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ABSTRACT: It is well-known that a square matrix A over a commutative ring R with identity is invertible over R if
and only if detA is a multiplicatively invertible element of R. Additively inverse commutative semirings with zero 0 and
identity 1 are a generalization of commutative rings with identity. In this paper, we generalize the above known result as
follows. An n× n matrix A over an additively inverse commutative semiring S = (S,+, ·) with 0, 1 is invertible over S if
and only if det+ A+ (det−A)′ is multiplicatively invertible in S and AijAik [AjiAki] is additively invertible in S for all
i, j, k ∈ {1, . . . , n} with j 6= k where det+ A and det−A are the positive determinant and the negative determinant of A,
respectively, and (det−A)′ is the unique inverse of det−A in the inverse semigroup (S,+).
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INTRODUCTION

A semiring is a triple (S,+, ·) such that (S,+) and
(S, ·) are semigroups and · is distributive over +.
A semiring (S,+, ·) is called commutative if it is
both additively and multiplicatively commutative. An
element 0 ∈ S is called a zero of (S,+, ·) if x + 0 =
0 + x = x and x · 0 = 0 · x = 0 for all x ∈ S.
By an identity of (S,+, ·) we mean an element 1 of
S such that x · 1 = 1 · x = x for all x ∈ S. A
semiring (S,+, ·) is called additively inverse if (S,+)
is an inverse semigroup, i.e., for each x ∈ S, there
is a unique x′ ∈ S such that x = x + x′ + x and
x′ = x′ + x + x′. Additively inverse semirings
were studied by Karvellas1. We see that an additively
inverse commutative semiring with zero and identity is
a generalization of a commutative ring with identity.

Matrices over semirings have been widely stud-
ied. One of the most interesting topics in this area
is determining the invertible matrices over a specific
semiring. Invertible matrices over semirings of vari-
ous types have been studied. Luce2 characterized the
invertible matrices over a Boolean algebra of at least 2
elements. He showed that they must be orthogonal
matrices. Rutherford3 showed that a square matrix
over a Boolean algebra of 2 elements is invertible
if and only if it is a permutation matrix. The in-
vertible matrices over a special commutative antiring
were characterized by Tan4. Dolzand and Oblak5

generalized Tan’s result to an arbitrary commutative

antiring. Semifields are a generalization of fields. The
invertible matrices over a semifield S which is not a
field were investigated by Saranrakskul et al6. It was
shown that a square matrix A over S is invertible if
and only if every row and every column of A contains
exactly one non-zero element. It is well-known that
for a square matrix A over a field F , A is invertible
over F if and only if detA 6= 0. The following
theorem is a generalization of this fact.

Theorem 1 (Hoffman and Kunze7) Let R be a com-
mutative ring with identity. A square matrix A over
R is invertible over R if and only if detA is a
multiplicatively invertible element of R.

In this paper, we propose a theorem which gener-
alizes Theorem 1 to some semirings. Our purpose is to
characterize the invertible matrices over an additively
inverse commutative semiring with zero and identity
in terms of the positive and negative determinants.

PRELIMINARIES

An element x of a semiring (S,+, ·) with zero 0
[identity 1] is said to be additively [multiplicatively]
invertible if x+ y = y+ x = 0 [x · y = y · x = 1] for
some y ∈ S. Such an element y is obviously unique.

The following properties of an additively inverse
semiring given by Karvellas1 will be used.

Proposition 1 (Karvellas1) If (S,+, ·) is an addi-
tively inverse semiring, then for all x, y ∈ S,
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(i) (x′)′ = x,

(ii) (x+ y)′ = y′ + x′,

(iii) (xy)′ = x′y = xy′,

(iv) x′y′ = xy.

Also, the following fact is clearly seen.

Proposition 2 If (S,+, ·) is an additively inverse
semiring with zero 0 and x, y ∈ S are such that
x+ y = 0, then y = x′.

We give some examples of additively inverse
commutative semirings with zero and identity which
are not commutative rings with identity as follows.

