+r + (−1)n−rF 2
r = F 2

n .

Similarly, for a sequence (An)n>0 defined by (3)
with A0 = 1, A1 = p/2, replacing m by m − 1 in

Proposition 2, we get

Am−1Am+r+s−1 +
qm−1

2
(qsAr−s −Ar+s)

= Am+r−1Am+s−1 (r > s > 0,m > 0).

Taking p = 2x, q = 1, we get an analogue of a gen-
eralized Catalan’s identity for Chebyshev polynomials
of the first kind, namely,

Tm−1(x)Tm+r+s−1(x) +
1

2
{Tr−s(x)− Tr+s(x)}

= Tm+r−1(x)Tm+s−1(x).

Since

(x2 − 1)U2
n(x) =

1

2
{T2n+2(x)− 1} ,

for positive integers r > s of the same parity, we have

Tm−1(x)Tm+r+s−1(x)+

(x2 − 1)
{
U2

r−s−2
2

(x)− U2
r+s−2

2

(x)
}

= Tm+r−1(x)Tm+s−1(x). (40)

Replacing m by m − r + 1 and letting r = s in (40)
and noting that U−1(x) = 0, we have

Tm−r(x)Tm+r(x) + (1− x2)U2
r−1(x) = T 2

m(x),

which is an identity due to Udrea7.

FURTHER RESEARCH

In our work, for F an algebraic number field or a
rational function field, we have constructed a finite set
S ⊂ OF in which products of two distinct elements
added by some elements in OF are square. For con-
venience, we define the following term: for any finite
set S, the set S has the property D(a1, a2, . . . , al) if
for any s, t ∈ S where s 6= t, st+a is a perfect square
for some a ∈ {a1, a2, . . . , al}. From Example 2 and
Example 5, the set {3, 7, 8, 1232} has the property
D(−5, 25) and the set {2, 12, 70, 6960} has the prop-
ertyD(1, 4). An interesting remark about the property
D(a1, a2, . . . , al) is that if {s1, s2, . . . , sn} ⊆ OF has
the property D(a1, a2, . . . , al), then for any m ∈ OF
the set

{ms1,ms2, . . . ,msn}

has the property D(m2a1,m
2a2, . . . ,m

2al).
It has been mentioned in Ref. 13 that there is no

set of four natural numbers with the property D(n) if
n is an integer of the form 4k + 2, k ∈ Z. However,
this is not true if we consider this problem over
rational or other algebraic number fields. For example,
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the set { 14 , 28,
137
4 , 4974 } is D(2) over Q which is

constructed from the set {1, 112, 137, 497}, a D(32)
set. The set {

√
2, 3
√
2, 8
√
2, 120

√
2} is a D(2) set

over Q(
√
2) which is constructed from {1, 3, 8, 120},

a D(1) quadruple set. However, these two examples
are not considered to be new because they can be
constructed from the known solutions. On the other
hand, if we consider only the integer case, then we
know that {1, 2, 7, 17} has the property {2,−1}. So
one may ask if it is true that for any integer k there are
an integer n and a set of four integers with the property
D(4k + 2, n). This question still remains open.
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