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ABSTRACT: We develop a data mining approach and an extended Deming’s management model to save diagnosis time in
the slider process of the hard disk drive industry. The data mining approach consists of five mining algorithms, namely, the K-
Mean clustering, the Kruskal-Wallis test, the multivariate chart, the association rules, and the continuity-based measurement.
They provide an automatic diagnosis on manufacturing data to determine the defective process stages, machines, materials,
and methods. The extended Deming’s model provides a close-loop management of diagnosis. This analysis framework helps
engineers to identify defective factors rapidly in order to deliver diagnosis results within an hour. Additionally, all results
of extended Deming’s management loop can be recorded and converted to be useful wisdom for effective manufacturing
management.
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INTRODUCTION

The defect diagnosis in the slider process of the
hard disk drive industry (HDDI) is an important task
to improve the yield and reduce the cost. Current
diagnosis management is a time consuming process
due to multiple process stages, machines, materials,
and methods. The time-consuming nature of diag-
nosis increases the manufacturing cost. This article
aims to develop a data mining approach as well as a
management model of manufacturing data for saving
diagnostic time.

Data mining approach is a well-known tool for
knowledge discovery from a massive amount of data.
Its analysis procedure can be a combination of a ma-
chine learning algorithm, statistical analysis, artificial
intelligence, and data management1, 2. There are five
standard steps in a data mining procedure: (1) problem
definition, (2) data preparation and transformation,
(3) data mining, (4) interpretation of the results, and
(5) presentation1, 2. Many data mining algorithms
have been applied to knowledge discovery in many
fields; e.g., marketing and sales3, biotechnology and

chemical process industry4, medical applications4,
energy production4, quality control and minimizing
an expensive testing in the HDDI5, fault detection and
quality control in electrical welding6, and many other
applications in current manufacturing7.

Literature directly related to this study, and short
reviews include the work of Chou et al8, applied
a priori association rules9, and a continuity-based
measurement (CBM) function8 to capture defective
machines in a semiconductor industry which contin-
uously produced poor product quality. The same
series of products worked through several machines,
as well as process flows. The pattern of poor machines
showed up if they continuously performed with a high
reject rate in the same product names when compared
to non-defective machines. Chen-Fu et al10 applied
K-Mean clustering11, a Kruskal-Wallis (K-W) test12,
and decision trees13, 14 to capture defective process
stages and defective machines in the semiconductor
industry. The K-W test was used to screen out
the defective process stages using a machine-oriented
approach. The defective machines from defective
process stages were screened out by using decision

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.062
http://www.scienceasia.org/2011.html
mailto:ssoommat@yahoo.com
www.scienceasia.org


ScienceAsia 37 (2011) 63

trees. Both researchers did not cover the materials
and method types that can be subject to high risk of
poor quality and impact manufacturing yield. Here
our objective is to develop a new data mining approach
to cover materials and method types as well as a
management model for more effective management in
manufacturing.

Description of problems

The slider processes of HDDI can be stated as follows.
There is a set of m slider lots Sj (j = 1, . . . ,m),
a set of w machines Mk (k = 1, . . . , w), a set of
p materials ψl (l = 1, . . . , p) and a set of q method
types Λr (r = 1, . . . , q). Each slider lot consists of
an ordered set of d process stages Pj1, Pj2, . . . , Pjd.
The order of process stages cannot be changed, and
process stage Pjd must be processed by exactly one
given machine, material, and method during Tjd time
units without preemption, i.e., when the operation has
already been started. It cannot be interrupted until
finished. Also, each machine can handle only one job
at a given time, and a slider lot can be processed on
only one machine in a given time period. The problem
requires finding defective process stages, machines,
materials, and methods on slider lots.

There are three main factors influencing the di-
agnosis time in the existing approach. First because
of the diagnosis procedure of laboratory tools, high
magnification tools are used to capture defective im-
ages from submitted units. Thus the delivered result
is dependent upon machine capability and engineer
skill. Second, a reasonable sample size for analysis
is difficult to obtain. A high sample size directly
increases diagnosis time. On the other hand, a small
sample size creates insufficient information and re-
peats the diagnosis. Third, the results from laboratory
tools require a process mapping, i.e., it requires further
work to locate the defect in production line. Here
our objective is to identify the defective factors by
applying the data mining approach and the extended
Deming’s management model on a massive amount of
manufacturing data.

