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ABSTRACT: This paper addresses ttf&., optimal control problem for a class of uncertain linear time-varying delay
systems. The interesting features here are that the system in consideration is non-autonomous, the state delay is time-
varying, and the controllers to be designed satisfy some exponential stability constraints on the closed-loop poles. Based on
the Lyapunov-Krasovskii functional method, we show thatihe optimal control problem for the system has a solution if

some appropriate linear control delay-like system is globally controllable.
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INTRODUCTION Krasovskii functional approach and the sufficient con-
ditions are obtained via solving either linear matrix
In recent decades, considerable attention has beequalities, or algebraic Riccati-type equati6fs
devoted to the problem of state estimation. When However, this approach may not be readily applied
priori information on external noises is not preciselyfor systems with time-varying parameters, which are
known, the celebrated Kalman filtering scheme is n&requently encountered in process control, filtering,
longer applicable. In such cased,, filtering can and mobile communication systems. The difficulty is
be used™. With H,, filtering the input signal is that the solution of a Riccati-type differential equation
assumed to be energy bounded and the main objectige in general, not uniformly positive definite as is
is to minimize the H,, norm of the filtering error required for use in a Lyapunov-Krasovskii functional
system. Other norms introduced for systems witibandidate. Hence the stability analysis becomes more
uncertainties aredl, and L;, which have different complicated, and in particular when the system delay
physical meanings when used as performance indexesid uncertainties are also time-varying. Some re-

Time delays are frequently encountered in variousults on the stabilization of linear time-varying (LTV)
engineering systems such as aircraft, long transmisystems have been tackled in Res9, but without
sion lines in pneumatic models, and chemical oconsidering time delays. To find A, controller
process control systems because of the time takéor LTV systems, the state-space approach is used
for transmission of measurement information. Asn Refs. 6,10 to derive sufficient conditions for the
these delays may be the source of instability andl,, control problem in terms of the solution of some
serious deterioration in the performance of closedRiccati differential equations. Based on the assump-
loop systems, thdi,, control problem of systems tion of uniform controllability of the nominal control
with time delays has received considerable attentiogystems, some sufficient conditions fHr,, of LTV
from many researchers in the last decade. systems were obtained in Refg.11.

A significant new development i/, optimal To the best of our knowledge, this paper is the
control theory has been the introduction of state-spadigst to present a unified approach that addresses the
methods. This has led to a rather transparent solutigmoblem of theH,, control problem for a class of
to the standard problem d@f ., control theory, which LTV systems subject to time-varying state delay, sys-
is to find a feedback controller stabilizing a giventem uncertainties, and an external disturbance. We
system that satisfies some normed suboptimal level @onsider the time-varying case of time-varying delays
perturbations/uncertainties (see, e.g., R&$). In and norm-bounded time-varying uncertainties in the
the H, control for time-invariant delay systems, thestate and input matrices. By using the Lyapunov-
corresponding methods make use of the Lyapunowrasovskii functional method, we show that the,
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control problem has a solution if the appropriate lineabefinition 1 Linear control systemil), wherew(t) =
control delay-like system is globally null-controllable0, is exponentially stabilizable if there exists a feed-
in finite time. The feedback stabilizing controllerback controlu(t) = K(t)z(t), such that the zero
is designed via the solution of matrix Riccati-typesolution of the closed-loop delay system

equations. i(t) = [A(t) + BOK ()]2(t) + As (D (t — h(t)),
PRELIMINARIES (2)

The following notation will be used throughout thisis exponentially stable in the Lyapunov sense, i.e.

paper. Rt denotes the set of all non-negative real AN >0,a>0: ||z(t, )| < N\|¢||e—at,
numbers, R* denotes an-dimensional Euclidean
space with the scalar produgt-), Lo ([t, o), R™) de-
notes the set of all strongly measuralilgintegrable In this paper, we consider the following/ .
R™-valued functions ont,cc), and I denotes the optimal control problem with nonzero initial condi-
identity matrix. A matrix@Q € M™*" is called non- tion812,

negative definite@ > 0) if (Qz,z) > 0, forallx €
R". If for somec > 0 we have(Qz,z) > c||z|?* for
allz € R™, thenq is called positive definite(§ > 0),
andA > B meansA — B > 0. A matrix function
Q(t) is uniformly positive definite@(t) >> 0) if

forallt > 0.

Definition 2 Given~ > 0, the H,, optimal control

problem for the systeml} has a solution if there is

a feedback contrak(t) K (t)x(t) such that (i) the sys-

tem (1), wherew(¢) = 0, is exponentially stabilizable,

(ii) there is a numbet, > 0 such that
. 2 + n

Fe>0: (Qt)x, z) = cllz|”, V (t,z) € RT x R". INEOIE

sup Y
colloll? + 5~ lw(®)l2dt =

where the supremum is taken over all initial states

3

It is well known that if the matrixA is symmetric
positive definite, then there is a matri such that

e i : N
A;_ 5" and Te matrix is usually defined bys = ¢ and non-zero admissible uncertaintiegt). In
Az. Let BMT(0,00) denote the set of all symmet- .