Example 1 Define x ⊕ y = max{x, y} and x � y =
min{x, y} for all x, y ∈ [0, 1]. Then ([0, 1],⊕,�)
and ([0, 1],⊕, ·) are clearly additively inverse commu-
tative semirings with zero 0 and identity 1 which are
not rings where · is the usual multiplication. These
semirings may be written as ([0, 1],max,min) and
([0, 1],max, ·). Notice that for x ∈ [0, 1], x′ = x
in these semirings.

If R is a ring, then ([0, 1],max,min) × R and
([0, 1],max, ·) × R under coordinatewise operations
are both additively inverse semirings with zero (0, 0)
for which (x, y)′ = (x,−y) for all x ∈ [0, 1] and
y ∈ R. Also, these semirings are additively com-
mutative. Moreover, if R is a commutative ring with
identity 1, then these two direct products of semirings
are additively inverse commutative semirings having
(0, 0) and (1, 1) as its zero and identity, respectively.

In fact, a commutative inverse semigroup is a
union of disjoint abelian groups8. Therefore if
(S,+, ·) is an additively inverse commutative semir-
ing, then (S,+) is a union of disjoint abelian groups.
In Example 1, we have that [0, 1]×R = ∪̇ {{a}×R |
a ∈ [0, 1]} and {a} ×R is an abelian group under the
addition of the direct products ([0, 1],max,min)×R
and ([0, 1],max, ·) × R. Here ∪̇ means a disjoint
union.

Let S be a commutative semiring with zero 0 and
identity 1 6= 0, n a positive integer and Mn(S) the
set of all n × n matrices over S. Then under usual
matrix addition and matrix multiplication, Mn(S) is
an additively commutative semiring. The zero matrix
of order n and the identity matrix of order n over S
are the zero and the identity of Mn(S), respectively.
If n > 1, then Mn(S) is not multiplicatively commu-
tative. For A ∈ Mn(S) and i, j ∈ {1, . . . , n}, let Aij
be the entry of A in the ith row and jth column. The
transpose of A will be denoted by AT. Then for all A,

B ∈ Mn(S), (AT)T = A, (A + B)T = AT + BT,
and (AB)T = BTAT. A matrix A ∈ Mn(S) is
called invertible over S if AB = BA = In for some
B ∈ Mn(S) where In is the identity matrix of order
n over S. Notice that B is also unique. It is clear that
for A ∈ Mn(S), A is invertible over S if and only if
AT is invertible over S.

Let Sn be the symmetric group of degree n > 2,
An the alternating group of degree n, and Bn = Sn r
An, that is,

An = {σ ∈ Sn | σ is an even permutation },
Bn = {σ ∈ Sn | σ is an odd permutation }.

For A ∈Mn(S), the positive determinant and the
negative determinant ofA are defined, respectively, as
follows:

det+A =
∑
σ∈An

(
n∏
i=1

Aiσ(i)

)
,

det−A =
∑
σ∈Bn

(
n∏
i=1

Aiσ(i)

)

(see Ref. 9). We can see that

An = {σ−1 | σ ∈ An} and Bn = {σ−1 | σ ∈ Bn},

det+In = 1 and det−In = 0 and for A ∈Mn(S),

det+(AT) =
∑
σ∈An

(
n∏
i=1

AT
iσ(i)

)

=
∑
σ∈An

(
n∏
i=1

Aσ(i),i

)

=
∑
σ∈An

(
n∏
i=1

Aσ−1(i),i

)

=
∑
σ∈An

(
n∏
i=1

Aσ−1(i),σ(σ−1(i))

)

=
∑
σ∈An

(
n∏
i=1

Aiσ(i)

)
= det+A.

It can be shown similarly that det−(AT) = det−A.
Notice that if R is a commutative ring with identity
and A ∈Mn(R), then detA = det+A− det−A.

Reutenauer and Straubing9 gave the following
significant results.

Theorem 2 (Reutenauer and Straubing9) Let S be a
commutative semiring with zero and identity and n a
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positive integer > 2. If A, B ∈ Mn(S), then there is
an element r ∈ S such that

det+(AB) = (det+A)(det+B) + (det−A)(det−B) + r,

det−(AB) = (det+A)(det−B) + (det−A)(det+B) + r.