DESCRIPTION OF PROPOSED APPROACH

There are five data mining algorithms: (1) the K-Mean
clustering, (2) the three combinations of machine, ma-
terial, method for Kruskal-Wallis (K-W) test15, (3) the
multivariate chart16, (4) the a priori association rules9,
and (5) the continuity-based measurement (CBM)8.
The management model proposes a GPDCARW flow
(General, Plan, Do, Check, Act, Results, and Wis-
dom). It is an extension of the GPDCAR17 and
PDCA18–20 models. Both data mining algorithms and

management models are combined for the proposed
approach and short reviews of each step are described
below.

General (G): The general information of the
problem for the management are the defective process
stages, machines, materials and methods analysis that
affect the final testing yield.

Plan (P): Data preparation and transformation,
system inputs, goal setting, and technology selec-
tion require the establishment of a plan phase. The
data preparation and transformation are undertaken
by retrieving a specific piece of data from a massive
database, and require the matching of the formula to
each data mining algorithm1, 2. The inputs require
the name lists of process stages, machine numbers,
material types, method types, yield level of each slider
lot, and type I error (α)10, 15, 21, 22 for statistical test;
α is the risk of rejecting a null hypothesis when it is
actually true. The goal is to obtain zero defective lists.

Do (D): It operates the data mining script for
diagnosis. The data mining for this purpose occurs
in the following steps:

1. K-Mean clustering11 classifies the final testing
yield Yj (j = 1, . . . ,m) of each slider lot Sj
(j = 1, . . . ,m) into two groups (K = 2, i.e., low
and high group)10, 15, 21, 22. The yield is the ratio
of outputs and inputs at final testing, i.e., 90%
yield is 90 output sliders from 100 input sliders
within a slider lot. The method for clustering the
yield is presented in Algorithm 1.

Algorithm 1: To cluster yield into two groups,
i.e., low and high group.

Step 1: Selected yield group = 2 (low and high
group).

Step 2: Randomly select mean of each yield
group.

Step 3: Calculate the distance between mean of
each yield group and individual data point and re-
group the data points in the same group using the
closest distance between the data points and the
mean of each yield group. Recalculate the new
mean of each group.

Step 4: Stop once each yield mean of iteration
equals that of the previous iteration. Then report
new mean of each yield group including yield
cutting point (i.e., the separating point between
low and high group). Otherwise, return to step 3.

2. Set α = 0.03.

3. Perform the K-W test12, i.e., the machine, ma-
terial, and method approach15. This is required
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to prevent an oversight of defective diagnosis for
materials and methods if the single machine test-
ing shows no significant difference. The method
for this K-W test is presented in Algorithm 2.

Algorithm 2: To perform the K-W test.

Step 1: Select process stage Pjd and set α =
0.03.

Step 2: Create a null hypothesis for machine-
oriented approach. The null hypothesis is H0:
µ1 = µ2 = · · · = µw and H1 is at least one
machine difference yield, where µ1, µ2, . . . , µw
are the average yield of machine 1, 2, . . . , w.

Step 3: Compute a set of mh yields; Ymh (m =
1, . . . , w and h = 00, . . . , nn), where w is the
number of machines in Pjd process stage and h
is a set of manufacturing hours that starts from
00 to nn, where nn is the maximum number of
manufacturing hours a day, i.e., 20, 21, 22, 23, or
24.

Step 4: Compute K-W test by using12

H =
12

n(n+ 1)

mh∑
x=1

R2
x − 3(n+ 1)

where H is a statistic test of K-W, Rx is a rank
sum of sample x, where the rank of each mea-
surement is computed according to its relative
magnitude in the total of n data samples, where
n is the number of machines multiplied by the
number of manufacturing hours. If w − 1 is
the number of degrees of freedom. H0 will be
rejected if P (H > λ2

α,w−1) < α.

