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ABSTRACT : This paper addresses theH∞ optimal control problem for a class of uncertain linear time-varying delay
systems. The interesting features here are that the system in consideration is non-autonomous, the state delay is time-
varying, and the controllers to be designed satisfy some exponential stability constraints on the closed-loop poles. Based on
the Lyapunov-Krasovskii functional method, we show that theH∞ optimal control problem for the system has a solution if
some appropriate linear control delay-like system is globally controllable.
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INTRODUCTION

In recent decades, considerable attention has been
devoted to the problem of state estimation. When a
priori information on external noises is not precisely
known, the celebrated Kalman filtering scheme is no
longer applicable. In such cases,H∞ filtering can
be used1–4. With H∞ filtering the input signal is
assumed to be energy bounded and the main objective
is to minimize theH∞ norm of the filtering error
system. Other norms introduced for systems with
uncertainties areL2 and L1, which have different
physical meanings when used as performance indexes.

Time delays are frequently encountered in various
engineering systems such as aircraft, long transmis-
sion lines in pneumatic models, and chemical or
process control systems because of the time taken
for transmission of measurement information. As
these delays may be the source of instability and
serious deterioration in the performance of closed-
loop systems, theH∞ control problem of systems
with time delays has received considerable attention
from many researchers in the last decade.

A significant new development inH∞ optimal
control theory has been the introduction of state-space
methods. This has led to a rather transparent solution
to the standard problem ofH∞ control theory, which
is to find a feedback controller stabilizing a given
system that satisfies some normed suboptimal level on
perturbations/uncertainties (see, e.g., Refs.5,6). In
theH∞ control for time-invariant delay systems, the
corresponding methods make use of the Lyapunov-

Krasovskii functional approach and the sufficient con-
ditions are obtained via solving either linear matrix
inequalities, or algebraic Riccati-type equations7,8.
However, this approach may not be readily applied
for systems with time-varying parameters, which are
frequently encountered in process control, filtering,
and mobile communication systems. The difficulty is
that the solution of a Riccati-type differential equation
is, in general, not uniformly positive definite as is
required for use in a Lyapunov-Krasovskii functional
candidate. Hence the stability analysis becomes more
complicated, and in particular when the system delay
and uncertainties are also time-varying. Some re-
sults on the stabilization of linear time-varying (LTV)
systems have been tackled in Refs.6,9, but without
considering time delays. To find aH∞ controller
for LTV systems, the state-space approach is used
in Refs. 6,10 to derive sufficient conditions for the
H∞ control problem in terms of the solution of some
Riccati differential equations. Based on the assump-
tion of uniform controllability of the nominal control
systems, some sufficient conditions forH∞ of LTV
systems were obtained in Refs.7,11.

To the best of our knowledge, this paper is the
first to present a unified approach that addresses the
problem of theH∞ control problem for a class of
LTV systems subject to time-varying state delay, sys-
tem uncertainties, and an external disturbance. We
consider the time-varying case of time-varying delays
and norm-bounded time-varying uncertainties in the
state and input matrices. By using the Lyapunov-
Krasovskii functional method, we show that theH∞
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control problem has a solution if the appropriate linear
control delay-like system is globally null-controllable
in finite time. The feedback stabilizing controller
is designed via the solution of matrix Riccati-type
equations.

PRELIMINARIES

The following notation will be used throughout this
paper. R+ denotes the set of all non-negative real
numbers, Rn denotes an-dimensional Euclidean
space with the scalar product〈·, ·〉, L2([t,∞), Rn) de-
notes the set of all strongly measurableL2-integrable
Rn-valued functions on[t,∞), and I denotes the
identity matrix. A matrixQ ∈ Mn×n is called non-
negative definite (Q > 0) if 〈Qx, x〉 > 0, for all x ∈
Rn. If for somec > 0 we have〈Qx, x〉 > c‖x‖2 for
all x ∈ Rn, thenQ is called positive definite (Q > 0),
andA > B meansA − B > 0. A matrix function
Q(t) is uniformly positive definite (Q(t)>>0) if

∃ c > 0 : 〈Q(t)x, x〉 > c‖x‖2, ∀ (t, x) ∈ R+ ×Rn.

It is well known that if the matrixA is symmetric
positive definite, then there is a matrixB such that
A = B2 and the matrixB is usually defined byB =
A

1
2 . Let BM+(0,∞) denote the set of all symmet-

ric non-negative definite matrix functions which are
continuous and bounded onR+, let BMU+(0,∞)
denote the set of all symmetric uniformly positive
definite matrix functions which are continuous and
bounded onR+, and letC([a, b], Rn) denote the set
of all Rn-valued continuous functions on[a, b].

