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ABSTRACT: B-splines have been widely used to approximate solutions to differential equations. In this paper, a class of
singular boundary value problems are treated by using extended cubic uniform B-spline approximations. The advantage
of using an extended cubic B-spline rather the ordinary B-spline is that it introduces one additional free parameter. For a
number of examples where exact solutions are known, the solutions obtained using the extended B-splines are found to be
better approximations than those obtained using ordinary B-splines.
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INTRODUCTION

Consider the homogeneous second order linear differ-
ential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.

If the functions p(x) and q(x) are both analytic at a
point x = x0, then the point x0 is said to be an ordi-
nary point. Otherwise, x0 is a singular point. A singu-
lar boundary value problem occurs when a differential
equation in a boundary value problem has a singular
point at one boundary1. Such problems frequently
arise in areas such as thermal explosions, electro-
hydrodynamics, chemical reactions, and atomic and
nuclear physics2–4.

Russell and Shampine5 have discussed a classical
three-point finite difference scheme for solving sin-
gular boundary value problems which gives good ap-
proximation solutions with a moderate step size. Ravi
Kanth and Reddy have described a fourth-order finite
difference method6 and also the cubic approximation7

for a class of singular boundary problems. Both
methods can produce good results but at the cost of a
high order of finite differencing. For solving the same
problems, third-degree B-splines also approximate the
exact solutions well8. Kumar9 concluded that splines
are a simpler and more practical way to solve singular
boundary problems than finite difference methods.
This provides the motivation for our work on using
extended cubic uniform B-splines for solving singular
boundary value problems. The advantage of using
extended B-spline is that it possesses a free parameter,
λ, to control the global shape parameter.

The series expansion procedure is a popular ap-
proach to remove the singularity at the singular point.
Ravi Kanth and Reddy10 used the Chebyshev econo-
mization near the singularity on (0, δ) and solved the
regular boundary value problem in the interval (δ, 1)
by employing the stable central difference method.
Here, a simple and direct method is applied to evaluate
the limits involving the singularity. By applying
l’Hôpital’s rule, the original differential equation is
modified at the singular point. After the modification
at the singular point, the boundary value problem is
solved by using the extended cubic uniform B-spline.

In this paper, after defining the extended cubic
uniform B-spline, we describe the numerical method
for solving singular boundary value problems. The
efficiency of the method is demonstrated using both
homogeneous and non-homogeneous singular bound-
ary problems.

EXTENDED CUBIC UNIFORM B-SPLINES

Definition 1 The blending function of the extended
cubic uniform B-spline with degree 4, Ei(x), is given
by11

Ei =
1

24h4



4h(1− λ)z3
i + 3λz4

i , x ∈ Ii,
(4− λ)h4+12h3zi+1+6h2(2 + λ)z2

i+1

−12hz3
i+1−3λz4

i+1, x ∈ Ii+1,

(4− λ)h4−12h3zi+3+6h2(2 + λ)z2
i+3

+12hz3
i+3 − 3λz4

i+3, x ∈ Ii+2,

4h(λ− 1)z3
i+4 + 3λz4

i+4, x ∈ Ii+3,
(1)

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.079
http://www.scienceasia.org/2011.html
mailto:joangoh.usm@gmail.com
www.scienceasia.org


80 ScienceAsia 37 (2011)

Table 1 Values of Ei, E′i and E′′i .

xi+1 xi+2 xi+3

Ei (4− λ)/24 (8 + λ)/12 (4− λ)/24
E′i 1/2h 0 −1/2h
E′′i (2 + λ)/2h2 −(2 + λ)/h2 (2 + λ)/2h2

where zi = x−xi, Ij ≡ [xj , xj+1], and the parameter
λ satisfies −8 6 λ 6 1.

To obtain the approximations of the solutions, the
values of Ei(x) and its derivatives at the knots are
needed and these are given in Table 1. Values at other
knots are zero.

Note that when λ = 0, the basis function reduces
to that of the cubic uniform B-spline. Also, as with
the B-spline, the extended cubic uniform B-spline
possesses the convex hull property, symmetry, and
geometric invariability11.

NUMERICAL METHOD

Assume that the singular two-point boundary value
problem is in the form of

y′′(x) +
k

x
y′(x) + r(x)y(x) = f(x), 0 < x < 1,

(2a)
y′(0) = 0, y(1) = β, (2b)

where the parameter k > 1. Due to the singularity
at x = 0, the boundary value problem is modified at
the singular point, then transformed into the following
form by using l’Hôpital’s rule6, 8:

(k + 1)y′′(x) + r(0)y(x) = f(0), for x = 0,

y′′(x) +
k

x
y′(x) + r(x)y(x) = f(x), for x 6= 0.