Step 5: Do the K-W test for material and
method in the machine-oriented manner. Set
the null hypothesis for materials and method.
Calculate the set of mh yield for the material-
oriented approach. Ymh (m = 1, . . . , p and h =
00, . . . , nn), where p is the number of materials.
The H0 will be rejected if P (H > λ2

α,p−1) < α.
In the same manner, calculate the set ofmh yield
for the method-oriented approach. Ymh (m =
1, . . . , q and h = 00, . . . , nn), where q is the
number of materials. The H0 will be rejected if
P (H > λ2

α,q−1) < α.

Step 6: Perform steps 1–5 for all Pjd process
stages.

Step 7: Collate the p-value of each process stage
using the machine-oriented approach to report
defective process stages; the process stage is
defective if the p-value is less than α. If not,

verify the material and method oriented approach
at the highest machine number process stages,
reporting the defective materials or methods if
p < α. Otherwise, stop and report no potential
root causes.

4. Perform the multivariate chart16 to generate a set
of wpq yield vectors, where w is the number of
machines, p is the number of materials, and q is
the number of methods. The method for yield
vector generation is presented in Algorithm 3.

Algorithm 3: To generate yield vectors.

Step 1: Define set of w machines Mk (k =
1, . . . , w), set of pmaterials ψl (l = 1, . . . , p), set
of q method types Λr (r = 1, . . . , q), and set of
slider lot Sj (j = 1, . . . ,m) in d process stages,
Pj1, Pj2, . . . , Pjd.

Step 2: Select defective process stages or the
highest machine number process stages.

Step 2.1: If defective process stage occurs,
generate the yield vector form in the order: ma-
chines, methods, materials. The yield vectors
are called transactions: Ykrl (k = 1, . . . , w;
r = 1, . . . , q; l = 1, . . . , p).

Step 2.2: If no defective process stage, the
highest machine number process stage must be
defined. Then, consider the p-value of the mate-
rial and method from K-W testing. If a defective
material occurs, generate the yield vector form in
the order: materials, machines, methods. Yield
vectors: Ylkr (l = 1, . . . , p; k = 1, . . . , w;
r = 1, . . . , q). If a defective method occurs,
generate yield vector form in the order: methods,
machines, materials. Yield vectors: Yrkl (r =
1, . . . , q; k = 1, . . . , w; l = 1, . . . , p).

Step 3: Compare yield level of each vector to
the K-Mean clustering results, i.e., low group 6
cutting point yield > high group. Stop and
report if all defective process stages, materials,
and methods are defined. Otherwise, back to
step 1.

5. Perform the a priori association rule9 as an
expression Z ⇒ S, where Z and S are sets
of transactions from the multivariate chart. If
given a database D of transactions, where each
transaction T ∈ D is a set of items Z ⇒ S.
It means that whenever a transaction T contains
Z then T also contains S. The strong rule
requires the percentage support and percentage
confidence to meet the minimum threshold that
specify from the users. The percentage support
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(Sup) and percentage confidence (Con) equa-
tions are shown in (1) and (2).

Sup(ZS) =
number of transactions contains(ZS)

total number of transactions
(1)

Con(ZS) =
Support(ZS)
Support(Z)

(2)

The method of the a priori association rules
for creating a set of defective factors that are
associated with a low yield portion is presented
in Algorithm 4.

Algorithm 4: To perform the a priori association
rules of defective sets.

Step 1: The analysis hour is first partitioned
according to the item sets. The support count
of each item set (1-item sets) is performed. The
item sets that cannot satisfy the required mini-
mum support count are pruned. Thus 1-item sets
are created, The 1-item set is the set of machine,
material and method.

Step 2: Item sets are joined together (2-item
sets) to create the second-level candidates, the 2-
item sets is a pair of machine-material, machine-
method, and material-method. The support count
of each candidate is accumulated. After pruning
unsatisfactory item sets according to minimum
percentage support, the frequent 2-item sets are
created.

Step 3: Item sets are joined together to give 3-
item sets to create the third-level candidates (a set
of machine-material-method). The support count
of each candidate is accumulated. After pruning
unsatisfactory item sets according to minimum
percentage support, the frequent 3-item sets are
created.

Step 4: Terminate if no item sets. Select the
item sets that meet a 20% support and 100%
confidence minimum. Otherwise, repeat step 1.

