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ABSTRACT: A class of recursive equations extending those of the form yn = (yn−2yn−1 − 1)/(yn−2 + yn−1) is
transformed into a special case of the nonlinear recursive equation xn = cx

h1(n)
n−1 x

h2(n)
n−2 · · ·xh`−1(n)

n−`+1 x
h`(n)
n−` . A general

solution of this equation is determined by solving its associated linear difference equation. Several known results are derived
as special cases. Connections of the case ` = 2 to continued fractions are elaborated.
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INTRODUCTION

Rational recursive equations of the form

yn+` = f(yn+`−1, . . . , yn+1, yn),

where f is a given rational function, have been of
much interest recently both in their own right and
because of their applications to various other fields1, 2.
More related recent works can be found in Refs. 3–8.
It is natural then to seek closed form solutions of such
equations whenever possible. With explicit forms
of solution, numerical computations can be directly
implemented and further aspects such as asymptotic
behaviour, periodicity, or other qualitative analysis
can be treated in a straightforward manner. Rhouma9

gave a closed form solution to the rational recursive
difference equation

yn+2 =
ynyn+1 − 1

yn + yn+1
, (1)

which originated from an open problem in the book1

(see also Ref. 2 where global asymptotic stability of
its solution is discussed). Rhouma’s technique is first
to transform (1) to an equivalent form of

yn+2 = i
(yn+1 + i)(yn + i) + (yn+1 − i)(yn − i)

(yn+1 + i)(yn + i)− (yn+1 − i)(yn − i)
,

(2)
where i =

√
−1, or

yn+2 − i

yn+2 + i
=
yn+1 − i

yn+1 + i
· yn − i

yn + i
,

which is a difference equation of the form

xn+2 = αxn+1xn. (3)

A closed form solution to (3) is then derived in terms
of the Fibonacci numbers. In Ref. 10, this technique is
employed to derive an explicit solution of the equation

yn+` = i

(
Tp + Tm
Tp − Tm

)
,

where

Tp = (yn+`−1 + i)A1 . . . (yn + i)A`

and

Tm = (yn+`−1 − i)A1 . . . (yn − i)A` ,

extending (2). In the last section of Ref. 9, Rhouma
illustrates how rational recursive equations, generaliz-
ing (3), of the form

xn+` = c

`−1∏
j=0

x
A`−j

n+j (n ∈ N ∪ {0}), (4)

with initial conditions x0, x1, . . . , x`−1 have closed
form solutions

xn = cBn

`−1∏
j=0

x
A(j)

n
j , (5)

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.136
http://www.scienceasia.org/2011.html
mailto:charinthip@mathstat.sci.tu.ac.th
mailto:fscivil@ku.ac.th
mailto:fsciwcrp@ku.ac.th
www.scienceasia.org


ScienceAsia 37 (2011) 137

where the sequences {A(j)
n } satisfy

A
(j)
n+` =

`−1∑
m=0

A`−mA
(j)
n+m,

A
(j)
j = 1,A(j)

m = 0 (0 6 j 6= m 6 `− 1),

and the sequence {Bn} satisfies

Bn+` = 1 +

`−1∑
m=0

A`−mBn+m, (6)

where B0 = B1 = . . . = B`−1 = 0.
Our objective here is to present in detail an al-

ternative and direct approach to solving the rational
recursive equation

xn = cx
h1(n)
n−1 x

h2(n)
n−2 · · ·x

h`−1(n)
n−`+1 x

h`(n)
n−` , (7)

where n > `, generalizing (4).

GENERAL EXPLICIT SOLUTION

In this section, we solve the equation (7).

