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ABSTRACT : A new deterministic numerical method for solving the kinetic Boltzmann equation for Maxwellian molecules
with cylindrical symmetry in velocity space is developed. Using the splitting method with respect to physical processes,
the Boltzmann equation is decomposed into the space-homogeneous Boltzmann equation and the transport equation. The
transport equation is solved by either Lax-Wendroff or upwind schemes. For Maxwell’s model, the space-homogeneous
Boltzmann equation is simplified by taking the Fourier transform with respect to velocity. Because of the cylindrical
symmetry in velocity space, the three-dimensional Fourier transform is equivalent to a one-dimensional Fourier transform
and a Hankel transform. An exponential grid in velocity space allows the application a fast Fourier transform algorithm to
compute the Hankel transform. The space homogeneous Boltzmann equation in Fourier space is solved by the Runge-Kutta
scheme. The new method is applied to solving the heat transfer problem between parallel plates.
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INTRODUCTION

The classical Boltzmann equation is the main math-
ematical tool of the kinetic theory of gases1,2. On
the one hand, this equation serves for the axiomatic
construction of continuous medium models such as
the gas dynamics, Navier-Stokes, and Barnette equa-
tions. At the same time, asymptotic solutions of
the Boltzmann equation enable one to obtain the ex-
plicit form of transport coefficients such as viscosity,
thermal conductivity, and diffusivity. On the other
hand, these equations are used for describing rarefied
gas flows. Rarefaction is quantified by the Knudsen
numberKn = λ/L, whereλ is the mean free path of
the molecules andL is the characteristic scale of the
flow. The application of kinetic equations is confined
to systems for which0.1 < Kn < 10.01. These flows
are realized in a wide range of scales from galactic
to microscopic. Examples include the so-called jets
and turbulence piles in the far reaches of the cosmos,
flows over spacecraft during their descent through the
upper atmospheres of planets, flows in vacuum chem-
ical reactors, overflowing aerosol particles of micron
scale in problems of ecology, flows in micro-electrical
machine systems, and scattering of ultrasonic waves.

The Boltzmann equation is an integro-differential
equation. Its characteristic feature is the presence of a

multi-dimensional nonlinear operator, called the colli-
sion integral, and its resulting complexity excludes the
possibility of obtaining exact solutions and generates
formidable difficulties for the application of numerical
methods.

Two distinct groups of numerical methods for
solving the Boltzmann equation have been developed
(a general review of the methods and relations be-
tween them can be found in Ref.3). The first group
combines methods of direct modelling type such as
the direct simulation Monte-Carlo (DSMC) method4.
The rapid expansion of these methods in the last three
decades was motivated by the development of space
aerodynamics. They are based on the stochastic nature
of the elementary processes of gas molecule kinetics.
From the computational point of view, the principal
feature of these methods consists of using Monte-
Carlo procedures for modelling molecular scattering
described by the collision integral.

The second group comprises regular (determin-
istic) methods of direct numerical solution of the
Boltzmann equation3. Such methods are exclusively
based on well-known algorithms of numerical analysis
such as spline interpolation, finite-difference or finite-
volume schemes, and quadrature formulas.

The DSMC methods have indisputable priority in
applied problems of rarefied gas dynamics where one
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needs to compute fluxes of mass, impulse, and energy
on surfaces over which fluid is flowing. However,
regular methods allow, in principle, the finding of
solutions of the Boltzmann equation at a wide range
of molecular energies which are beyond the DSMC
method possibilities. This is very important in com-
puting threshold processes in shock waves, such as
those involving chemical reactions with a large acti-
vation energy. Moreover, good deterministic methods
give an opportunity to obtain very precise standard
numerical solutions. They are necessary, in particular,
for validation of new modifications of DSMC meth-
ods which often deviate from strict adherence to the
Boltzmann equation.

