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ABSTRACT: Synergy interval partial least square (siPLS) was proposed to select efficiently the characteristic wavelength
regions of dry matter against kiwifruit near-infrared spectra for dry matter prediction. Four data sets (NIR spectra and dry
matter of unripe fruit (UU), NIR spectra of unripe fruit and dry matter of ripe fruit (UR), NIR spectra and dry matter of
ripe fruit (RR), and UU&UR&RR) were obtained in the experiment. They were used to develop models for predicting dry
matter of unripe and/or ripe kiwifruits. The results of cross-validation showed that the change of characteristic wavelength
regions was caused by chemical conversion of organic compounds included in the dry matter at different storage periods
of kiwifruits. Compared with the global spectra data models, the siPLS method could simplify the models with efficiently
selecting characteristic wavelength regions. The root mean square error of cross-validation and correlation coefficient (r) of
the UR model were 0.47% and 0.92, respectively, in calibration set. The root mean square error of prediction and r were
0.53% and 0.90, respectively, in the prediction set. This study demonstrated that NIR spectroscopy of unripe kiwifruits
could predict the dry matter.
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INTRODUCTION

Timing of the harvest is an important factor to the
subsequent postharvest shelf life and fruit quality1, 2.
Dry matter (DM) in kiwifruit (Actinidia deliciosa) has
been proposed as being both a maturity indicator for
the proper time of harvest and also as a predictor
of the sensory quality of the fruit once ripe3–5. It
comprises both the soluble solids (largely fructose,
glucose, and sucrose) and insoluble solids (mainly
the structural carbohydrates and starch). Kiwifruit
are harvested unripe, although physiologically mature,
but must be put in natural storage to ripen (i.e.,
conversion of the stored starch into soluble solids)
before consumption6. The kiwifruit DM is reasonably
constant during ripening with only small losses due to
respiration. It is dominated by the large carbohydrate
component (around 75% of DM), most of which is
sugar and starch at harvest, that becomes sugar when
eaten ripe. Hence the DM indicates either the potential
or actual sugar level of the fruit. The only reliable
method to measure DM is by drying slices of fruit to
drive off the water. But this is obviously destructive5.

Near infrared (NIR) spectroscopy is a fast, ac-
curate, and non-destructive technique that can be

adopted as a replacement of individual labour skill and
time-consuming methods. NIR spectroscopy has been
used to grade fruits7, 8, predict the fruit maturity9, and
indicate the optimal harvesting time10. Kiwifruit is
one commodity where sorting based on pre-selected
NIR spectral features at harvest can be used to grade
fruit on the basis of DM. Recent research has es-
tablished that NIR spectroscopic analysis can be used
to assess kiwifruit DM and/or ripened soluble solid
content using spectra below 1100 nm for greater pen-
etration2, 5, 6, 11, 12. The spectra, ranging from 10 000
to 4000 cm−1 (1000–2500 nm), were composed of
overtones and combinations of fundamental vibrations
of –CH, –NH, and –OH groups from the mid-infrared.
Therefore, many spectral regions may contain useful
information about the chemical vibrations of DM in
the samples. So in this work, the NIR spectra (10 000–
4000 cm−1) were explored to predict DM in kiwifruit.

NIR spectral data calibrations have been made
with the classical multivariate calibration analysis,
e.g., partial least squares (PLS) regression. However,
the fact that there might be spectral regions that do not
contain any information about the chemical variations
in the samples has not been addressed in the analysis.
In fact, one of the major problems in multivariate data
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analysis is to select appropriate spectral regions in
order to achieve the best performance.

This study investigated and compared the results
provided by PLS and siPLS procedures for NIR
quantitative analysis of the DM in kiwifruit. Three
specific objectives of this study were (1) to establish
relationships between the NIR measurements and the
DM of kiwifruit, (2) to optimize spectral intervals
at different storage periods of kiwifruit, and (3) to
predict the DM of ripe kiwifruit (edible phase) based
on the NIR spectra collected when the kiwifruit was
unripe.