Theorem 1 Let ` ∈ N and c ∈ C \ {0}. Let h1, . . .,
h` be functions from N0 := N ∪ {0} to C with

h`(n) 6= 0 for all n. Let
{
G

(1)
n

}
n>0

, . . . ,
{
G

(`)
n

}
n>0

be ` unique sequences satisfying the linear recurrence

G(j)
n − h1(n)G

(j)
n−1 − · · · − h`(n)G

(j)
n−` = 0, (8)

for n > ` and j = 1, 2, . . . , ` with given initial values

G
(i)
j−1 = δ(i, j) (i, j = 1, 2, . . . `), (9)

where δ(i, j) is the usual Kronecker delta taking
values 1 if i = j and 0 otherwise. If {xn}n>0 is a
sequence of complex numbers satisfying the recursive
equation

xn = cx
h1(n)
n−1 x

h2(n)
n−2 · · ·x

h`(n)
n−` (n > `), (10)

with given initial values x0, . . ., x`−1 chosen so that
all remaining xn are uniquely well-defined, then the
solution of (10) is given by

xn = Pc(n)

`−1∏
i=0

(
xi
Pc(i)

)G(i+1)
n

(n > 0), (11)

where Pc(n) is a particular solution of (10).

Proof : Given the initial values x0, . . . , x`−1, the
equation (10) uniquely determines all the elements xn
for n > `. It thus suffices to verify that the general

form of the solution to (10) is given by (11). Putting
i = 1, . . . , ` − 1, into the right-hand side of (11), we
get, respectively,

Pc(0)

(
x0

Pc(0)

)1(
x1

Pc(1)

)0

· · ·
(

x`−1
Pc(`− 1)

)0

= x0,

Pc(1)

(
x0

Pc(0)

)0(
x1

Pc(1)

)1

· · ·
(

x`−1
Pc(`− 1)

)0

= x1,

...

Pc(`− 1)

(
x0

Pc(0)

)0

· · ·
(

x`−1
Pc(`− 1)

)1

= x`−1.

This shows that (11) holds for all the initial values.
Putting n = ` into the right-hand side of (11), we get

Pc(`)

`−1∏
i=0

(
xi
Pc(i)

)G(i+1)
n

= Pc(`)

(
x0

Pc(0)

)G(1)
`
(

x1
Pc(1)

)G(2)
`

· · ·
(

x`−1
Pc(`− 1)

)G(`)
`

= Pc(`)
x
h`(`)
0 x

h`(`−1)
1 · · ·xh1(`)

`−1
Pc(0)h`(`)Pc(1)h`(`−1) · · ·Pc(`− 1)h1(`)

= cx
h`(`)
0 x

h`(`−1)
1 · · ·xh1(`)

`−1 = x`,

by (10). Next, suppose that (11) is true for all n =
0, 1, . . ., k. Then

xk+1 = c

`−1∏
j=1

x
hj(k+1)

(k+1)−j

= c
∏̀
j=1

Pc(k + 1− j)
`−1∏
i=0

(
xi
Pc(i)

)G(i+1)
k+1−j

hj(k+1)

= c

∏̀
j=1

Pc(k + 1− j)hj(k+1)


·

`−1∏
i=0

(
xi
Pc(i)

)∑`
m=0 hm(k+1)G

(i+1)
k+1−m


= cPc(k + 1)

`−1∏
i=0

(
xi
Pc(i)

)G(i+1)
k+1

.

By mathematical induction, we conclude that (11)
holds for all n > 0. �

Remark 1 The shape of the solution given in (11)
may be easily obtained through the following formal
manipulation. Taking the logarithm of (10), we get the
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linear difference equation

log xn = log c+
∑̀
i=1

hi(n) log xn−i. (12)

Putting f(n) := log xn, the recurrence (12) becomes

f(n) = log c+
∑̀
i=1

hi(n)f(n− i). (13)

Since each sequence in the system

f1(n) = G(1)
n , . . . , f`(n) = G(`)

n (n > 0), (14)

satisfies the homogeneous recurrence (8) and the sys-
tem is C-linearly independent because of the initial
conditions (9), the general solution of (13) is given
by11

f(n) =
∑̀
i=1

fi(n) log βi + logPc(n)

= log
(
Pc(n) β

G(1)
n

1 β
G(2)

n
2 · · ·βG

(`)
n

`

)
,

where βi (i = 1, 2, . . ., `) are constants. Thus the
general solution of (7) is given by

xn = ef(n) = Pc(n) β
G(1)

n
1 β

G(2)
n

2 · · ·βG
(`)
n

` (n > `).

To determine the βj’s, substituting n = 0, 1, . . ., `− 1
successively in this last expression and making use of
the initial conditions (9), we get

β1 = x0/Pc(0), . . . , β` = x`−1/Pc(`− 1).

