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ABSTRACT : Exudates are one of the primary signs of diabetic retinopathy which is a main cause of blindness that could
be prevented with an early screening process. Pupil dilation is required in the normal screening process but this affects
patients’ vision. Automatic computerized screening could facilitate the screening process, reduce inspection time, and
increase accuracy. In this paper we propose an automatic method to detect exudates from low-contrast digital images of
retinopathy patients with non-dilated pupils using a fuzzy c-means (FCM) clustering technique. Preprocessing of contrast
enhancement was applied in order to enhance the quality of the input image before four features, namely, intensity, standard
deviation on intensity, hue, and number of edge pixels, were selected to supply to the FCM method. The number of required
clusters was optimally selected from a quantitative experiment where it was varied from two to eight clusters. The number
of cluster optimization was based on sensitivity and specificity which were calculated by comparison of the detected results
and hand-drawn ground truths from expert ophthalmologists. The positive predictive value and positive likelihood ratio were
also used to evaluate the overall performance of this method. From the result of the subtracted cluster with the number of
clusters equalling 2, it was found that the proposed method detected exudates with 92.18% sensitivity and 91.52% sensitivity.

KEYWORDS : non-dilated retinal images, fuzzy c-means clustering, medical image processing

INTRODUCTION

Blindness is an outcome of diabetic retinopathy and
its prevalence is set to continue rising. An estimated
50–65 new cases of blindness per 100 000 occurs
every year1. The screening of diabetic patients for
the development of diabetic retinopathy can poten-
tially reduce the risk of blindness in these patients
by 50%2–6. Early detection enables laser therapy
to be performed to prevent or delay visual loss and
may be used to encourage improvement in diabetic
control. Current methods of detection and assessment
of diabetic retinopathy are manual, expensive, and
require trained ophthalmologists.

Sinthanayothin et al3,4 reported the result of an
automated detection of diabetic retinopathy on digital
fundus images using a recursive region growing seg-
mentation (RRGS) algorithm on a 10×10 window.
In the preprocessing step, adaptive, local, contrast
enhancement was applied. The optic disc, blood ves-
sels, and fovea detection were also localized. Sanchez
et al5 combined colour and sharp edge features to de-

tect the exudates. The yellowish objects were detected
first; the objects in the image with sharp edges were
then detected using Kirsch’s mask and different rota-
tions of it on the green component. The combination
of results of yellowish objects with sharp edges was
used to determine the exudates. Hsu et al6 presented a
domain knowledge based approach to detect exudates.
A median filter was used to compute an intensity
difference map. Dynamic clustering was then used to
determine lesion clusters. Finally, domain knowledge
was applied to identify true exudates. Gardner et al7

proposed an automatic detection of diabetic retinopa-
thy using an artificial neural network. The exudates
were identified from grey-level images and the fundus
image was analysed using a back-propagation neural
network. The classification of a 20×20 region was
used rather than a pixel-level classification. Wang
et al8 used colour features on a Bayesian statistical
classifier to classify each pixel into lesion or non-
lesion classes. Walter et al9 detected exudates us-
ing grey-level variation and contours determined by
means of morphological reconstruction techniques.
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Phillips et al10 applied a thresholding technique based
on the selection of regions to detect exudates. A patch
of size 256×192 pixels was selected over the area
of interest. Global thresholding was used to detect
the large exudates while local thresholding was used
to detect the lower intensity exudates. Huiqi and
Chutatape11 proposed an exudate extraction technique
by using a combination of region growing and edge
detection techniques. The optic disc was also detected
in this paper by principal component analysis. The
shape of the optic disc was then detected using a
modified active shape model. Usher et al12 detected
the candidate exudate regions by using a combination
of RRGS and adaptive intensity thresholding. The
candidate regions were extracted using size, shape,
hue, and intensity features. Then these features were
used as the input to a neural network. Kavitha and
Devi13 proposed three steps to detect exudates. Me-
dian filtering and morphological operation were used
to detect blood vessels. Multilevel thresholding was
used to extract the bright regions in a second step. The
convergent point of blood vessels was used to detect
the optic disc and finally, further bright regions were
assigned as exudates. Goh et al14 used the minimum
distance discriminant to detect the exudates. The
spectrum feature centre of exudates and background
were computed and then the distance from each pixel
to the class centre was calculated. The pixel was
classified as exudate if it fell within the minimum
distance. Ege et al15 used a median filter to remove
noise. Bright lesions and dark lesions were separated
by thresholding. A region growing algorithm was
used to locate exudates. Bayesian, Mahalanobis, and
kNN classifiers were tested. From these experiments,
the Mahalanobis classifier was shown to yield the best
result.