Theorem 3 (Reutenauer and Straubing9) Let S be a
commutative semiring with zero and identity and n a
positive integer. For A, B ∈ Mn(S), if AB = In,
then BA = In.

INVERTIBLE MATRICES OVER ADDITIVELY
INVERSE COMMUTATIVE SEMIRINGS WITH
0, 1

Throughout, let n be a positive integer greater than 1.
To characterize invertible matrices over an additively
inverse commutative semiring with 0, 1, the following
lemmas are needed. Recall that |Sn| = n!, |An| =
n!/2 = |Bn|, and σAn = Bn whenever σ ∈ Bn where
|X| stands for the cardinality of a set X .

Lemma 1 For distinct i, j ∈ {1, 2, . . . , n}, σ 7→
(σ(i), σ(j))σ is a bijection from An onto Bn.

Proof : Let i, j ∈ {1, . . . , n} be distinct. If σ ∈ An,
then (σ(i), σ(j))σ ∈ Bn, so {(σ(i), σ(j))σ | σ ∈
An} ⊆ Bn. Assume that σ1, σ2 ∈ An such that
σ1 6= σ2.
Case 1: (σ1(i), σ1(j)) = (σ2(i), σ2(j)). By the can-
cellation property of Sn, we have (σ1(i), σ1(j))σ1 6=
(σ2(i), σ2(j))σ2.
Case 2: (σ1(i), σ1(j)) 6= (σ2(i), σ2(j)). Then
{σ1(i), σ1(j)} 6= {σ2(i), σ2(j)}. We may assume
without loss of generality that σ1(i) /∈ {σ2(i), σ2(j)}.
Then σ1(i) 6= σ2(i), so

(σ1(i), σ1(j))σ1(j) = σ1(i)

6= σ2(i)

= (σ2(i), σ2(j))σ2(j).

This implies that (σ1(i), σ1(j))σ1 6=
(σ2(i), σ2(j))σ2. This shows that |{(σ(i), σ(j))σ |
σ ∈ An}| = |An|. But since |An| = |Bn| and
{(σ(i), σ(j))σ | σ ∈ An} ⊆ Bn, the desired result
follows. �

Lemma 2 Let S be a commutative semiring with zero
0 and identity 1 and A ∈ Mn(S). If A is invertible
over S, then AijAik is additively invertible in S for
all i, j, k ∈ {1, . . . , n} with j 6= k.

Proof : First, we note that if a1, . . ., at ∈ S are
additively invertible in S, then so is c1a1 + c2a2 +
· · · + ctat for all c1, . . ., ct ∈ S. Let B ∈ Mn(S)

be such that AB = BA = In. Then for distinct p,
q ∈ {1, . . . , n},

0 = (BA)pq =

n∑
l=1

BplAlq.

This shows that BplAlq are additively invertible in S
for all l, p, q ∈ {1, . . . , n} with p 6= q. Let i, j,
k ∈ {1, . . . , n} be such that j 6= k. Then

AijAik = (AijAik)(AB)ii

= AijAik

( n∑
l=1

AilBli

)
= A2

ik(BkiAij) +

n∑
l=1
l 6=k

AijAil(BliAik),

so by the above results, AijAik is additively invertible
in S. �

Theorem 4 Let S be an additively inverse commu-
tative semiring with zero 0 and identity 1 and A ∈
Mn(S). Then A is invertible over S if and only if

(i) det+A + (det−A)′ is multiplicatively invertible
in S and

(ii) AijAik is additively invertible in S for all i, j,
k ∈ {1, . . . , n} with j 6= k.

Proof : Assume that there exists a matrix B ∈Mn(S)
such that AB = BA = In. By Theorem 2, there
exists an element r ∈ S such that

det+(AB) = (det+A)(det+B) + (det−A)(det−B) + r,

det−(AB) = (det+A)(det−B) + (det−A)(det+B) + r.