Consider the following uncertain LTV system
with time-varying delay:

ẋ(t) = A(t)x(t) + A1(t)x(t− h(t))

+ B(t)u(t) + B1(t)w(t), t ∈ R+,

z(t) = C(t)x(t) + D(t)u(t),
x(t) = φ(t), t ∈ [−h, 0],

(1)

wherex ∈ Rn is the state,u ∈ Rm is the control,
w ∈ Rp is the uncertain input,z ∈ Rq is the
observation output,A(t), A1(t), B(t), B1(t), C(t),
andD(t) are given matrix functions continuous and
bounded onR+, andφ(t) ∈ C[−h, 0] with the norm
‖φ‖ = supt∈[−h,0] ‖φ(t)‖. The time-delay function
h(t) ∈ C[−h, 0] satisfies the condition

0 6 h(t) 6 h, ḣ(t) 6 δ < 1, ∀ t ∈ R+.

We say that the controlu is admissible if u ∈
L2([0, s], Rm) for everys > 0, and the uncertainty
w is admissible ifw ∈ L2([0,∞), Rp). Let xt be
the segment of the trajectory ofx(t) with the norm
‖xt‖ = sups∈[−h,0] ‖‖x(t + s)‖.

Definition 1 Linear control system (1), wherew(t) =
0, is exponentially stabilizable if there exists a feed-
back controlu(t) = K(t)x(t), such that the zero
solution of the closed-loop delay system

ẋ(t) = [A(t) + B(t)K(t)]x(t) + A1(t)x(t− h(t)),
(2)

is exponentially stable in the Lyapunov sense, i.e.

∃ N > 0, α > 0 : ‖x(t, φ)‖ 6 N‖φ‖e−αt,

for all t > 0.

In this paper, we consider the followingH∞
optimal control problem with nonzero initial condi-
tion8,12.

Definition 2 Given γ > 0, the H∞ optimal control
problem for the system (1) has a solution if there is
a feedback controlu(t)K(t)x(t) such that (i) the sys-
tem (1), wherew(t) = 0, is exponentially stabilizable,
(ii) there is a numberc0 > 0 such that

sup

∫∞
0

‖z(t)‖2 dt

c0‖φ‖2 +
∫∞
0

‖w(t)‖2 dt
6 γ, (3)

where the supremum is taken over all initial states
φ and non-zero admissible uncertaintiesw(t). In
this case we say that the feedback controlu(t) =
K(t)x(t) exponentially stabilizes the system (1).

We recall the concept of global controllability from
Ref. 13 which is concerned with the possibility of
steering any state to another state of the system in
finite time. We will be considering the following
linear time-varying control system, briefly denoted by
[A(t), B(t)],

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R+. (4)

Definition 3 System (1) is globally null-controllable
in finite time if for every initial statex0, there exist a
time T > 0 and an admissible controlu(t) such that
the solutionx(t) of the system satisfiesx(0) = x0,
x(T ) = 0.

Proposition 1 (Klamka14) Assume that the matrix
functionsA(t), B(t) are analytic onR+. The system
[A(t), B(t)] is globally null controllable in finite time
if

∃ t0 > 0 : rank[M1(t0),M2(t0), . . . ,Mn(t0)] = n,
(5)

whereM1(t) = B(t) and

Mk(t) = −A(t)Mk−1(t) +
d
dt

Mk−1(t),

for k = 2, . . . , n− 1.
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Associated with the control system (4), we consider
the following matrix Riccati equation

Ṗ (t)+AT(t)P (t) + P (t)A(t)

− P (t)B(t)BT(t)P (t) + Q(t) = 0.
(6)

Proposition 2 (Kalman et al13) Assume that the sys-
tem[A(t), B(t)] is globally null-controllable in finite
time. Then for any matrixQ ∈ BM+(0,∞), there is
a solutionP ∈ BM+(0,∞) to (6).

Proposition 3 (Cauchy matrix inequality) LetQ, S
be symmetric matrices of appropriate dimensions and
S > 0. Then

2〈Qy, x〉 − 〈Sy, y〉 6 〈QS−1QTx, x〉, ∀ (x, y).

The proof of the above proposition is easily derived
from completing the square.

Proposition 4 For any symmetric matrix function
A(t) bounded onR+, there existsQ ∈ BM+(0,∞)
such thatQ(t)−A(t) > 0.