Fuzzy c-means (FCM) clustering is a well-known
clustering technique for image segmentation16–18. It
was developed by Dunn19 and improved by Bezdek20.
It has also been used in retinal image segmenta-
tion21–24. Osareh et al21 used colour normalization
and a local contrast enhancement in a pre-processing
step. The colour retinal images were segmented
using FCM clustering and the segmented regions were
classified into two disjoint classes of exudate and non-
exudate patches using a neural network22. The feature
set used for training the neural network consisted of
size, colour, average intensity, edge sharpness, and
standard deviation of intensity. The mean and stan-
dard deviation of Luv values, compactness, and Luv
values of region centroid were added to be features of
the neural network. The same authors also located the
optic disc using template matching, least squares re-

gression arc estimation, and snakes23. A comparative
exudate classification using Support Vector Machines
(SVMs) and neural networks was also applied24.
They showed that SVMs were more practical than
the others. Zhang and Chutatape25 used local con-
trast enhancement preprocessing and Improved FCM
(IFCM) in Luv colour space to segment candidate
bright lesion areas. IFCM was applied in two stages,
first in L, u, and v colour space. Then in the second
step, the components u and v were used to distinguish
bright lesions and background. A hierarchical SVMs
classification structure was applied to classify bright
non-lesion areas, exudates, and cotton wool spots.

Most of the techniques mentioned above worked
on images taken when the patient had dilated pupils in
which exudates and other retinal features are clearly
visible. In a normal diabetic retinopathy screening
process, pupils are dilated using tropicamide 1% eye
drops. The process takes about 15–20 minutes to work
and has an effect on the patient. The dilating drops
may impair focusing of the eyes for several hours and
produce a brief stinging sensation, nausea, vomiting,
dryness of the mouth, and dizziness. The examination
time and effect on the patient could be reduced if the
system could work on images taken where the pupil of
the patient is not dilated.

In this paper, we present an automatic method
to detect exudates from low quality retinal images
taken from non-dilated pupils from diabetic retinopa-
thy patients using a FCM clustering algorithm. The
number of resulting clusters was optimized, based on
the accuracy of values when compared with clinicians’
hand-drawn ground truth.

EXUDATE DETECTION

Forty digital retinal images from 32 patients were
obtained from a KOWA-7 non-mydriatic retinal cam-
era with a 45° field of view taken at Thammasat
University hospital. The images were stored in JPEG
image format files with the lowest compression rates.
The image size used was 500×752 pixels with 24 bit
colour.

Exudates can be identified on the ophthalmoscope
as white or yellowish areas with varying sizes, shapes,
and locations. They normally appear near the leaking
capillaries within the retina. The main cause of exu-
dates is proteins and lipids leaking from the blood into
the retina via damaged blood vessels22–26. This part of
the paper describes how features were selected to be
used in a segmentation process using FCM clustering
and also explains how the number of clusters was
optimized.
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Fig. 1 Pre-processing result: (a) original I band (b) I band
after pre-processing.

Feature Extraction

Four features were experimentally extracted as input
for FCM clustering. They were the intensity value af-
ter pre-processing, the standard deviation of intensity,
the hue, and the number of edge pixels from an edge
image.

The intensity of the image after pre-processing
(ICLAHE) was selected as one of the classification
features because exudate pixels can usually be distin-
guished from normal pixels by their intensity.