MATERIALS AND METHODS

Sample preparation

The 221 ‘Zhonghua’ kiwifruit samples used in this
study were purchased from a farm in Zhouzhi,
Shaanxi Province, China. All the kiwifruits stored
for one month were sent to our laboratory in October
2008. They were stored at 1 °C, 90% RH. They
were divided into two groups at random. In the
first group (109 kiwifruits), 72 samples were taken as
the calibration set and 37 samples were taken as the
prediction set. In the second group (112 kiwifruits),
74 samples were taken as the calibration set and 38
samples were taken as the prediction set. Experiments
were done under controlled conditions (20 °C, 68%
RH). Before being examined by the NIR technique,
kiwifruits were acclimatized to equilibrium for 12 h
in controlled conditions. After the kiwifruits had
been stored for one day, the NIR spectra and DM
were determined for the first group. Only the NIR
spectra was collected from the second group. The DM
determination and the second NIR spectra collection
of the second group were done when the samples were
stored in a refrigerator (4 °C, 90% RH) for 30 days.
The samples were equilibrated for 2–4 days in order
to soften (edible phase) in the controlled conditions
(20 °C, 68% RH) before the experiment of the second
group.

Four data sets for analysis were created using
combinations of these unripe and ripe fruit measure-
ments. UU data set containing non-destructive NIR
spectra and destructive DM measurements all made
on unripe fruit. The sample number was 109. UR
data set containing non-destructive NIR spectra made
on unripe fruit, with corresponding destructive DM
measurements after ripening. The sample number
was 112. RR data set containing non-destructive
NIR spectra and destructive DM measurements all
made on ripe fruit. The sample number was 112.
UU&UR&RR data set containing UU, UR and RR

data set. The sample number was 333.

Spectra collection

The NIR spectra were collected in the reflectance
mode using the FT-NIR spectrophotometer (AntarisII,
Thermo Electron Co., USA) with an integrating
sphere. Each spectrum was from the average of
32 scans. The range of spectra was from 10 000
to 4000 cm−1, and the data were measured in
1.928 cm−1 intervals, which resulted in 3112 data
points. The average of the three spectra, which were
collected from the equator of each kiwifruit, was used
in the sequence analysis.

Determination of kiwifruit DM

Fruit DM was measured by cutting two equatorial
slices, approximately 3 mm thickness, and drying
them at 65 °C to constant weight (approximately 24 h).
DM (%) is actually 1 − water content. The kiwifruit
DM was calculated from the final dry weight and
initial wet weight of the slices, recorded as % fresh
weight in this experiment6. The average of the DM
of two slices was used in the sequence analysis.
The maximum DM was 18.76%, the minimum was
13.53%, and the average was 16.20%. The standard
deviation and coefficient of variation of the data were
1.08 and 6.69%, respectively.

Calibration model

The PLS models were first calibrated to predict the
DM for the four data sets. In the application of
the PLS algorithm it is generally known that the
number of PLS components is a critical parameter in
calibrating the model. The optimum number of PLS
components is determined by the lowest root mean
square error of cross-validation (RMSECV) and the
root mean square error of prediction (RMSEP).

Synergy interval PLS (siPLS) were performed
to extract near-infrared spectral intervals of kiwifruit
DM due to the disadvantages of PLS. The siPLS algo-
rithm used here was developed by Nørgaard et al13.
First the data set was split into a number of inter-
vals (variable-wise). Next, PLS regression models
were established for all possible combinations of two,
three, or four intervals. Thereafter RMSECV was
calculated for every combination of intervals. The
combination of intervals with the lowest RMSECV
was then chosen. The number of intervals was also
optimized according to RMSECV in the siPLS model
calibration.
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Software

All algorithms were implemented in MATLAB V7.0
(Mathworks) under Windows XP. RESULT Software
(Antaris System, Thermo Electron Co., USA) was
used in NIR spectral data acquisition. The siPLS
algorithm used in this work was downloaded from
www.models.kvl.dk/.

RESULTS AND DISCUSSION

Spectral preprocessing

Each mean spectrum was recorded as log(1/R),
where R is the reflectance (Fig. 1). All the spectral
data were analysed with a multiplicative scatter cor-
rection preprocessing technique used to correct for
additive and multiplicative effects in the spectra14.

PLS model results

Table 1 shows the results of the PLS model of four
data sets. The correlation coefficient (r) was more
than 0.86 in the calibration set and more than 0.85 in
the prediction set. The result of maturity prediction
(RR, edible phase) was the best; the correlation co-
efficient (r) was 0.94 in the calibration set and 0.91
in the prediction set. The results of long-term (UR)
and hybrid prediction (UU&UR&RR) were slightly
inferior. The obtained results were slightly inferior to
the results of PLS models performed on some selected
spectral regions by McGlone et al2, 5, 6. For this reason
PLS was performed to the calibrate the global model
on the full spectral region (10 000–4000 cm−1), but
some noisy spectral information inevitably weakened
the modelling performance. It would also spend
more computational time for more input variables.
Therefore, in the following study, it was necessary to
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Fig. 1 NIR spectra of UR samples.

further optimize the model.