: . - : . . this case we say that the feedback conu@l) =
ric non-negative definite matrix functions which areK 1 (t) exponentially stabilizes the systet) (
continuous and bounded ™, let BMU™(0, o) (t)x(t) exp aly e Y '

denote the set of all symmetric uniformly positiveWe recall the concept of global controllability from
definite matrix functions which are continuous andRef. 13 which is concerned with the possibility of
bounded onk™, and letC([a,b], R™) denote the set steering any state to another state of the system in

of all R"-valued continuous functions da, b]. finite time. We will be considering the following
Consider the following uncertain LTV systemlinear time-varying control system, briefly denoted by
with time-varying delay: [A(t), B(t)],
(t) = A@t)z(t) + A1 (t)x(t — h(?t)) @(t) = A(t)z(t) + B(t)u(t), te RT. (4)
+ B(t)u(t) + B1(t)w(t), t € RT, 1)
2(t) = C)z(t) + D(t)u(t), Definition 3 System ) is globally null-controllable
z(t) = ¢(t),t € [—h,0], in finite time if for every initial staterq, there exist a

wherez € R" is the statex € R™ is the control, time T > 0 and an admissible contral(t) such that

w € RP is the uncertain inputz € RY is the the solutionz(t) of the system satisfies(0) = xo,
observation outputA(t), A (t), B(t), By(t), C(t), (T) =0.

and D(t) are given matrix functions continuous andProposition 1 (Klamka'*) Assume that the matrix
bounded onk*, and¢(t) € C[—h,0] with the norm functionsA(t), B(t) are analytic onR™. The system
]l = supse_pn g l[6(t)]l. The time-delay function [A(t), B(t)] is globally null controllable in finite time
h(t) € C|—h, 0] satisfies the condition if

0<h(t)<h, ht)<d<l, VteR". Jto > 0: rank[Mi(to), Ma(to), - - ., Mn(to)] = n,

5
We say that the control, is admissible ifu € wherelM; (t) = B(t) and ©)

Ly ([0, s], R™) for everys > 0, and the uncertainty

w is admissible ifw € -LQ([O,OO%RP).. Let z; be My (t) = —A(t)My_1(t) + ng—l(t),
the segment of the trajectory af(¢t) with the norm dt
el = sup.ernop ll(t + 5)]. fork=2,...,n-1.
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Associated with the control system)( we consider Giveny > 0, u = 1/(1 — §), we set
the following matrix Riccati equation
, . A (t) = A(t) + Bi(t) B{ (t) /v
P(t)+A"(t)P(t) + i(t)A(t) ©) + pA; (AT (t) — B(t)B™ (1),
~ POBOBOPE) Q) =0. B, (t) = [B()BT(t) - By(t) B (1)1

— pA (AT ()3,

Proposition 2 (Kalman et al'®) Assume that the sys-
tem[A(t), B(t)] is globally null-controllable in finite

time. Then for any matrig) € BM*(0,0), there is  Theorem 1 Assume that fot > 0,
a solution? € BM (0, ) to (6).

The main result is stated in the following.

T 1 T T
Proposition 3 (Cauchy matrix inequality) LetQ, S B(t)B™(t) — §Bl(t)Bl (t) = nAL ()AL (1) > 0,

be symmetric matrices of appropriate dimensions and
S > 0. Then and linear control systemA,(t), B,(t)] is globally
null-controllable in finite time. Then th& ., optimal
2Qy,z) — (Sy,y) < (QS™'Q"z,z), V(x,y).  control problem for the systefi) has a solution.

The proof of the above proposition is easily derived’he following lemma is needed for the proof of
from completing the square. Theorem 1

Proposition 4 For any symmetric matrix function Lemma 1 The H,, optimal control problem for the
A(t) bounded onRk™, there exists) € BMT(0,00) Systen(l) has a solution if there exist matrix functions
such thatQ(t) — A(t) > 0. X,R € BMU™(0, c0) such that the following matrix
inequality holds
Proof: The matrix@(t) may be chosen as
X+AYX + XA - X[BB*Y —1/yB,Bf
t) = diag{q1 (t), ¢2(t), .. ., qn(t)},
Q() Ig{Ql()vQQ()v ’Q()} —MAlA?}X+CTC+I+RSO, tZO
whereg; (t) > max{|¢(t)],0} and (8)

1 The feedback control is
@ (t) = ay(t) + 1 Za?j(t) +n—1,

i u(t) = =BT ()X (t)z(t), t>0. 9)
fori = 1,...,n. From this it is straightforward to Proof: Using ©), we consider the following Lya-
show thatQ(t) — A(t) > 0. O punov function for the closed-loop syste®),(where

w(t) =0, K(t)z(t) = —BT(t) X (t)z(t):
Proposition 5 (Lyapunov stability theorem?®)
Consider the functional differential equation t )
& = f(t,z,), with 2(t) = 6(t) whent € [~h,0]. V(Lz) = <X(t)x(t)v$(t)>+/ lx(s)] ds.