Firstly, the red, green, and blue (RGB) space in
the original image was transformed to hue, satura-
tion, and intensity (HSI) space. A median filtering
operation was then applied on the I band to reduce
noise before a contrast-limited adaptive histogram
equalization (CLAHE) was applied for contrast en-
hancement. CLAHE operates on small regions in the
image. The contrast of each small region is enhanced
with histogram equalization27. The original intensity
band image and intensity band after preprocessing are
shown in Figs.1a and b, respectively.

The standard deviation ofICLAHE (σ) was also
chosen as an input parameter because the distribution
measurement of the pixel values would differentiate
the exudate area from the others since standard devi-
ation shows the main characterization of the closely
distributed cluster of exudates. It is defined by

σ(x) =
1

N − 1

∑
i∈W (x)

(ICLAHE(i)− µICLAHE(x))2,

wherex is a set of all pixels in a sub-windowW (x),
N is the number of pixels inW (x), µICLAHE(x) is
the mean value ofICLAHE(i), and i ∈ W (x). A
window size of 15×15 pixels was used in this step.
The standard deviation of the intensity bands after
preprocessing is shown inFig. 2b.

Hue, also extracted from HSI space, was the third
feature selected because hue components make up
chrominance or colour information. The exudates are
either yellowish or white. The original RGB image

Fig. 2 Standard deviation result: standard deviation of
Fig. 1b.

Fig. 3 Hue result: (a) original RGB image (b) hue image.

(shown in grey) and the hue image are shown in
Figs.3a and b, respectively.

Normally exudates gather together in small clus-
ters so they tend to have many edge pixels around the
area. That is the reason why a number of edge pixels
were selected as our last feature. However, during this
feature extraction, we removed some irrelevant edge
pixels, as described in the following algorithm.
Step 1: For fast edge detection, a Sobel edge operator
with a mask size of 3×3 pixels was used to compute
the gradient magnitude.

Step 2: The result from the previous step was then
thresholded by a fixed low value in order to get most
of the edge pixels.

Step 3: Some of the resulting edge pixels from the
previous step do not represent the edge of the exu-
dates. Some of them are part of the edge of the
vessel, and these vessel edge pixels need to be
removed before proceeding to the next step. Quick
and approximate blood vessel detection was achieved
by using a decorrelation stretch on the red band.
Decorrelation stretching is a process used to enhance
(or ‘stretch’) the colour differences found in a colour
image. Contrast exaggeration was used to expand
the range of intensities of highly correlated images.
Exaggeration of the least correlated portion of the
data can be used to enhance the colour in highly
correlated images in order to decrease the correlation
of the data28,29. The scatter plot of the RGB image
and the RGB image after decorrelation stretching
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Fig. 4 Scatter plot of (a) RGB image (b) RGB image after
decorrelation stretch (1 in every 5 points plotted).

Fig. 5 Blood vessel detection: (a) decorrelation stretch
image on red plane (b) blood vessel detected from decor-
relation stretch image.

is shown inFig. 4. The scatter plot of the image
shows how the bands are decorrelated and equalized.
The scatter plot of the RGB image indicates that the
visible planes are highly correlated while a scatter
plot of the RGB image after decorrelation stretching
shows a strong decrease in correlation. Blood vessels
can be detected by thresholding this result and the
detection results are shown inFig. 5.