Proof: The matrixQ(t) may be chosen as

Q(t) = diag{q1(t), q2(t), . . . , qn(t)},

whereqi(t) > max{|q0
i (t)|, 0} and

q0
i (t) = aii(t) +

1
4

n∑
j 6=i

a2
ij(t) + n− 1,

for i = 1, . . . , n. From this it is straightforward to
show thatQ(t)−A(t) > 0. �

Proposition 5 (Lyapunov stability theorem15)
Consider the functional differential equation
ẋ = f(t, xt), with x(t) = φ(t) whent ∈ [−h, 0].
If there is a functionV (t, xt) and positive numbers
λi, i = 1, 2, 3 such that the solutionx(t) obeys
λ1‖x(t)‖2 6 V (t, xt) 6 λ2‖xt‖2 for t ∈ R+, and
V̇ (x(t)) 6 −λ3‖x(t)‖2, then the zero solution is
asymptotically stable.

MAIN RESULT

In this section we will omit the variablet of matrix
functions if it does not cause any confusion. Consider
the linear control system (1) where, as in Refs.8,12,
we assume that

DT(t)[D(t) C(t)] = [I 0], t > 0. (7)

Givenγ > 0, µ = 1/(1− δ), we set

Aγ(t) = A(t) + B1(t)BT
1 (t)/γ

+ µA1(t)AT
1 (t)−B(t)BT(t),

Bγ(t) = [B(t)BT(t)−B1(t)BT
1 (t)/γ

− µA1(t)AT
1 (t)]

1
2 .

The main result is stated in the following.

Theorem 1 Assume that fort > 0,

B(t)BT(t)− 1
γ

B1(t)BT
1 (t)− µA1(t)AT

1 (t) > 0,

and linear control system[Aγ(t), Bγ(t)] is globally
null-controllable in finite time. Then theH∞ optimal
control problem for the system(1) has a solution.

The following lemma is needed for the proof of
Theorem 1.

Lemma 1 TheH∞ optimal control problem for the
system(1) has a solution if there exist matrix functions
X, R ∈ BMU+(0,∞) such that the following matrix
inequality holds

Ẋ+ATX + XA−X[BBT − 1/γB1B
T
1

− µA1A
T
1 ]X + CTC + I + R 6 0, t > 0.

(8)

The feedback control is

u(t) = −BT(t)X(t)x(t), t > 0. (9)

Proof: Using (9), we consider the following Lya-
punov function for the closed-loop system (2), where
w(t) = 0, K(t)x(t) = −BT(t)X(t)x(t):

V (t, xt) = 〈X(t)x(t), x(t)〉+
∫ t

t−h(t)

‖x(s)‖2 ds.

SinceX >>0, there is a positive numberλ1 such that

λ1‖x(t)‖2 6 V (t, xt), t > 0.

On the other hand, since the matrix functionX(t) is
bounded onR+ and‖x(t)‖ 6 ‖xt‖, we have

V (t, xt) 6 ( sup
t∈R+

‖X(t)‖+ h)‖xt‖2, t > 0,

and hence

λ1‖x(t)‖2 6 V (t, x) 6 λ2‖xt‖2, ∀ t > 0, (10)
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where λ2 = supt∈R+ ‖X(t)‖ + h. Taking the
derivative ofV (t, xt) along the solutionx(t) of the
closed-loop system, we have

V̇ (t, xt) = 〈Ẋ(t)x(t), x(t)〉+ 2〈X(t)ẋ(t), x(t)〉
+ ‖x(t)‖2 − (1− ḣ(t)‖x(t− h(t))‖2

= 〈(Ẋ + ATX + XA + I)x(t), x(t)〉
+ 2〈XBu(t), x(t)〉
+ 2〈XA1x(t− h(t)), x(t)〉
− (1− ḣ(t)‖x(t− h(t))‖2

6 〈(Ẋ + ATX + XA + I)x(t), x(t)〉
− 2〈XBBTXx(t), x(t)〉
+ 2〈XA1x(t− h(t)), x(t)〉
− (1− δ)‖x(t− h(t))‖2

UsingProposition 1we have

2〈XA1x(t− h(t)), x(t)〉 − (1− δ)‖x(t− h(t))‖2

6 µ〈XA1A
T
1 x(t), x(t)〉.

Therefore,

V̇ (t, xt) 6 〈(Ẋ + ATX + XA + I)x(t), x(t)〉
− 2〈XBBTXx(t), x(t)〉
+ µ〈XA1A

T
1 x(t), x(t)〉.