If there is a functionV (¢, x;) and positive numbers o

Ai, i = 1,2,3 such that the solution:(t) obeys SinceX >0, there is a positive numbey such that
Mllz(t)|]? < V(t,2¢) < Aoflae|? for ¢t € R, and

V(x(t)) < —Xsljz(¢)]|?, then the zero solution is Mlz@®|? < V(t,z), t>0.

asymptotically stable.
On the other hand, since the matrix functi&i¢) is
MAIN RESULT bounded om?* and||z(t)|| < ||z¢|/, we have

In this section we will omit the variable of matrix
functions if it does not cause any confusion. Consider
the linear control systeni) where, as in Refs3,12,
we assume that and hence

V(t,z) < (sup [|X@)| +h)llzel*, ¢ =0,
teRt

DY®[D@) Cc]=1 0, t=0. (@)  Mle@®* <V(ta) < Aefal?, VE=0, (10)
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where Ay = sup,cp+ |[X(¢)|| + k. Taking the Applying the inequality 10) again gives
derivative of V (¢, z;) along the solutionz(¢) of the

closed-loop system, we have lz(t, @) < VV(0,20)/Aje~Ps/2A2)t
. . 7()\3/2)\2)t
V(ta) = (X(O(t) 2(t) +2(X 0 (1), 2(1)) < Nliele
+z@))? = (1= h@)z(t —hO)>  where N = \/Amax(X(0) + 1)/A1. The last in-
= (X 4+ ATX + XA+ Dz(t), z(t)) equality implies that the closed-loop system is ex-

ponentially stable, i.e., the system is exponentially

+2(X Bu(t), 2(1)) stabilizable. To complete the proof of the lemma, it

+ 2(X Ay (t — h(t)), z(1)) remains to show the-suboptimal condition3). For
—(1- ( |a(t — (t))||2 this we consider the relation

<{(X + ATX + XA+ Da(t), z(t)) F (M2 — il )21 ds
O empn JRECIEEOE
42X Ayz(t— hit)). () = [ o2
— (1= 8)]Ja(t - h(®)| ’

t
Using Proposition iwe have Vs, ws)] ds = /0 Vis,zs)ds,

2UX Ara(t — h(t)), 2(t)) — (1 — 8)|[(t — h(t))|2 whereV (¢, z;) is estimated as
< (X AL AT (), x(t)). Vit ) < —Msllz(@)]® = (CTCz(t), x(t))
—(XBBTXz(t), z(t))
. S — 1/9(XB1 By X(t), (t))
Vit,z) < (X + ATX + XA+ Da(t), 2(t)) X Bywlt), 2(1)).
— 2(XBBYXx(t),z(t))
+ (XA AT x(t), z(t)).

Therefore, (12)

SinceV (¢, z;) > 0, we have

t
Taking the matrix inequality) into account, we have / V(s zs)ds =V (t,z(t)) — V(0,2(0))
0

> —V(0,2(0)) := —(X(0)zg, zo)-

V(t,z) < —(XB1Bl Xa(t), z(t)) /v Therefore

— (XBB" Xa(t),x(t))

—{(CTOx(t), () — (Rx(t), z(t)). 2 — o) 2ds < | Tia(e(2
n LI =alet)as < [ il
= llw(s) 2+ V(s,2,)] ds + (X (0)ao, o).

Since(CTCx(t), z(t)) = 0, (XBBT Xx(t),2(t)) > 13)

0, (XB,BI Xx(t),z(t)) > 0, andR(t) >> 0, from
11) it foll that th b h that .
(11) itfollows that there is & numbe > 0 such tha Taking the estimation d¥ (s, z) from (12) and using

V(t,z(t) < —Asllz(®)|?, Vte R'. (7) for

2 _ T T

Therefore, byProposition 5the system is asymptot- lz@®F =([€"C + XBB Xz, z),
ically stable. To determine the exponential factors,e gptain
from (10) we have

Tit,00) € —OafaVitad, ¥¢3 0. L1l <alotPas < [ [l
Therefore, —(X BB} Xx(s),x(s)) /v + 2(X Byw(s), z(s))
V(t,2) < V(0,z0)e (o0 130, —y{w(s), w(s))] ds + (X (0)zo, z0).
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Applying Proposition 3gives

A X Biw, z) — y{w,w) < <XB131FX‘T,£C>/’}/.