Step 4: Some exudates are soft exudates which cannot

Fig. 6 Optic disc detection: (a) entropy image (b) optic disc
area eliminated from the contrast-enhanced image.

be detected by a strong edge. High-value red pixels
selected from the decorrelation stretch image were
chosen and added to the result from the previous
step because the soft exudates normally appear red.
However, red pixels which belong to the optic disc,
which also appear red, have to be removed first.
The optic disc was quickly detected by using an
entropy feature onICLAHE. The entropy is a statistic
measurement of randomness that can be used to
characterize the texture of the input image. Entropy
is defined as

H(x) = −
∑

i∈W (x)

pi log2 pi,

wherex is a set of all pixels in a sub-windowW (x),
pi is the histogram count in sub-windowi. A window
size of 9×9 pixels was used in this step.
The optic disc which is normally smooth appears
in relatively low intensity in entropy space. The
resulting image was thresholded at an automatically
selected grey level, using the Otsu algorithm. To
ensure that all the neighbouring pixels of the thresh-
olded result were also included in the candidate
region, a binary dilation operator was also applied.
For this step, a flat disc-shaped structuring element
with a fixed radius of 11 was used. An example result
of an entropy space image and an image with all the
optic disc area masked out are shown in Figs.6a and
b, respectively.

Step 5: A number of neighbouring white pixels of the
resulting image from Steps1–4 was counted using
a window size of 17×17 to form our final feature,
namely, an image of the edge pixels (Fig. 7).

These four features will be used in the segmenta-
tion process as described in the next section.

Segmentation using FCM clustering

FCM clustering is an overlapping clustering algo-
rithm. Each point may belong to two or more clusters
with different degrees of membership. Features with
a high similarity in an image are grouped into the
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Fig. 7 Image of edge pixels.

same cluster. The similarity is quantified in terms
of the distance of the feature vector to the cluster
centre. Euclidean distance is used to measure this
distance and the input data will be associated with
an appropriate membership value25,30,31. The cluster
centre is updated until the difference between the
objective function at successive iterations is less than
a criterion assigned previously. The objective function
is given by

J =
M∑
i=1

C∑
j=1

u2
ij‖xi − cj‖2, (1)

uij =

[
c∑

k=1

(
‖xi − cj‖
‖xi − ck‖

)2
]−1

, (2)

cj =

M∑
i=1

u2
ijxi

M∑
i=1

u2
ij

, (3)

whereM is the number of features (four in our case),
C is the number of clusters (in our case, experimen-
tally varying from two to eight),uij is the degree
of membership ofxi in the clusterj, xi is the ith
item of thed-dimensional measured data,cj is the
centre of the cluster, and‖∗‖ is any norm expressing
the similarity between any measured feature and the
centre.

Fuzzy partitioning is carried out through an itera-
tive optimization of the objective function by updating
uij andcj . The iteration stops when

max
ij

{
|u(k+1)

ij − u
(k)
ij |

}
< ε, (4)

whereε was set at 0.00001 in our case, andk is the
iteration number (set to a maximum of 200 in our
case). This procedure converges to a local minimum
or a saddle point ofJ .

The input to the FCM algorithm is as follows.

Step 1: Initialize the fuzzy partition matrixU = [uij ]
(U (0)) by generating random numbers in the range 0
to 1 subject to

M∑
i=1

C∑
j=1

uij = 1

and setk = 0.
Step 2: Calculate the centres vectorsC(k) = [cj ] with
U (k) according to (3).

Step 3: ObtainU (k+1) by using the newly computed
uij according to (2).

Step 4: ComputeJ according to (1). If (4) is satisfied,
stop. Otherwise, return to step 2.

The output from the FCM clustering algorithm is
a list of cluster centres andn membership-grades for
each pixel, wheren is the number of desired clusters.
A pixel will be assigned to the cluster with highest
membership-grade. However, the problem of using
the FCM clustering technique is that the numbers of
desired clusters,n, has to be specified beforehand.
To determine the suitable value ofn, we tried values
ranging from 2 to 8. In each case the FCM clustering
algorithm was applied to 40 test images (making 35
clusters in total for each image). The results for
images usingn = 2 andn = 8 are shown inFig. 8
and9, respectively.