Remark 2 In the result of Theorem 1, if c = 1, we
can simply take Pc(n) = 1 for all n. If 1 − h1(n) −
h2(n)−· · ·−h`(n) is a non-zero constant independent
of n, say equal to 1/H , then we can take Pc(n) = cH ,
a constant independent of n.

CONSTANT EXPONENTS

If the exponent functions h1(n), . . ., h`(n) in (7) are
constants, then the result in Theorem 1 gives the
following corollary.

Corollary 1 Let ` ∈ N and c(6= 0),A1, . . .,A` (6= 0)
∈ C. Let {xn}n>0 be a sequence of complex numbers
satisfying the recursive equation

xn+` = cxA1

n+`−1x
A2

n+`−2 · · ·x
A`−1

n+1 x
A`
n (15)

with the initial values x0, . . ., x`−1 being chosen so
that all remaining xn are uniquely well-defined. Let
{Gn} be the unique sequence satisfying

Gn+` −A1Gn+`−1 − · · · −A`Gn = 0, (16)

with given initial values G0, . . . , G`−1. Assume that
the sequence {Gn} does not satisfy any recurrence of
the form (16) of lower order. Then the solution of (15)
is given by

xn = Pc(n)β
Gn−1

1 β
Gn−2

2 · · ·βGn−`

` (n > `), (17)

where Pc(n) is a particular solution of (4) and the
βj (j = 1, . . . , `) are successively determined from
the system, for k = 0, . . ., `− 1,

c xA1

k+`−1 · · ·x
A`−1

k+1 x
A`

k = Pc β
G`+k−1

1 · · ·βGk

` . (18)

Moreover, if κ` := 1− (A1 + · · ·+A`) 6= 0, then the
solution of (15) is given by

xn = c1/κ` β
Gn−1

1 β
Gn−2

2 · · ·βGn−`

` (n > `).

The result in Corollary 1 can be made more explicit in
terms of the roots of the characteristic equation of (16)
as we now see.

Corollary 2 Let the notation be as in Corollary 1. Let
all the distinct roots of the characteristic polynomial,

C(X) = X` −A1X
`−1 −A2X

`−2 − · · · −A`,

be R1, . . . , Rr with respective multiplicities m1, . . .,
mr so that m1 + · · · +mr = `. Then the solution of
(15) is

xn = Pc(n) exp

(
r∑

k=1

(
mk∑
i=1

akin
i−1

)
Rnk

)
, (19)

where the coefficients aks(1 6 s 6 mk, 1 6 k 6 r)
are uniquely determined from the given initial values
x0, . . . , x`−1.

Proof : By a well-known theorem about linear dif-
ference equations with constant coefficients (see e.g.,
Chapter 2 of Ref. 12) the general solution of (16) is

f(n) =
(
a11 + · · ·+ a1,m1

nm1−1
)
Rn1 + · · ·

+
(
ar1 + · · ·+ ar,mrn

mr−1
)
Rnr ,

which then yields the general solution of (15) as the
one in (19). �
As illustrations, we work out closed form solutions of
the two simplest cases followed by that of the general
case.

Corollary 3 Let the notation be as in Corollary 2. If
all the roots of the characteristic polynomial C(X)
are simple, then the solution of (15) is

xn = Pc(n) exp (b1R
n
1 + · · ·+ b`R

n
` ),
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with the coefficients bj given by

bj = Dj/D (j = 1, . . . , `),

where

D : =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
R1 R2 · · · R`
R2

1 R2
2 · · · R2

`
...

...
...

R`−11 R`−12 · · · R`−1`

∣∣∣∣∣∣∣∣∣∣∣
=

∏
16s<t6`

(Rs −Rt)

and Dj denotes the determinant obtained from
D by replacing the jth column by the vector
( Log(x0/Pc(0)), . . . ,Log(x`−1/Pc(`− 1)) )

T

where Log denotes the principal branch of the
complex logarithmic function.