A scheme of a deterministic spectral method for
the Boltzmann equation with Maxwellian molecules
has been proposed5. The algorithm is based on the
splitting method with respect to physical processes
with stages of space-free molecular transport and
space-homogeneous collision relaxation. The more
laborious stage of relaxation is based on the Fourier
transform, which makes the algorithm optimal with
respect to the amount of computation. The number
of computations is estimated asO(N log2 N ), where
N is the number of elements in the computing array.
Such optimal computational cost is determined by
using an exact Fourier representation of the collision
integral. This representation is a two-fold integral over
angle scattering variables which substantially reduces
the volume of computations. Such transformation is
only possible for a collision integral with Maxwellian
molecules5. Various deterministic algorithms for
the Boltzmann equation with other molecular models
have been proposed3,6–8. However, the computational
costs of these algorithms is considerably higher than
the algorithm presented in this paper.

In this paper a regular numerical method of direct
integration for the case of one-dimensional flows is
developed. Such flows have axial symmetry in molec-
ular velocity space. Despite obvious restrictions there
are a great number of problems of this type. Among
them are classical problems of gas kinetic theory such
as heat and mass transfer (recondensation) between
parallel plates, or the problem of a plane shock wave
structure. Also, there is a set of problems of practical
interest such as the investigation of evaporation and
nucleation of spherical drops, which are active centres
in the formation of smog and fog as well in the process
of condensation in different technical plants. Other
examples include energetic particles escaping from
spherical planet atmospheres, absorption and conden-
sation processes on cylindrical jets, and burnout of
cylindrical cathodes of electron devices.

In the present paper, a new deterministic method
is described. Selection of numerical procedures of
transport and relaxation stages are presented and
discussed. Comparison of test results with exact
solutions is given. As a first example of the application
of the developed method, the problem of heat transfer
between parallel plates is solved.

THE BOLTZMANN EQUATION AND
STATEMENT OF PROBLEM

The Boltzmann equation describes the evolution of
rarefied gas in terms of a molecular distribution func-
tion. Without external forces, the Boltzmann equation
of a monatomic gas can be written as1,2

∂f

∂t
+ v · ∇xf = Q(f, f). (1)

Here x ∈ R3(x) is the space coordinate,v ∈
R3(v) is the molecular velocity, andf = f(x,v, t)
is the distribution function, which defines the mean
molecular density at timet in the differential volume
dxdv near a point(x,v) of six-dimensional phase
spaceR3(x)×R3(v). If the distribution functionf =
f(v, t) is independent of the variablex, one deals with
the space-homogeneous Boltzmann equation. The
term Q(f, f) is called the collision operator and is
defined by

Q(f, f)(x,v, t)

=
∫

R3

∫
S2

B(w, θ)[f ′f ′1 − ff1] dndv1, (2)

where f ′ = f(x,v′, t), f ′1 = f(x,v′1, t), f =
f(x,v, t), f1 = f(x,v1, t), v and v1 are the pre-
collision velocities of a colliding pair of molecules,v′

andv′1 are the corresponding velocities after collision,
andw = v − v1 is the relative velocity of the two
molecules before collision. The parameterθ is the
scattering angle betweenw andw′ = v′ − v′1, dn
is the differential surface element on the unit sphere
S2 = {n ∈ R3, |n| = 1}. The velocities of colliding
molecules satisfy the microscopic momentum and
energy conservation laws

v′+v′1 = v+v1, |v′|2+|v′1|2 = |v|2+|v1|2. (3)

The post-collision velocities are defined by

v′ =
1
2
(v + v1 + |v − v1|n),

v′1 =
1
2
(v + v1 − |v − v1|n).

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org


72 ScienceAsia35 (2009)

The kernelB is a scattering function which has the
form

B(w, θ) = wσ(w, cos θ), (4)

where the functionσ : R+ × [−1, 1] → R+ is a
differential cross-section. The scattering functionB
characterizes details of the binary interactions depend-
ing on the physical properties of the gas molecules.