But since det+(AB) = det+In = 1 and
det−(AB) = det−In = 0, it follows that

1 = (det+A)(det+B) + (det−A)(det−B) + r,
(1)

0 = (det+A)(det−B) + (det−A)(det+B) + r.
(2)

From (2) and Proposition 2, we have that

r =
(
(det+A)(det−B) + (det−A)(det+B)

)′
.

Proposition 1(ii) and (iii) yield the following result:

r = (det+A)(det−B)′ + (det−A)′(det+B). (3)
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From (1) and (3) and Proposition 1(iv), we have

1 = (det+A)(det+B) + (det−A)(det−B)+

(det+A)(det−B)′ + (det−A)′(det+B)

= (det+A)(det+B) + (det−A)′(det−B)′+

(det+A)(det−B)′ + (det−A)′(det+B)

= (det+A+ (det−A)′)(det+B + (det−B)′).

Hence det+A + (det−A)′ is multiplicatively in-
vertible, so (i) holds. Condition (ii) follows from
Lemma 2.

Conversely, assume that (i) and (ii) hold. By (i),
x(det+A+ (det−A)

′
) = 1 for some x ∈ S. Also, by

(ii) and Proposition 2, AijAik+(AijAik)
′ = 0 for all

i, j, k ∈ {1, . . . , n} with j 6= k. Define B ∈ Mn(S)
by

Bij = x

 ∑
σ∈An

σ(j)=i

( n∏
k=1
k 6=j

Akσ(k)

)
+

∑
σ∈Bn

σ(j)=i

( n∏
k=1
k 6=j

Akσ(k)

)′
for all i, j ∈ {1, . . . , n}. Here the empty sum is 0. To
show that AB = In, let i, j ∈ {1, . . . , n}. Then

(AB)ij =

n∑
t=1

AitBtj

=

n∑
t=1

Aitx

 ∑
σ∈An

σ(j)=t

( n∏
k=1
k 6=j

Akσ(k)

)
+

∑
σ∈Bn

σ(j)=t

( n∏
k=1
k 6=j

Akσ(k)

)′

= x

 n∑
t=1

( ∑
σ∈An

σ(j)=t

Aiσ(j)
( n∏
k=1
k 6=j

Akσ(k)
))

+

n∑
t=1

( ∑
σ∈Bn

σ(j)=t

Aiσ(j)
( n∏
k=1
k 6=j

Akσ(k)
)′)
 . (4)

But since

An =

·⋃
t∈{1,...,n}

{σ ∈ An | σ(j) = t}

and

Bn =

·⋃
t∈{1,...,n}

{σ ∈ Bn | σ(j) = t},

we deduce that

n∑
t=1

 ∑
σ∈An

σ(j)=t

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)
=
∑
σ∈An

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)
,

n∑
t=1

 ∑
σ∈Bn

σ(j)=t

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)′
=
∑
σ∈Bn

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)′
.

These facts and (4) yield

(AB)ij = x

 ∑
σ∈An

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)
+

∑
σ∈Bn

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)′ . (5)

Case 1: i = j. Then∑
σ∈An

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)
=
∑
σ∈An

( n∏
k=1

Akσ(k)

)
= det+A,∑

σ∈Bn

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)
=
∑
σ∈Bn

( n∏
k=1

Akσ(k)

)
= det−A.

Since x(det+A + (det−A)
′
) = 1, by these results

and (5), we have (AB)ii = 1.
Case 2: i 6= j. If n = 2, then from (5), (ii) and
Proposition 2, we have

(AB)ij = x
(
AijAii +AiiA

′
ij

)
= x

(
AijAii + (AiiAij)

′)
= 0
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Next, assume that n > 2. Then∑
σ∈An

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)

=
∑
σ∈An

Aiσ(j)Aiσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

)
, (6)

∑
σ∈Bn

Aiσ(j)

( n∏
k=1
k 6=j

Akσ(k)

)′

=
∑
σ∈Bn

Aiσ(j)Aiσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

)′

=
∑
σ∈Bn

Aiσ(j)A
′
iσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

)
(7)

Note that (7) is obtained from Proposition 1(iii).
It follows from (5), (6), and (7) that

(AB)ij = x

 ∑
σ∈An

Aiσ(j)Aiσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

)
+

∑
σ∈Bn

Aiσ(j)A
′

iσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

) .