Step 5: Calculate the ϕ for the selected item sets
to obtain the discovered rule of Z ⇒ S8

ϕ =
|Z ∧ S| − |Z||S|/N√

|Z||S|(1− |Z|/N)(1− |S|/N)
,

where N is the total number of tuples, |Z| is
the number of tuples that contain the antecedent
Z, |S| is the number of tuples that contain the
antecedent S, and |Z ∧S| is the number of tuples
that contain both Z and S.

Step 6: Transfer the selected item sets to verify
CBM8 in algorithm 5.

6. Perform the CBM8 to verify a continual function
on the selected item sets. The method is pre-
sented in Algorithm 5.

Algorithm 5: To verify a continual function of
the selected item sets.

Step 1: Select ordered manufacturing hours (h =
00, . . . , nn).

Step2: Calculate the CBM: ϕ′ = ϕ×Continuity
of the selected item sets. The continuity function
is

Continuity ={
1P|X|−1

i=1 d(λ(xi),λ(xi+1))/|X|−1
if |X| > 1

0 if |X| 6 1

where X(x1, x2, . . . , xh) are the manufactur-
ing hours, λ(xi) is the order of the manufac-
turing hours which cannot be changed. The
d(λ(xi), λ(xi+1)) is the distance of the low yield
hours between λ(xi) and λ(xi+1) which can
easily be calculated by λ(xi+1)− λ(xi) and i =
1, . . . , nn+ 1.

Step 3: Identify defective factor if ϕ′ > 0.50
or > 50%. Otherwise, report that no defective
factors were found.

Check (C): Check defective lists match the goal,
i.e., check process stages, machine numbers, material
types and method types. Zero defective lists are
required.

Action (A): If the defective lists are not zero, the
system will continue to re-operate the data mining
script and re-report the defective lists to engineers.
The corrective action is required until zero defective
lists are obtained.

Results (R): The results are recorded into the R
after the corrective actions are undertaken.

Wisdom (W): The results from R are converted to
be useful wisdom using DTCN23 (design to customer
need). The benchmarking technique is used to com-
pare the performance of defective factors in the same
function, i.e., comparison yield of machines, materials
or methods within the same process stages and manu-
facturing periods. The RPN (Risk Priority Number)
ranking is a used as a method for benchmarking
processes. It uses a O × S ×D 24 formula to identify
the risk level, where O is the occurrence rating (1:
seldom,. . . ,10: often), S is the severity rating (1:
less,. . . ,10: most) and D is the detectable rating for
the current control system (1: detectable,. . . ,10: non
detectable). The highest RPN is the highest risk of
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Fig. 1 Final yield as a function of manufacturing hour.
Tracking time was between 00 h and 23 h (within one day).

manufacturing cost. The minimum RPN for this study
is 20025.

APPLICATIONS AND RESULTS

Following the research framework of the data mining
approach and extended Deming’s management model,
a study was conducted for the slider process of HDDI
in Thailand, with a critical requirement for root cause
investigation of the low final testing yield problem.
The yield trend showed a low yield in some hours (in
circles) as shown in Fig. 1. There were three material
types (A, B, and C) and two methods (1 and 2) that
were manufactured in the process. There were eight
process stages and 657 slider lots (Sj ; j = 1,. . . ,657)
during manufacturing hours from 00 h to 23 h. Each
process stage contained different machine numbers,
i.e., five machines at process stage 1, 2, 3, 5, 6, and 7,
ten machines at process stage 8, and fifteen machines
at process stage 4. The research framework was
performed by querying the specific piece of data from
the massive manufacturing database using an SQL
program. Then data were prepared in the appropriate
format for the mining algorithms.

For the yield clustering results, the final testing
yield of the slider was clustered into low and high
yield groups by using the K-Mean clustering algo-
rithm. The average yield of the high group was
95.89% (499 lots) and the average yield of low group
was 65.06% (158 lots). The yield cutting point was
90%.

The p-value of all process stages were tested
by using the machine-oriented K-W testing. The
machine-oriented testing represented the process stage
performance because all machines in the same process
stages performed the same function without preemp-
tion. The results were not significant. Thus there
were no defective process stages and no defective
machines. The system automatically switched to
review the K-W testing under material and method
in the highest machine number process stage using

algorithm 2 (i.e., stage 4 was selected). As a result, the
method-oriented testing results were not significant
(p = 0.66), whereas the material-oriented testing
results were (p < 0.0001). This implied that materials
have the potential to be a root cause for low yield.