Performance measurement

The performance of each parameter was measured
by comparing the detection result with ophthalmol-
ogists’ hand-drawn ground truth and various perfor-
mance measurements32,33. We first defineNTP as
the number of exudate pixels correctly classified (true
positive), NFP as the number of non-exudate pix-
els which are incorrectly classified as exudate pixels
(false positive),NFN as the number of exudate pixels
that were not detected (false negative), andNTN as
the number of non-exudate pixels correctly classified
(true negative). The sensitivity (or true positive rate) is

Fig. 8 FCM clustering results withn = 2: (a) Cluster 1
(b) Cluster 2.
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Fig. 9 FCM clustering results withn = 8: (a) to (h) are
Clusters 1 to 8.

the proportion of exudate pixels which are positively
detected and is hence given by

Sensitivity=
NTP

NTP + NFN
.

It is a measure of how well the test detects exudates
when they are present since a lowerNFN leads to
higher sensitivity. Specificity (or true negative rate)
is the proportion of non-exudate pixels which are
negatively detected and so

Specificity=
NTN

NTN + NFP
.

It is a measure of how well the test detects non-
exudates when they are absent. A system with 100%
sensitivity and specificity would be perfect detection
system.

The positive predictive value (PPV) is the pro-
portion of exudate and non-exudate pixels which are

positively detected and hence

PPV =
NTP

NTP + NFP
.

The positive likelihood ratio (PLR) is given by

PLR =
Sensitivity

1− Specificity
=

NTP(NTN + NFP)
NFP(NTP + NFN)

.

The larger thePPV and PLR, the better the per-
formance of the exudate detection system. 95%
confidence intervals (CIs) forPPV and PLR were
also computed.

RESULTS AND DISCUSSION

Forty images were tested on an AMD Athlon 1.25
GHz PC using MATLAB . The approximate times
taken for running the whole process for each image
with n = 2, 3, 4, 5, 6, 7, and 8 were 1.5, 2, 5, 7, 10.5,
15, and 18 min, respectively.

Two candidate clusters were used as exudate
detection results. The first candidate is Cluster 1
(Figs. 8a and9a). This cluster contains most of the
original image information but all exudate areas are
missing. In this case, the exudate pixels can be ob-
tained by subtracting this first cluster from the original
intensity image to produce what we will refer to as
the subtracted cluster, an example which is shown in
Fig. 10b. By visual inspection, all the exudate pixels
seem to be captured within this result. The result
might yield a very high true positive value; however,
the false positive value would also be very high too
due to misclassified non-exudate pixels.

Fig. 10 Candidate clusters withn = 3: (a) first cluster
(b) subtracted cluster (c) second cluster.
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Fig. 11 Comparison of exudate detection: (a) detected result
from subtracted cluster withn = 2 (b) detected result from
second cluster withn = 8 (c) ground truth image.

The second important candidate cluster is Clus-
ter 2 which we will refer to as the second cluster.
This result has mostly exudate pixels on a black
background (Figs.8b and 9b). Even though this
cluster contains fewer pixels, most of them are true
exudate pixels which may give a smaller true positive
value. However, it also reduces the false positive value
because misclassification of non-exudate pixels is also
lower. Fig. 10displays example results of these two
candidate clusters.Fig. 11 displays the comparison
of exudate detection from the subtracted cluster and
the second cluster with the ground-truth image. The
exudate detection results of from two images using
subtracted cluster and second cluster are shown in
Fig. 12.

The performance of our technique was evaluated
quantitatively by comparing the result of extractions
with ophthalmologists’ hand-drawn ground-truth im-
ages. This approach aims to measure the correctness
of the algorithms at the pixel level.

Using the subtracted cluster, the maximum values
of PPV andPLR are 34.20 and 32.70 withn = 2,
and the minimum values ofPPV andPLR are 0.06
and 3.63 withn = 8. Using the second cluster,
the maximum values ofPPV and PLR are 55.20
and 93.99 withn = 8, and the minimum values of
PPV andPLR are 0.10 and 5.35 withn = 2. The
detailed results of performance measurement using
PPV andPLR of the subtracted and second cluster
result are presented inTable 1, and the average values
of sensitivity, specificity, 95% CI ofPPV, and 95%
CI of PLR for are given inTable 2.