SiPLS model results

Table 2 shows the results of the siPLS model calibra-
tion when the spectra were split into different numbers
of intervals. By optimizing the spectral intervals, the
number of variables was reduced by more than 73%.
The number of components was slightly reduced. The
results of two groups (UU, UU&UR&RR) slightly
fluctuated. The results of the other two groups (UR,
RR) were slightly improved. For the UR data set, the
optimal siPLS model was obtained with 15 intervals
and 10 PLS components because the lowest RMSECV
was 0.53% in Table 2. The optimal combinations
of intervals selected contained numbers 3, 4, 8, and
12, corresponding to the spectral regions 4802.04–
5201.14, 5203.07–5602.16, 6807.16–7204.33, and
8403.55–8800.71 cm−1 (Fig. 2). Compared with the
full spectrum model, the siPLS model was simplified.
The numbers of variables and components (830, 10)
were fewer than those of the full spectrum model
(3112, 12). For the optimal model, RMSECV was
0.47%, and the correlation coefficient (r) was 0.92 in
the calibration set. When the performance of siPLS
model was evaluated by the samples in the prediction
set, RMSEP was 0.53% and the correlation coefficient
(r) was 0.90 in the prediction set. So it is feasible to
predict the DM of ripe kiwifruit (edible phase) based
on the NIR spectra collected when the kiwifruit was
unripe.

As can be seen from Table 2, the NIR spectra
collected from unripe kiwifruit of the UU and UR
data sets had the spectral intervals optimized by
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Fig. 2 Optimal spectral regions selected by siPLS
with wavenumbers 4802.04–5201.14, 5203.07–5602.16,
6807.16–7204.33, and 8403.55–8800.71 cm−1 (UR).
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Table 1 Results for PLS model of different data sets.

Data set VN CN Calibration set Prediction set

r RMSECV/% r RMSEP/%

UU 3112 14 0.87 0.48 0.86 0.48
UR 3112 12 0.91 0.51 0.89 0.57
RR 3112 12 0.94 0.44 0.91 0.49
UU&UR&RR 3112 15 0.90 0.50 0.89 0.51

VN = variable number; CN = component number

Table 2 Best results of siPLS calibration model of different data sets.

Data set IN VN Selected Intervals (cm−1) CN Calibration set Prediction set

r RMSECV/% r RMSEP/%

UU 14 667 5289.83–5717.84 11 0.86 0.48 0.86 0.49
7003.82–7429.91
8287.87–8713.95

UR 15 830 4802.04–5201.14 10 0.92 0.47 0.90 0.53
5203.07–5602.16
6807.16–7204.33
8403.55–8800.71

RR 19 656 4000.00–4314.26 11 0.95 0.39 0.94 0.41
4948.57–5262.83
7478.11–7792.37
8426.68–8740.95

UU&UR&RR 15 667 4000.00–4399.09 12 0.91 0.48 0.88 0.53
7605.35–8002.52
8403.55–8800.71
8802.64–9199.81

IN = interval number; VN = variable number; CN = component number

siPLS. These optimal spectral intervals had many
cross-regions. It means that the DM did not basically
change before and after maturing. The NIR spectra
collected kiwifruit of the UU and RR data sets were
optimized spectral intervals by siPLS. For the UU
and UR data sets optimized spectra for ripe fruit there
was only one cross-region indicating that some chem-
ical components of the DM changed as the kiwifruit
matured. As the kiwifruit matures, the starch, one
component of the DM, is gradually converted into
soluble saccharides (glucose, fructose, sucrose, etc.)6.
Thus the characteristic wavelength regions of DM
greatly changed.

From Table 1 and Table 2, it can be seen that
the prediction accuracy of the siPLS model is not
obviously superior to that of the PLS. Dry matter
in kiwifruit is a mixture of soluble solids (largely
fructose, glucose, and sucrose) and insoluble solids
(mainly the structural carbohydrates and starch). The
corresponding NIR bands are composed of overtones

and combinations of fundamental vibrations of –CH,
–NH, and –OH groups from the mid-infrared. There-
fore, the relationship between the NIR spectra and
dry matter may be complicated due to the presence of
many relevant spectral regions. For the siPLS model,
it was hard to select specific regions that contained all
information of the DM of kiwifruit. Hence the results
of siPLS models were not improved. Nevertheless,
the siPLS model had fewer variables of the prediction
model than PLS.