Corollary 4 Let the notation be as in Corollary 2. If
the characteristic polynomial C(X) has only a single
root R with multiplicity `, then the solution of (4) is

xn = Pc exp
(
Rn(d0 + d1n+ · · ·+ d`−1n

`−1)
)
,

with the coefficients dj given by

dj = Dj/D (j = 0, . . . , `− 1),

where

D : =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0
1 1 · · · 1
1 2 · · · 2`−1

...
...

...
...

1 (`− 1) · · · (`− 1)`−1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)(

`−1
2 ) (`− 2)! (`− 1)! · · · 2! 1!

and Dj denotes the determinant obtained from D by
replacing the jth column by the vector

Log(x0/Pc(0))
R−1 Log(x1/Pc(1))

...
R−`+1 Log(x`−1/Pc(`− 1))

 .

Explicit forms of the coefficients aks in the general
closed form solution of Corollary 2 can be obtained
from a much more complicated determinant formula
(see e.g., p. 283 of Ref. 13).

Corollary 5 The solution of (4) is of the form (19)
with the coefficients aks being given by aks = Dks/D
where

D : =
∣∣(−1 + λ)s R−1+λk

∣∣
(k,s),λ

=

r∏
h=1

mh∏
t=1

(
(t− 1)!R−1+th

h−1∏
k=1

(Rh −Rk)mk

)
.

Here the notation is such as to display a typi-
cal term, rows indexed by the ` pairs (k, s) ar-
ranged lexicographically and columns by λ =
1, 2, . . . , `. Dks denotes the determinant obtained
from D by replacing the (k, s) column by the vector
( Log(x0/Pc(0)), . . . ,Log(x`−1/Pc(`− 1)))T.

The next three examples demonstrate that the closed-
form solution of (3) and those in Lemmas 3 and 4 of
Ref. 9 are special cases of our results.

Example 1 Let ` = 2, A1 = 1, A2 = 1, and c = α
so that {Gn} is the sequence of Fibonacci numbers
{Fn}n>0 := {1, 1, 2, . . .}. By Corollary 1, a closed-
form solution of (3) is

xn = α−1β
Fn−1

1 β
Fn−2

2 (n > 2),

where β1, β2 are successively determined from (18).
We have

αx1x0 = α−1βF1
1 βF0

2 = α−1β1β2,

αx2x1 = α−1βF2
1 βF1

2 = α−1β2
1β2,

and so β1 = αx1 and β2 = αx0. Thus the explicit
solution of (3) is

xn = α−1+(Fn−1+Fn−2)x
Fn−1

1 x
Fn−2

0

= α−1+Fn x
Fn−1

1 x
Fn−2

0 (n > 2),

which agrees with Lemma 2 in Ref. 9.

Example 2 Let ` = 3, A1 = 0, A2 = 1, A3 = 1 and
c = 1. The recursive equation to solve is

xn+3 = xn+1xn. (20)

The sequence {Gn} satisfies

0 = Gn+3 −A1Gn+2 −A2Gn+1 −A3Gn

= Gn+3 −Gn+1 −Gn,

and for convenience we take as initial values

G0 = 0, G1 = 1, G2 = 0.
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By Corollary 1, a closed-form solution of (20) is

xn = β
Gn−1

1 β
Gn−2

2 β
Gn−3

3 ,

where β1, β2, β3 are determined from

x1x0 = x3 = βG2
1 βG1

2 βG0
3 = β2

x2x1 = x4 = βG3
1 βG2

2 βG1
3 = β1β3

x3x2 = x5 = βG4
1 βG3

2 βG2
3 = β1β2.

Here, β2 = x0x1, β1 = x2 and β3 = x1 yielding

xn = (x2)
Gn−1 (x0x1)

Gn−2 (x1)
Gn−3

= x
Gn−2

0 x
Gn−2+Gn−3

1 x
Gn−1

2

= x
Gn−2

0 xGn
1 x

Gn−1

2 .

This agrees with Lemma 3 in Ref. 9.