Taking the matrix inequality (8) into account, we have

V̇ (t, xt) 6 −〈XB1B
T
1 Xx(t), x(t)〉/γ

− 〈XBBTXx(t), x(t)〉
− 〈CTCx(t), x(t)〉 − 〈Rx(t), x(t)〉.

(11)

Since〈CTCx(t), x(t)〉 > 0, 〈XBBTXx(t), x(t)〉 >
0, 〈XB1B

T
1 Xx(t), x(t)〉 > 0, andR(t) >> 0, from

(11) it follows that there is a numberλ3 > 0 such that

V̇ (t, x(t)) 6 −λ3‖x(t)‖2, ∀ t ∈ R+.

Therefore, byProposition 5, the system is asymptot-
ically stable. To determine the exponential factors,
from (10) we have

V̇ (t, xt) 6 −(λ3/λ2)V (t, xt), ∀ t > 0.

Therefore,

V (t, xt) 6 V (0, x0)e−(λ3/λ2)t, t > 0.

Applying the inequality (10) again gives

‖x(t, φ)‖ 6
√

V (0, x0)/λ1e−(λ3/2λ2)t

6 N‖φ‖e−(λ3/2λ2)t

whereN =
√

λmax(X(0)) + h)/λ1. The last in-
equality implies that the closed-loop system is ex-
ponentially stable, i.e., the system is exponentially
stabilizable. To complete the proof of the lemma, it
remains to show theγ-suboptimal condition (3). For
this we consider the relation∫ t

0

[‖z(s)‖2 − γ‖w(s)‖2] ds

=
∫ t

0

[
‖z(s)‖2 − γ‖w(s)‖2

+ V̇ (s, xs)
]
ds−

∫ t

0

V̇ (s, xs) ds,

whereV̇ (t, xt) is estimated as

V̇ (t, xt) 6 −λ3‖x(t)‖2 − 〈CTCx(t), x(t)〉
− 〈XBBTXx(t), x(t)〉
− 1/γ〈XB1B

T
1 Xx(t), x(t)〉

+ 2〈XB1w(t), x(t)〉.

(12)

SinceV (t, xt) > 0, we have∫ t

0

V̇ (s, xs) ds = V (t, x(t))− V (0, x(0))

> −V (0, x(0)) := −〈X(0)x0, x0〉.

Therefore,∫ t

0

[‖z(s)‖2 − γ‖w(s)‖2] ds 6
∫ t

0

[
‖z(s)‖2

− γ‖w(s)‖2 + V̇ (s, xs)
]
ds + 〈X(0)x0, x0〉.

(13)

Taking the estimation oḟV (s, xs) from (12) and using
(7) for

‖z(t)‖2 = 〈[CTC + XBBTX]x, x〉,

we obtain∫ t

0

[‖z(s)‖2 − γ‖w(s)‖2] ds 6
∫ t

0

[
[−λ3‖x(s)‖2

−〈XB1B
T
1 Xx(s), x(s)〉/γ + 2〈XB1w(s), x(s)〉

−γ〈w(s), w(s)〉
]
ds + 〈X(0)x0, x0〉.
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Applying Proposition 3gives

2〈XB1w, x〉 − γ〈w,w〉 6 〈XB1B
T
1 Xx, x〉/γ.

Then,∫ t

0

[‖z‖2 − γ‖w‖2] ds 6 −λ3

∫ t

0

‖x(s)‖2 ds

+〈X(0)x0, x0〉 6 〈X(0)x0, x0〉,∀ t ∈ R+.

Letting t →∞ we finally obtain that∫ ∞

0

‖z(t)‖2 − γ‖w(t)‖2] dt 6 〈X(0)x0, x0〉,

and hence∫ ∞

0

[‖z(t)‖2 dt 6

γ

{∫ ∞

0

‖w(t)‖2 dt + (‖X(0)‖/γ)‖φ‖2

}
.