The multivariate chart generated the yield vectors
following algorithm 3. The yield vectors of each
transaction were transferred to perform the a priori
association rules in algorithm 4. The a priori associa-
tion rules generated a set of Z (defective material sets)
rules associated with the S set (low yield group). The
results showed that type A material was associated
with the low yield portion based on 30% support
(Sup) and 100% confidence (Con) whereas materials
B and C did not show any association (i.e., they
showed 0% support). Materials B and C were pruned
because their percentage support did not meet the
criteria (i.e., 20% minimum).

The manufacturing was conducted for 23 out of
24 h a day and low yield occurred for 15 h. The CBM
function showed a constant level of material type A
using algorithm 5. The CBM of material type A
was 0.65 and that provided the confidence to be the
real root cause of defect because it was higher than
specification (> 0.50).

The yield among material types were bench-
marked by using the RPN process (O × S × D) for
wisdom conversion. The RPN of materials type A
was 250 (O = 5, S = 10, D = 5) whereas
material types B and C were 25 (O = 5, S = 1,
D = 5). The wisdom was defined that material
type A was defective. This information educated the
production and material team to avoid material type A
to minimize the yield impact.

The delivery time of results was 40 min. Products
X and Y were also examined (Table 1). The delivery
time of the proposed approach ranged from 40.0 to
40.5 min whereas the delivery time of the existing
approach ranged from 72 and 168 h.

DISCUSSION

The proposed management modelling and data mining
approach for defective diagnosis was applied to slider
manufacturing to compare results with the existing
approach. Based on nine cases, the results showed that
67% of defects were related to machines from several
process stages, 22% related to materials, and 11%
related to method types. There were three defective
machines for product X and two defective machines
for product Y in case 4. Those multiple defects
were segregated by multivariate chart algorithm (i.e.,
algorithm 3) during yield vector generation. This
algorithm showed a powerful diagnosis to segregate
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Table 1 Summary of results of cases on products X and Y .

Cases Product X Product Y

p-value CBM Wisdom Significant p-value CBM Wisdom Significant
(Defective) K-W Test (Defective) K-W Test

1 < 0.0001 1 Mac 11 Mac < 0.0001 0.69 Mat C Mat
Stage 4

2 < 0.0001 0.8 Met 1 Met < 0.0001 0.74 Mac 5 Mac
Stage 1

3 0.0007 0.88 Mac 5 Mac 0.0018 0.63 Mac 1 Mac
Stage 1 Stage 8

4 < 0.0001 0.56 Mac 1 Mac < 0.0001 0.81 Mac 5 Mac
Stage 4 Stage 8

0.62 Mac 2 0.5 Mac 9
Stage 4 Stage 8

0.7 Mac 9
Stage 4

Mac = machine; Mat = material; Met = method

a source of defects for consequent algorithms (al-
gorithm 4 and algorithm 5). The yield among sus-
pect factors (machines, materials, and methods) was
benchmarked by using the RPN number for con-
verting to useful wisdom. The useful wisdom was
efficiently applied to manage daily manufacturing,
i.e., production planning without defective factors,
appropriate preventive maintenance scheduling (i.e.,
process stages 1, 4, and 8 were suggested for preven-
tive maintenance in order to reduce a chance of defects
because they had a higher rate of defect occurrence
than other process stages).

The results of the proposed approach show the
same results as the existing approach, and it can
deliver results faster than the existing approach based
on the automatic decision. The delivery time of
the proposed approach was within an hour for data
retrieving from the massive database, calculating and
reporting, whereas the existing approach took 72–
168 h due to time-consuming laboratory tools and
manual interpretative methods. The time reduction
of analysis was important for manufacturing manage-
ment. The short time of analysis was able to reduce
manufacturing costs. However, the key requirement
for the proposed approach was more case problems
for training on the data mining system. Specifically,
the CBM needs an a priori association for the rule
generation in order to support other cases.
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