Example 3 Let ` = 3, A1 = 1, A2 = 0, A3 = 1, and
c = 1. The recursive equation to solve is

xn+3 = xn+2xn. (21)

The sequence {Gn} satisfies

0 = Gn+3 −A1Gn+2 −A2Gn+1 −A3Gn

= Gn+3 −Gn+2 −Gn,

and we take as initial values G0 = 0, G1 = 0, G2 =
1. By Corollary 1, the solution of (21) is xn =

β
Gn−1

1 β
Gn−2

2 β
Gn−3

3 , where β1, β2, β3 satisfy

x2x0 = x3 = βG2
1 βG1

2 βG0
3 = β1

x3x1 = x2x1x0 = x4 = βG3
1 βG2

2 βG1
3 = β1β2

x4x2 = x22x1x0 = x5 = βG4
1 βG3

2 βG2
3 = β1β2β3.

Here, β1 = x2x0, β2 = x1, and β3 = x2 yielding

xn = (x2x0)
Gn−1 x

Gn−2

1 x
Gn−3

2 = x
Gn−1

0 x
Gn−2

1 xGn
2 .

This agrees with Lemma 4 in Ref. 9.

Next, we will give a solution of (4) in a slightly
simpler form than the one in (5).

Corollary 6 Let the notation be as in Corollary 1. Let
{Gn} be the unique sequence satisfying

Gn+` −A1Gn+`−1 −A2Gn+`−2 − · · · −A`Gn = 0,

with initial values

G0 = G1 = · · · = G`−2 = 0, G`−1 = 1. (22)

Then the solution of (15) when n > ` is

xn = cBnx
A1Gn−1+···+A`Gn−`

`−1

·xA2Gn−1+···+A`Gn−`+1

`−2

· · ·

·xA`−1Gn−1+A`Gn−2

1

·xA`Gn−1

0 ,

where the sequence {Bn} is as defined in (6).

Proof : In (17) we express all the βj’s in terms of the
initial values x0, . . . , x`−1 neglecting the coefficient
term for the time being as this term is more easily
computed via (4). This causes no harm due to the
uniqueness of the solution. Because of the chosen ini-
tial values (22), the sequence {Gn} satisfies no similar
recurrence of order lower than ` and the explicit form
(17) together with the system (18) continue to hold
with the sequence {Gn} in place of {Gn}. The choice
of the initial values (22) also enables us to easily
obtain the βj’s from the system (18) successively as

βj = κ x
Aj

`−1 x
Aj+1

`−2 . . . xA`
j−1 (j = 1, . . . , `),

where κ denotes the coefficient term independent of
the initial values x0, . . . , x`−1 and may change from
step to step. Substituting these values of βj into (17),
we get

xn = (κ′)(xA1

`−1x
A2

`−2 · · ·x
A`
0 )Gn−1

· (xA2

`−1x
A3

`−2 · · ·x
A`
1 )Gn−2 · · · (xA`

`−1)
Gn−`

= (κ′)x
A1Gn−1+···+A`Gn−`

`−1 x
A2Gn−1+···+A`Gn−`+1

`−2

· · ·xA`−1Gn−1+A`Gn−2

1 x
A`Gn−1

0 .

To determine the coefficient term, we use (4) succes-
sively starting with

x` = cxA1

`−1x
A2

`−2 · · ·x
A`−1

1 xA`
0 .

This is the coefficient term in x` = c = cB` . Next,
from

x`+1 = cxA1

` xA2

`−1 · · ·x
A`−1

2 xA`
1

= c (c · term in xj)
A1 (term in xj)

= c1+A1 (term in xj) .

This is the coefficient term in

x`+1 = c1+A1 = cB`+1 .

The general case follows at once by induction. �
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We indicate how the two rational recursive equa-
tions considered by Li-Zhu2 and two further ones
considered by Rhouma9 can be easily transformed
into the form treated in our main results. We start with
the two equations in Ref. 2,

xn+3 =
a+ xn+2xn
xn+2 + xn

(n = 0, 1, 2, . . .), (23)

xn+3 =
a+ xn+1xn
xn+1 + xn

(n = 0, 1, 2, . . .), (24)

where a ∈ [0,∞) and the initial values x0, x1, and x2
are positive. Rewriting (23) and (24), respectively, as(

xn+3 −
√
a

xn+3 +
√
a

)
=

(
xn+2 −

√
a

xn+2 +
√
a

)(
xn −

√
a

xn +
√
a

)
,(

xn+3 −
√
a

xn+3 +
√
a

)
=

(
xn+1 −

√
a

xn+1 +
√
a

)(
xn −

√
a

xn +
√
a

)
,

and letting Un := xn−
√
a

xn+
√
a

, the above equations
become, respectively,

Un+3 = Un+2Un, Un+3 = Un+1Un,

whose closed-form solutions are deducible from
Corollary 1 and from which their global asymptotic
stability can be analysed.