Then,
t t
J el =l as < =da [ (o) P as
+<X(O)”C07x0> < <X(O)x0w’£0>th € R+'
Lettingt — oo we finally obtain that
/0 217 = Ylw(®)[*] dt < (X (0)o, x0),

and hence
Awmamﬁw<
V{Amhﬂmﬁﬁ+(X@WhN@F}

Settingcy = ||X(0)]|/~, we note that] X (0)] # 0
becauseX >> 0, and hence;y > 0. From the last
inequality we have

Jo ll=(t)])? dt N
collgl? + f5~ lw(®)2de =~

for all ¢ and non-zerav(t) € L2([0,00),W). This
completes the proof of the lemma.

We are now in position to prove the main result.
Assume that the system

Proof of Theorem 1
[A,(t), By(t)] is globally null controllable in finite
time. UsingProposition 4 we find a matrix function
Q € BM™(0, 00) such that

Qt) = At) + AT(t) + CT()C(t) + 21.  (14)
By Proposition 2the matrix Riccati equation
P+ ATP+PA, ~PB.BTP+Q=0, (15)

has a solutiol® € BM (0, c0). We can reformulate

(15) as

P+ AP+ 1)+ (P+ 1A~ (P+1)[BB"
— BB} /v = pAiAT)(P + 1) +Q — (A + AT)
+BB" — BB} /vy — uA, AT = 0.
Therefore, by takingl4) into account, we obtain

P+ AT P4+ 1)+ (P+I1)A— (P+1)BBT

— BB /vy — pAAT(P+ 1) CTC

+[BBT — B\BY /vy — pA AT + 21 < 0.
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Putting X (¢t) = P(t) + I and
R(t) = [B()B" (t)~1/yB1(t) BT () — A1 AT +1,

we see that the matrice¥ (¢t) >> 0 and R(t) > 0
satisfy the matrix Riccati inequality8) and hence the
proof is completed by usingemma 1 O

Remark 1 FromTheorem 1to verify that a solution
of the H,, control problem for systemlj exists, it
suffices to check the global null-controllability of the
linear control delay-like systef, (t), B,(t)]. The
stabilizing feedback control is defined by

u(t) = BT ()[P(t) + I|z(t), te€RY,

where P(t) is a solution of the matrix Riccati equa-
tion (15). The problem of finding solutions of ma-
trix Riccati equations is in general still complicated.
However, some efficient approaches to solving this
problem can be found, for instance, in Rels, 17
and the references therein.

Example 1 Consider {) with h(t) = 0.25sin” ¢, and

—1.5 — 0.5e—2sint 1
A(t) - ( -1 77/4 _ 0.5e2sint) )

ww = 0). =m0 = (y).

0.5e~ sint —0.5e~ sint
C(t) = (—0.56_ sint 0.5e~ sint ) ’

(1)

The assumption7) holds asDT(t)D(t) = I and
DT(t)C(t) = 0. Sinces = 0.5, for v = 4, we have

BBT —0.25B, BT — 24, AT — (0'35 8) >0,

B, = [BBT —0.25B, B — 24, AT]*/?
(05 0
—\o o)

A, =A—BB" +0.25B,B] + 24, A7

—1— 0.5¢~2sint 1
-1 —0.25 — 0.5e—2sint |

and it is clear that both matrix function$, and B,
are analytic. Moreover,

M(t) = By(t), Ms(t) = — A () B(t)
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and it is easy to see that there exigts> 0 so thatthe 4.

condition 6), namely

rank [Ml(to), Mg(to)] =2 5.

holds. Thus, byProposition 1 the linear control
system[A, (t), B, (t)] is globally null-controllable

in finite time and byTheorem 1the H,, optimal 6

control problem for the system has a solution. To find
the feedback stabilizing control, we take

7.
Q- 15/4 + e~ 2sint —0.5
a -0.5 7/4 + e 2snt |- 8
It is straightforward to show tha®) € BM (0, 00)
and
9
Q> A(t)+ AT (t) + CT(t)C(t) + 2I.
We can find the solutiof?(¢) of Riccati equation5) 10
as
1 0
P= <0 0.5> > 0. 11
Therefore, the feedback stabilizing control is
u(t) = =BT ()[P(t) + Na(t) 12
=—(2 0)z(t) = —2z1(t)
T 13.
wherez(t) = (z1(t) a2(t)) .
CONCLUSIONS
14.

In this paper, we have shown that tii&, optimal
control problem for LTV systems with time-varying

delay has a solution if the appropriate linear controllS'

delay-like system is globally null-controllable in finite
time. The feedback stabilizing controller is designed g
via the solution of matrix Riccati equations.
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