Settingc0 = ‖X(0)‖/γ, we note that‖X(0)‖ 6= 0
becauseX >> 0, and hencec0 > 0. From the last
inequality we have∫∞

0
‖z(t)‖2 dt

c0‖φ‖2 +
∫∞
0

‖w(t)‖2 dt
6 γ,

for all φ and non-zerow(t) ∈ L2([0,∞),W ). This
completes the proof of the lemma. �

We are now in position to prove the main result.
Proof of Theorem 1: Assume that the system
[Aγ(t), Bγ(t)] is globally null controllable in finite
time. UsingProposition 4, we find a matrix function
Q ∈ BM+(0,∞) such that

Q(t) > A(t) + AT(t) + CT(t)C(t) + 2I. (14)

By Proposition 2, the matrix Riccati equation

Ṗ + AT
γ P + PAγ − PBγBT

γ P + Q = 0, (15)

has a solutionP ∈ BM+(0,∞). We can reformulate
(15) as

Ṗ + AT(P + I) + (P + I)A− (P + I)[BBT

−B1B
T
1 /γ − µA1A

T
1 ](P + I) + Q− (A + AT)

+ BBT −B1B
T
1 /γ − µA1A

T
1 = 0.

Therefore, by taking (14) into account, we obtain

Ṗ + AT(P + I) + (P + I)A− (P + I)[BBT

−B1B
T
1 /γ − µA1A

T
1 ](P + I)CTC

+ [BBT −B1B
T
1 /γ − µA1A

T
1 ] + 2I 6 0.

PuttingX(t) = P (t) + I and

R(t) = [B(t)BT(t)−1/γB1(t)BT
1 (t)−µA1A

T
1 ]+I,

we see that the matricesX(t) >> 0 and R(t) >> 0
satisfy the matrix Riccati inequality (8) and hence the
proof is completed by usingLemma 1. �

Remark 1 FromTheorem 1, to verify that a solution
of the H∞ control problem for system (1) exists, it
suffices to check the global null-controllability of the
linear control delay-like system[Aγ(t), Bγ(t)]. The
stabilizing feedback control is defined by

u(t) = −BT(t)[P (t) + I]x(t), t ∈ R+,

whereP (t) is a solution of the matrix Riccati equa-
tion (15). The problem of finding solutions of ma-
trix Riccati equations is in general still complicated.
However, some efficient approaches to solving this
problem can be found, for instance, in Refs.16,17
and the references therein.

Example 1 Consider (1) with h(t) = 0.25 sin2 t, and

A(t) =
(
−1.5− 0.5e−2 sin t 1

−1 −7/4− 0.5e−2 sin t

)
,

A1(t) =
(

0.5 0
0 0

)
, B(t) = B1(t) =

(
1
0

)
,

C(t) =
(

0.5e− sin t −0.5e− sin t

−0.5e− sin t 0.5e− sin t

)
,

D =
(

1/
√

2
1/
√

2

)
.

The assumption (7) holds asDT(t)D(t) = I and
DT(t)C(t) = 0. Sinceδ = 0.5, for γ = 4, we have

BBT − 0.25B1B
T
1 − 2A1A

T
1 =

(
0.25 0
0 0

)
> 0,

Bγ = [BBT − 0.25B1B
T
1 − 2A1A

T
1 ]1/2

=
(

0.5 0
0 0

)
,

Aγ = A−BBT + 0.25B1B
T
1 + 2A1A

T
1

=
(
−1− 0.5e−2 sin t 1

−1 −0.25− 0.5e−2 sin t

)
,

and it is clear that both matrix functionsAγ andBγ

are analytic. Moreover,

M1(t) = Bγ(t), M2(t) = −Aγ(t)Bγ(t)
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and it is easy to see that there existst0 > 0 so that the
condition (5), namely

rank [M1(t0), M2(t0)] = 2

holds. Thus, byProposition 1, the linear control
system[Aγ (t) , Bγ (t)] is globally null-controllable
in finite time and byTheorem 1the H∞ optimal
control problem for the system has a solution. To find
the feedback stabilizing control, we take

Q =
(

15/4 + e−2 sin t −0.5
−0.5 7/4 + e−2 sin t

)
.

It is straightforward to show thatQ ∈ BM+(0,∞)
and

Q > A(t) + AT(t) + CT(t)C(t) + 2I.

We can find the solutionP (t) of Riccati equation (15)
as

P =
(

1 0
0 0.5

)
> 0.

Therefore, the feedback stabilizing control is

u (t) = −BT(t)[P (t) + I]x(t)

= −
(
2 0

)
x(t) = −2x1(t)

wherex(t) =
(
x1(t) x2(t)

)T
.

CONCLUSIONS

In this paper, we have shown that theH∞ optimal
control problem for LTV systems with time-varying
delay has a solution if the appropriate linear control
delay-like system is globally null-controllable in finite
time. The feedback stabilizing controller is designed
via the solution of matrix Riccati equations.
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