For each σ ∈ An, let σ = (σ(i), σ(j))σ ∈ Bn. It then
follows from Lemma 1 that

(AB)ij = x

 ∑
σ∈An

Aiσ(j)Aiσ(i)

( n∏
k=1
k 6=i,j

Akσ(k)

)
+

∑
σ∈An

(Aiσ(j)Aiσ(i))
′
( n∏
k=1
k 6=i,j

Akσ(k)

) .

(8)

But since for σ ∈ An, σ(i) = σ(j), σ(j) = σ(i),
and σ(k) = σ(k) for all k ∈ {1, . . . , n} r {i, j}, we
deduce from (8) that

(AB)ij = x
( n∏
k=1
k 6=i,j

Akσ(k)

)[ ∑
σ∈An

(
Aiσ(j)Aiσ(i)

+ (Aiσ(i)Aiσ(j))
′
)]

Since σ(i) 6= σ(j) for all σ ∈ An, by (ii) and
Proposition 2, Aiσ(j)Aiσ(i) + (Aiσ(i)Aiσ(j))

′
= 0.

Hence (AB)ij = 0. This proves that AB = In. By
Theorem 3, BA = In, so A is invertible over S. �

The following corollary is a direct consequence
of Theorem 4 and the facts that det+A = det+(AT),
det−A = det−(AT), andA is invertible over S if and
only if AT is invertible over S.

Corollary 1 Let S be an additively inverse commuta-
tive semiring with 0, 1 and A ∈ Mn(S). Then A is
invertible over S if and only if

(i) det+A + (det−A)
′

is multiplicatively invertible
in S and

(ii) AjiAki is additively invertible in S for all i, j,
k ∈ {1, . . . , n} with j 6= k.

We can see that Theorem 1 is a direct conse-
quence of Theorem 4. Let us discuss the invertible
matrices in Mn(S) where S is either the semiring
([0, 1],max,min) or the semiring ([0, 1],max, ·) in
Example 1 by making use of Theorem 4 and Corol-
lary 1. Assume that A ∈ Mn(S) is an invertible
matrix. We can see that 1 is the only multiplicatively
invertible element and 0 is the only additively invert-
ible element in S. In addition, for x, y ∈ S, xy = 0 if
and only if x = 0 or y = 0, and x′ = x for all x ∈ S.
We also have that for x, y ∈ S, xy = 1 if and only
if x = y = 1. Since A is invertible, A cannot have a
zero row or a zero column. It follows from Theorem 4
and Corollary 1 that det+A + (det−A)′ = 1 and
AijAik = 0 = AjiAki for all i, j, k ∈ {1, . . . , n}
with j 6= k. From the above facts and the last
equalities, we deduce that each row and each column
of A contains exactly one non-zero element. Then
for each i ∈ {1, . . . , n}, there exists a unique σ(i) ∈
{1, . . . , n} such that Aiσ(i) 6= 0, and so σ(i) 6= σ(j)
if i 6= j. Then σ ∈ Sn. It is clearly seen that if
σ ∈ An, then det+A = A1σ(1)A2σ(2) · · ·Anσ(n) and
det−A = 0, and if σ ∈ Bn, then det+A = 0 and
det−A = A1σ(1)A2σ(2) · · ·Anσ(n). It follows that
A1σ(1)A2σ(2) · · ·Anσ(n) = 1, and hence Aiσ(i) = 1
for all i ∈ {1, . . . , n}. We then deduce that every
entry of A is either 0 or 1, and each row and each
column of A contains exactly one 1, i.e., A is a
permutation matrix.

If A is a permutation matrix in Mn(S) then
AAT = ATA = In. We conclude that for A ∈
Mn(S), A is invertible over S if and only if A is a
permutation matrix.
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