(3)

Suppose the domain [a, b] of a curve is divided by the
knots xi into n segments [xi, xi+1], i = 0, 1, . . ., n−1
where xi = a + ih, and h = (b − a)/n. Then the
approximate solution of (2a) is12

S(x) =
n−1∑
i=−3

CiEi(x) (4)

where Ci are the unknown real coefficients and Ei(x)
are the basis function of the extended cubic uniform
B-spline. In order to obtain the approximations of (2)
at the point x = xi, we substitute (4) into (2a). This
gives

S′′(x) +
k

x
S′(x) + r(x)S(x) = f(x) (5)

which can be rewritten as

n−1∑
i=−3

CiE
′′
i (x)+

k

x

n−1∑
i=−3

CiE
′
i(x)+r(x)

n−1∑
i=−3

CiEi(x)

= f(x), x = 0, h, 2h, . . ., 1. (6)

A linear system of order (n+1) is obtained. However,
two additional linear equations are needed to obtain
the values of n + 3 variables. Thus (4) is applied in
the boundary conditions (2b) to obtain

n−1∑
i=−3

CiE
′
i(x) = 0 for x = 0,

n−1∑
i=−3

CiEi(x) = β for x = 1.

(7)

Equations (6) and (7) lead to a tridiagonal matrix
system which can be written as

AC = B (8)

where

A =



−12h 0 12h 0 . . . 0
α1 α2 α1 0 . . . 0
0 γ1 γ2 γ3 0 . . . 0

...
. . . . . . . . .

...

0 . . . 0 γ1 γ2 γ3

0 . . . 0 α3 α4 α3


,

C =



C−3

C−2

...

...
Cn−2

Cn−1


, B = 24h2



0
f(x0)

...

...
f(xn)
β


and

α1 = 12(k + 1)(2 + λ) + r(0)(4− λ)h2,

α2 = −24(k + 1)(2 + λ) + 2r(0)(8 + λ)h2,

α3 = h2(4− λ),

α4 = 2h2(8 + λ),

γ1 = 12(2 + λ) +
k

x
(−12h) + r(x)(4− λ)h2,

γ2 = −24(2 + λ) + 2r(x)(8 + λ)h2,

γ3 = 12(2 + λ) +
k

x
(12h) + r(x)(4− λ)h2
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Table 2 Comparison of error norms for cubic B-Spline
(CuBS) and extended cubic B-Spline (ExCuBS).

h CuBS ExCuBS

L∞ Norm L2 Norm L∞ Norm L2 Norm

0.1 1.1 × 10−4 2.7 × 10−4 1.3 × 10−5 3.0 × 10−5

0.05 2.8 × 10−5 9.2 × 10−5 1.2 × 10−7 4.6 × 10−7

0.02 4.5 × 10−6 2.3 × 10−5 9.8 × 10−9 4.3 × 10−8

Equation (8) can be solved using the Thomas algo-
rithm13 to obtain Ci in terms of λ. Finally, the
approximate solution can be found easily after getting
the appropriate λ value by optimization14.

NUMERICAL RESULTS

In this section, a class of singular boundary value
problem which are discussed widely in the litera-
ture6–8 are solved by applying the extended cubic
uniform B-spline. The accuracy of the method can
be tested by calculating the error norms

L∞ = max
i
|yi − Si|, L2 =

√√√√ N∑
i=1

(yi − Si)2

where y and S denote the exact and approximate
solutions, respectively.

Example 1 Consider Bessel’s equation of order zero

y′′(x) +
1
x
y′(x) + y(x) = 0,

y′(0) = 0, y(1) = 1.

The solutions can be approximated by applying (6)
and (7). The exact solution for the problem is y(x) =
J0(x)/J0(1). The computational errors, L∞ norm,
and L2 norm for different values of step size, h, are
given in Table 2. It can be seen that for the extended
cubic B-spline, different values of λ are obtained for
different values of h.

Example 2 The exact solution of

y′′(x) +
2
x
y′(x)− 4y(x) = −2, 0 < x 6 1,

y′(0) = 0, y(1) = 5.5,

is
y(x) = 0.5 +

5 sinh 2x
x sinh 2

.

The absolute errors are tabulated in Table 3. The error
for the cubic B-spline is −2.97 × 10−4 at x = 0 and
decreases monotonically to zero at x = 1. The errors
for the extended cubic B-spline are much smaller than
that obtained for the cubic B-spline.

Table 3 Absolute errors for extended B-Spline (ExCuBS)
and B-Spline (CuBS) compared with the analytical solutions
(h = 0.05).

xi Exact CuBS (λ = 0) ExCuBS (λ = 0.00105)

0 3.26 3.0 × 10−4 9.1 × 10−7

0.1 3.28 3.0 × 10−4 1.1 × 10−6

0.2 3.33 2.9 × 10−4 1.6 × 10−6

0.5 3.74 2.6 × 10−4 4.1 × 10−6

0.9 5.01 9.0 × 10−5 3.4 × 10−6

Table 4 Computational errors for extended B-Spline (Ex-
CuBS) compared with the B-Spline approximations (CuBS)
and the analytical solutions (h = 0.05).

xi Exact CuBS (λ = 0) ExCuBS (λ = 0.00041)

0.00 −0.267 −2.7 × 10−5 1.2 × 10−6

0.05 −0.266 −2.7 × 10−5 1.2 × 10−6

0.10 −0.265 −2.7 × 10−5 1.2 × 10−6

0.20 −0.257 −2.6 × 10−5 1.0 × 10−6

0.50 −0.204 −2.2 × 10−5 −1.0 × 10−7

Example 3 The exact solution of

y′′(x) +
1
x
y′(x) =

(
8

8− x2

)2

,

y′(0) = 0, y(1) = 0,

is

y(x) = 2 log
(

7
8− x2

)
.