Next, we consider two more rational recursive
equations taken from sections 4 and 5.2 of Ref. 9
starting with

yn+2 =
yn−k+1yn−j+1 + a

yn−k+1 + yn−j+1
, (25)

where a > 0, and k, j ∈ N, k > j. Equation (25) is
equivalent to(
yn+2 −

√
a

yn+2 +
√
a

)
=

(
yn−k+1 −

√
a

yn−k+1 +
√
a

)(
yn−j+1 −

√
a

yn−j+1 +
√
a

)
.

Letting Un := (yn −
√
a)/(yn +

√
a), the above

equation becomes Un+2 = Un−k+1Un−j+1, or
Un+k+1 = UnUn+k−j , which is of the desired form.

Now for our final application, consider the ratio-
nal recursive equation

xn+k+1 = a
xn+k − xn
xn + a

(n > 0), (26)

where k ∈ N, k > 1, a ∈ R and x0, . . ., xk are given
initial values none of which is equal to −a. Via the
substitution xn = a(yn − 1), (26) is equivalent to

a(yn+k+1 − 1) = a
a(yn+k − 1)− a(yn − 1)

a(yn − 1) + a
,

or yn+k+1 = yn+ky
−1
n , which is of the desired form.

CONTINUED FRACTIONS

The case ` = 2 of Theorem 1 is closely connected
with continued fractions and we will show that the
exponents in the solution (11) can be read off from
the numerators and denominators of convergents of a
specific continued fraction. We give the case ` = 2 of
Corollary 1 with the βj’s explicitly computed.

Corollary 7 Let c, h1, h2 be three non-zero complex
constants. Let {Gn}n>0 be the unique sequence
satisfying

Gn − h1Gn−1 − h2Gn−2 = 0 (n > 2), (27)

with given initial values G0, G1 chosen so that B :=
G1G−1 − G2

0 6= 0, where G−1 := G1−h1G0

h2
. If

{xn}n>0 is a sequence of complex numbers satisfying
the recursive equation

xn = cxh1
n−1 x

h2
n−2 (n > 2), (28)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, then the
solution of (28) is given by

xn = Pc(n)

(
x0

Pc(0)

)G1Gn−1−G0Gn
B

·
(

x1
Pc(1)

)G−1Gn−G0Gn−1
B

(n > 2),

where Pc(n) is a particular solution of (28).

A particular case of Corollary 7 where c = 1, G0 = 0,
G1 = 1 gives rise to the following corollary.

Corollary 8 Let h1, h2 be two non-zero complex
constants. Let {Gn}n>0 be the unique sequence
satisfying

Gn − h1Gn−1 − h2Gn−2 = 0 (n > 2),

with given initial values G0 = 0, G1 = 1. If
{xn}n>0 is a sequence of complex numbers satisfying
the recursive equation

xn = xh1
n−1 x

h2
n−2 (n > 2), (29)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, then the
solution of (29) is given by

xn = x
h2Gn−1

0 xGn
1 (n > 2).
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Next, let us review some relevant facts about con-
tinued fractions14, 15. Define the sequence {Sn}n>1

by

Sn = b0 +
a1

b1 +
a2

b2 +
a3

b3+. . .
+
an
bn

: = b0 + [a1/b1, a2/b2, . . . , an/bn] (n > 1).