Fig. 12 Example exudates detection results for images 2
(left) and 3 (right). (a) Intensity image after pre-processing;
(b) detected results using subtracted cluster (withn = 2);
(c) result of (b) superimposed on the original image; (d) de-
tected results using second cluster (withn = 8); (e) result
of (d) superimposed on the original image; (f) corresponding
ground truth images; (g) ground truth superimposed on the
original image.
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Table 1 PPV andPLR values from exudates detection using the subtracted cluster (top 4 rows) and second cluster (bottom
4 rows) for variousn.

n: 2 3 4 5 6 7 8

PPV PLR PPV PLR PPV PLR PPV PLR PPV PLR PPV PLR PPV PLR

Maximum 34.20 32.70 31.11 24.81 29.70 22.15 28.92 20.75 28.37 19.96 28.09 19.52 27.85 19.17
Minimum 0.10 5.35 0.07 4.47 0.07 4.08 0.06 3.89 0.06 3.75 0.06 3.68 0.06 3.63
Average 8.86 13.37 7.23 10.26 6.64 9.20 6.33 8.63 6.14 8.32 6.03 8.12 5.94 7.96
SD 9.45 6.68 8.11 5.12 7.62 4.53 7.37 4.17 7.20 4.02 7.10 3.90 7.03 3.81

Maximum 34.20 32.70 40.29 52.84 46.19 75.44 49.72 93.96 51.37 90.69 53.92 91.32 55.20 93.99
Minimum 0.10 5.35 0.19 6.66 0.27 7.37 0.37 7.72 0.41 7.93 0.49 8.06 0.52 8.15
Average 8.86 13.37 12.22 21.00 14.52 27.07 16.15 32.59 17.41 37.11 18.40 40.82 19.21 44.06
SD 9.45 6.68 11.89 10.87 13.41 15.15 14.40 19.48 15.04 23.36 15.58 26.81 15.94 29.40

Table 2 Averaged performance evaluation results using the subtracted cluster and second cluster.

n Subtracted cluster Second cluster

Av. Sens. (%) Av. Spec. (%) CI ofPPV CI of PLR Av. Sens. (%) Av. Spec. (%) CI ofPPV CI of PLR

2 92.18 91.52 5.93–11.79 11.30–15.44 92.18 91.52 5.93–11.79 11.30–15.44
3 95.45 88.72 4.72–9.74 8.67–11.84 82.87 94.96 8.53–15.90 17.63–24.36
4 96.39 87.37 4.28–9.00 7.80–10.61 76.89 96.24 10.36–18.67 22.38–31.77
5 96.94 86.55 4.04–8.61 7.34–9.92 72.51 96.94 11.69–20.61 26.55–38.62
6 97.07 86.03 3.91–8.37 7.07–9.56 69.16 97.36 12.75–22.07 29.87–44.35
7 97.13 85.72 3.83–8.23 6.92–9.33 66.63 97.65 13.57–23.23 32.52–49.13
8 97.29 85.43 3.76–8.12 6.78–9.14 64.27 97.85 14.26–24.15 34.94–53.17

From these experimental results, the wayn is
chosen will depend on the application. If the ap-
plication requires highPPV or PLR, such as an
application of an automatic quantitative measurement
of exudates, the second cluster withn = 8 should be
used because it gives a higher accuracy and a low false
positive value. However, some applications would not
require such a high accuracy, such as an when the
method is used as an ophthalmologist’s visual aid in
exudate detection where the computer enhances the
image quality and shows an approximate location of
the exudates and the decision is be made by an expert
ophthalmologist. In such a case, the subtracted or
second cluster withn = 2 is recommended since it
covers more exudates than then = 8 case. Also, with
n = 2 the system runs faster.

Future work will address improvement of the
performance of this system by finding more specific
characteristics of exudates which could distinguish
them from other features more effectively. To enhance
the FCM clustering algorithm, i.e., improve the sensi-
tivity value with higher true positive value and lower
false negative value, morphological techniques might
be used in order to obtain more fine-tuned results.
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