Table 4 presents the exact solutions and the corre-
sponding errors. Again, the extended B-splines give
the more accurate approximations.

CONCLUSIONS

In this paper, the extension of cubic uniform B-
spline with blending function of degree 4 has been
used to solve a family of two-point singular boundary
value problems. With the flexibility of extensions,
the approximations of the solution can be done by
adjusting the free parameter, λ. The numerical results
showed that extended cubic B-spline approximates
the exact solution of the singular two-point boundary
value problems considered very well.

Acknowledgements: The authors gratefully acknowl-
edge the financial support from University Sciences
Malaysia and thank the School of Mathematical Sciences
for the use of its facilities.

REFERENCES
1. Powers DL (1979) Boundary Value Problems, 2nd edn,

Academic Press, New York.

www.scienceasia.org

http://www.scienceasia.org/2011.html
www.scienceasia.org


82 ScienceAsia 37 (2011)

2. Momoniat E, Harley C (2011) An implicit series solu-
tion for a boundary value problem modelling a thermal
explosion. Math Comput Model 53, 249–60.

3. Ackerberg RC (1969) On a nonlinear differential equa-
tion of electrohydrodynamics. Proc Roy Soc Lond A
312, 129–40.

4. Agarwal RP, O’Regan D, Palamides PK (2006) The
generalized Thomas-Fermi singular boundary value
problems for neutral atoms. Math Meth Appl Sci 29,
49–66.

5. Russell RD, Shampine LF (1975) Numerical methods
for singular boundary value problems. SIAM J Numer
Anal 12, 13–36.

6. Ravi Kanth ASV, Reddy YN (2004) Higher order finite
difference method for a class of singular boundary
value problems. Appl Math Comput 155, 249–58.

7. Ravi Kanth ASV, Reddy YN (2005) Cubic spline for
a class of singular two-point boundary value problems.
Appl Math Comput 170, 733–40.

8. Caglar N, Caglar H (2006) B-spline solution of singular
boundary value problems. Appl Math Comput 182,
1509–13.

9. Kumar M, Gupta Y (2010) Methods for solving singu-
lar boundary value problems using splines: a review.
J Appl Math Comput 32, 265–78.

10. Ravi Kanth ASV, Reddy YN (2003) A numerical
method for singular two point boundary value problems
via Chebyshev economizition. Appl Math Comput 146,
691–700.

11. Xu G, Wang GZ (2008) Extended cubic uniform B-
spline and α-B-spline. Acta Automatica Sin 34, 980–4.

12. Prenter PM (1989) Splines and Variational Methods,
Wiley.

13. Morton K, Mayers DF (2005) Numerical Solution of
Partial Differential Equations, 2nd edn, Cambridge
Univ Press, Cambridge.

14. Abd Hamid NN (2010) Splines for linear two-point
boundary value problems. MSc thesis, Universiti Sains
Malaysia.

www.scienceasia.org

http://www.scienceasia.org/2011.html
http://dx.doi.org/10.1016/j.mcm.2010.08.013
http://dx.doi.org/10.1016/j.mcm.2010.08.013
http://dx.doi.org/10.1016/j.mcm.2010.08.013
http://dx.doi.org/10.1002/mma.664
http://dx.doi.org/10.1002/mma.664
http://dx.doi.org/10.1002/mma.664
http://dx.doi.org/10.1002/mma.664
http://dx.doi.org/10.1137/0712002
http://dx.doi.org/10.1137/0712002
http://dx.doi.org/10.1137/0712002
http://dx.doi.org/10.1016/S0096-3003(03)00774-4
http://dx.doi.org/10.1016/S0096-3003(03)00774-4
http://dx.doi.org/10.1016/S0096-3003(03)00774-4
http://dx.doi.org/10.1016/j.amc.2004.12.049
http://dx.doi.org/10.1016/j.amc.2004.12.049
http://dx.doi.org/10.1016/j.amc.2004.12.049
http://dx.doi.org/10.1016/j.amc.2006.05.035
http://dx.doi.org/10.1016/j.amc.2006.05.035
http://dx.doi.org/10.1016/j.amc.2006.05.035
http://dx.doi.org/10.1007/s12190-009-0249-2
http://dx.doi.org/10.1007/s12190-009-0249-2
http://dx.doi.org/10.1007/s12190-009-0249-2
http://dx.doi.org/10.1016/S0096-3003(02)00613-6
http://dx.doi.org/10.1016/S0096-3003(02)00613-6
http://dx.doi.org/10.1016/S0096-3003(02)00613-6
http://dx.doi.org/10.1016/S0096-3003(02)00613-6
http://dx.doi.org/10.1016/S1874-1029(08)60047-6
http://dx.doi.org/10.1016/S1874-1029(08)60047-6
www.scienceasia.org