If the sequence {Sn}n>1 converges with respect to
some appropriate topology, we write

S∞ : = lim
n→∞

Sn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .
= b0 + [a1/b1, a2/b2, . . .] (30)

and call it a (non-regular) continued fraction of the
element it represents. Sn is called the nth convergent
of the continued fraction (30). If

a1 = a2 = · · · = 1 and bi ∈ N (i > 1),

then (30) is customarily denoted by [b1, b2, b3, . . .].
Let

p−1 = 1, p0 = b0, q−1 = 0, q0 = 1, (31)

and define pn, qn as the numerator and denominator
in the expression

pn
qn

:= Sn (n > 1). (32)

It is well-known (see e.g., Chapter 2 of Ref. 14 or
Chapter 1 of Ref. 15) that the sequences {pn}n>1 and
{qn}n>1 satisfy the same second order linear recur-
rence relation (but with different initial conditions);
for n > 1,

pn = bnpn−1 + anpn−2, (33)
qn = bnqn−1 + anqn−2. (34)

Combining the two concepts of continued frac-
tions and recursive equations in the case ` = 2 of
Theorem 1, we obtain the following theorem.

Theorem 2 Let h1, h2 be two functions from N0 to C
with h1(n)h2(n) 6= 0 for all n. Let

p0 = h1(0), p1 = h1(0)h1(1) + h2(1),

q0 = 1, q1 = h1(1), and let pn and qn be the
numerator and denominator of the finite continued
fraction

h1(0) + [h2(1)/h1(1), . . . , h2(n)/h1(n)] . (35)

If {xn}n>0 is a sequence of complex numbers satisfy-
ing the recursive equation

xn = x
h1(n)
n−1 x

h2(n)
n−2 (n > 2), (36)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, then the
solution of (36) is given by

xn = x
G(1)

n
0 x

G(2)
n

1 (n > 2), (37)

where

G(1)
n =

{h2(1) + h1(0)h1(1)}qn − h1(1)pn
h2(1)

,

G(2)
n =

pn − h1(0)qn
h2(1)

.

Proof : We obtain the solution (37) by mathematical
induction. �

Remark 3 In the same manner as in Remarks 1 and
2, the following formal manipulation could be used
to get the form of solutions. Taking the logarithm
of the equation (36) turns it into the linear difference
equation

log xn = h1(n) log xn−1+h2(n) log xn−2 (n > 2).
(38)

Let
{
log x

(p)
n

}
n>0

and
{
log x

(q)
n

}
n>0

be two se-

quences satisfying the same recurrence (38) but with
initial conditions

h1(0) = log x
(p)
0 , h1(0)h1(1) + h2(1) = log x

(p)
1 ,

1 = log x
(q)
0 , h1(1) = log x

(q)
1 .

Thus log x
(p)
n and log x

(q)
n are simply the numerator

pn, and the denominator qn, of the finite continued
fraction (35). Theorem 1 gives us a general solution
of (36) as

xn = x
G(1)

n
0 x

G(1)
n

1 . (39)

Taking the principal logarithm of the equation (39),
we get

pn := log x(p)n = G(1)
n log x

(p)
0 +G(2)

n log x
(p)
1

= h1(0)G
(1)
n + (h1(0)h1(1) + h2(1))G

(2)
n , (40)
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and

qn := log x(q)n = G(1)
n log x

(q)
0 +G(2)

n log x
(q)
1

= G(1)
n + h1(1)G

(2)
n . (41)

Solving (40) and (41), the desired result follows.

If the coefficients functions hi(n) in Theorem 2
are constants, using the same proof as in Theorem 2 as
well as the result of Corollary 8, we have the following
theorem.

Theorem 3 Let h1, h2 be two nonzero complex num-
bers. If {xn}n>0 satisfies the recursive equation

xn = xh1
n−1 x

h2
n−2 (n > 2), (42)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, then the
solution of (42) is given by

xn =
(
x
−h1pn+(h2

1+h2)qn
0 xpn−h1qn

1

)1/h2

(n > 2),

where p0 = h1, p1 = h21 + h2, q0 = 1, q1 = h1, and
pn and qn are the numerator and denominator of the
finite continued fraction

h1 + [h2/h1, . . . , h2/h1] (n > 2)

consisting of the same fraction h2/h1 repeated n
times.

We now apply the results of Theorems 2 and 3
to derive solutions of a number of recursive equations
in terms of numerators and denominators of specific
continued fractions.