Table 3 and Table 4 list two cross-validation
methods based on the siPLS model of different data
sets. One was the siPLS calibration model with
the optimal spectral intervals and optimal number of
components of different data sets to predict the DM.
For example, the spectral regions (4802.04–5201.14,
5203.07–5602.16, 6807.16–7204.33, and 8403.55–
8800.71 cm−1, obtained from UR model) of four
data sets were used to calibrate four models (with 10
components, obtained from UR model) to predict DM
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Table 3 Cross-validation of different siPLS calibration models (using different modelling parameter resources) for
prediction sets.

Data set UU UR RR UU&UR&RR

Parameter resource r RMSEP/% r RMSEP/% r RMSEP/% r RMSEP/%

UU 0.86 0.49 0.86 0.64 0.89 0.56 0.87 0.56
UR 0.83 0.52 0.90 0.53 0.92 0.48 0.87 0.55
RR 0.83 0.50 0.91 0.53 0.94 0.41 0.85 0.60
UU&UR&RR 0.79 0.57 0.87 0.61 0.91 0.50 0.88 0.53

Table 4 Cross-validation of different siPLS calibration models for prediction sets.

Data set UU UR RR UU&UR&RR

Model r RMSEP/% r RMSEP/% r RMSEP/% r RMSEP/%

UU 0.86 0.49 0.82 0.71 0.82 0.93 0.77 0.73
UR 0.71 0.66 0.90 0.53 0.83 0.75 0.82 0.66
RR 0.34 4.87 0.62 4.81 0.94 0.41 0.32 3.95
UU&UR&RR 0.77 0.59 0.90 0.53 0.92 0.47 0.88 0.53

for every data set (Table 3). As can be seen from the
statistical results, the siPLS could effectively select
optimal spectral intervals according to the kiwifruit
at different storage periods. Comparing with the UU,
UR, and UU&UR&RR data sets, the results of the four
models (calibrated by the parameters obtained from
the four data sets) on the RR data set were the best.
Therefore, the NIR spectra collected from unripe or
ripe kiwifruit could effectively predict the DM of ripe
kiwifruit.

The other way was to use the siPLS calibration
model with different data sets to predict the DM. For
example, the siPLS model based on UR data set was
used to predict DM for every data set (Table 4). It
shows that the NIR spectra were greatly changed as
the hydrolysis of starch into soluble sugar occurred
during storage. As the unripe kiwifruit contains more
starch, the optical density is higher due to stronger
light scattering. As the starch was converted into
soluble sugars, the ripe kiwifruit becomes more trans-
parent. The model UU worked to a limited degree on
RR data set (r = 0.82, RMSEP = 0.93). The result
of the model RR on UU data set was very poor (r =
0.34, RMSEP = 4.87). The reason was that the UU
model trained on unripe fruit might have confounding
problems due to starch and high optical density, and
that might make the UU model more robust to handle
DM in ripe fruit (such as little starch and more soluble
sugars). However, the RR model trained on ripe fruit
was less robust.

CONCLUSIONS

From the results, DM before and after maturing is
reasonably constant with only small losses due to
respiration, but it took place as the insoluble solids
(i.e., starch) turned into soluble solids (i.e., fructose,
glucose, and sucrose), leading to changes in NIR
spectra. The siPLS could optimize spectral intervals
at different storage periods of kiwifruit. In the siPLS
model of four data sets, the number of variables was
reduced by more than 70% and the number of com-
ponents was slightly reduced. When the NIR spectra
collected from unripe kiwifruit was used to predict
the DM of ripe kiwifruit, the number of variables was
830, the number of components was 10, correlation
coefficient (r) was 0.90, and the RMSEP was 0.53% in
the prediction set. So it is feasible to predict the DM of
ripe kiwifruit (edible phase) based on the NIR spectra
collected when the kiwifruit was unripe. The siPLS
model of RR data set achieved the best performance
with 656 variables, 11 components, a correlation
coefficient (r) of 0.94 and a RMSEP of 0.41% in the
prediction set. Thus, NIR spectroscopy is a suitable
tool for long-term prediction of the most important
fruit inner qualities such as DM in kiwifruits.
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