Example 4 If h1(n) = 1 = h2(n), then the solution
of the rational recursive equation

xn = xn−1xn−2 (n > 2)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn =
(
x−pn+2qn
0 xpn−qn1

)
(n > 2),

where p0 = 1, p1 = 2, q0 = 1, q1 = 1, and pn and
qn(n > 2) are the numerator and denominator of the
finite continued fraction

1 + [1/1, 1/1, . . . , 1/1]︸ ︷︷ ︸
n terms

.

In this case, sequences satisfying (27) include the
sequence of Fibonacci numbers and the sequence of
Lucas numbers, which contains the work of Rhouma9.

Example 5 If h1(n) = x, h2(n) = 1, then the
solution of the recursive equation

xn = xxn−1 xn−2 (n > 2)

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn = x
−xpn+(x2+1)qn
0 xpn−xqn1 (n > 2),

where p0 = x, p1 = x2 + 1, q0 = 1, q1 = x, and pn
and qn (n > 2) are the numerator and denominator of
the finite continued fraction

x+ [1/x, 1/x, . . . , 1/x]︸ ︷︷ ︸
n terms

.

In this case, sequences satisfying (27) include the
sequence of Fibonacci polynomials and the sequence
of Lucas polynomials.

Example 6 If h1(n) = 2x, h2(n) = −1, then the
solution of the recursive equation

xn = x2xn−1x
−1
n−2 (n > 2),

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn = x
2xpn−(4x2−1)qn
0 x−pn+2xqn

1 (n > 2),

where p0 = 2x, p1 = 4x2 − 1, q0 = 1, q1 =
2x, and pn and qn, (n > 2) are the numerator and
denominator of the finite continued fraction

2x+ [−1/2x,−1/2x, . . . ,−1/2x]︸ ︷︷ ︸
n terms

.

In this case, sequences satisfying (27) include the
sequence of Chebyshev polynomials.

Example 7 If h1(n) = 2n + 3 − x, h2(n) = −(n +
1)2, then the solution of the recursive equation

xn = x2n+3−x
n−1 x

−(n+1)2

n−2 (n > 2),

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn = x
1
4 ((5−x)pn−(x

2−8x+11)qn)
0 x

1
4 ((3−x)qn−pn)
1 ,

where p0 = 3 − x, p1 = 11 − 8x + x2, q0 = 1,
q1 = 5 − x, and pn and qn(n > 2) are the numerator
and denominator of the finite continued fraction

3− x+ [−4/(5− x),− 9/(7− x), . . .
. . . ,−(n+ 1)2/(2n+ 3− x)].

In this case, sequences satisfying (8) include the
sequence of shifted Laguerre polynomials.
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Example 8 If h1(n) = 2x, h2(n) = −2(n+ 1), then
the solution of the recursive equation

xn = x2xn−1x
−2(n+1)
n−2 (n > 2),

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn = x
1
2 (xpn+(2−2x2)qn)
0 x

1
4 (2xqn−pn)
1 (n > 2),

where p0 = 2x, p1 = 4x2 − 4, q0 = 1, q1 = 2x, and
pn and qn (n > 2) are the numerator and denominator
of the finite continued fraction

2x+ [−4/2x,−6/2x, . . . ,−2(n+ 1)/2x] .

In this case, sequences satisfying (8) include the
sequence of shifted Hermite polynomials.

Example 9 If h1(n) = 2n+3
n+2 x, h2(n) = −(n+1)

n+2 ,
then the solution of the recursive equation

xn = x
(2n+3)x/(n+2)
n−1 x

−(n+1)/(n+2)
n−2 (n > 2),

with given initial values x0, x1 chosen so that all
remaining xn are uniquely well-defined, is given by

xn = x
1
4 (10xpn−(15x

2−4)qn)
0 x

1
4 (9xqn−6pn)
1 (n > 2),

where p0 = 3
2x, p1 = 5

2x
2 − 2

3 , q0 = 1, q1 = 5
3x, and

pn and qn (n > 2) are the numerator and denominator
of the finite continued fraction

3x

2
+

[
−2
3

/5x

3
,
−3
4

/7x

4
, . . . ,

−(n+ 1)

n+ 2

/ (2n+ 3)x

n+ 2

]
.

In this case, sequences satisfying (8) include the
sequence of shifted Legendre polynomials.
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