Two special cases of the scattering functionB
are used in the paper. The main model is that of
Maxwellian molecules with the scattering function

B(w, θ) = g(cos θ), (5)

which does not depend on the modulus of the relative
velocityw. The other is the model of so-called “hard
sphere” molecules with the scattering function

B(w, θ) = w
d2

4
, (6)

whered is the molecular diameter.
All macroscopic properties of a gas can be defined

in terms off . In particular, the density, mean bulk
velocity, and temperature of the gas are given respec-
tively by

n(x, t) =
∫

R3(v)

f(x,v, t) dv, (7)

u(x, t) =
1

n(x, t)

∫
R3(v)

vf(v) dv, (8)

T (x, t) =
1

3n(x, t)R

∫
R3(v)

|v − u|2f(v) dv, (9)

whereR is the gas constant.
The Boltzmann collision operator has the fol-

lowing fundamental properties of conserving mass,
momentum, and energy:∫

R3(v)

Q(f, f) dv = 0, (10)∫
R3(v)

vQ(f, f) dv = 0, (11)∫
R3(v)

|v|2Q(f, f) dv = 0. (12)

For the space homogeneous Boltzmann equation these
properties give us conservation of the gas dynamic pa-
rametersn(t), u(t) andT (t) during the time evolution
of the distribution functionf(v, t) from any initial
distributionf0(v).

Consider the Cauchy problem for the space ho-
mogeneous Boltzmann equation

∂f(x,v, t)
∂t

= Q(f, f)(x,v, t),

f(x,v, 0) = f0(x,v).
(13)

The Fourier transformϕ(x,k, t) of the distribution
functionf(x,v, t) in velocity space is defined as

ϕ(x,k, t) =
∫

R3(v)

e−i2π(v·k)f(x,v, t) dv. (14)

Using the Fourier transform (14), the problem (13)
for Maxwellian molecules can be transformed to the
form9

∂ϕ(x,k, t)
∂t

=
∫

S2

[
ϕ

(
x,

k + kn
2

, t

)
ϕ

(
x,

k− kn
2

, t

)
− ϕ(x,k, t)ϕ(x,0, t)

]
g(cos θ) dn,

ϕ(x,k, 0) =
∫

R3(v)

f(x,v, 0)e−i2π(v·k) dv.

(15)

If we assume that the distribution function possesses
cylindrical symmetry with respect to the velocity
variable v, i.e., f(x,v, t) = f(x, vx, vr, t) where
v = (vx, vy, vz) andv2

r = v2
y + v2

z , then the Fourier
transform (14) of f(x,v, t) also possesses cylindrical
symmetry10 and

ϕ(kx, kr, t) = 2π

∫ ∞

−∞
e−i2πkxvx

∫ ∞

0

J0(2πkrvr)

× vrf(vx, vr) dvr dvx, (16)

f(vx, vr) = 2π

∫ ∞

−∞
ei2πkxvx

∫ ∞

0

J0(2πkrvr)

× vrϕ(kx, kr) dkr dkx. (17)

The inner integrals in these formulas are the Hankel
transforms with respect to the corresponding vari-
ables. Because the variablesx andt are not invoked
while taking the Fourier transform in velocity space,
for the sake of simplicity they are omitted from now
on.

Let us consider in (15) the Fourier transform
(14) of the collision integralQ(f, f) which will be
denoted byQ̂(ϕ, ϕ). Sinceϕ(k) possesses cylindrical
symmetry, one can write

ϕ

(
k± kn

2

)
= ϕ

(
kx + knx

2
,

∣∣∣∣kr ± knr

2

∣∣∣∣) (18)

where∣∣∣∣kr ± knr

2

∣∣∣∣ =
1
2

√
k2

r + k2|nr|2 ± 2kkr · nr

wherekr = kyey + kzez, nr = nyey + nzez.
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For simplicity, the case of Maxwellian molecules
with isotropic scatteringg(cos θ) = σ0/4π is consid-
ered further. After some calculations it can be shown
that

Q̂(ϕ, ϕ) =
σ0

π

∫ π
2

0

∫ 1

0

[
ϕ(+,+)ϕ(−,−)

+ ϕ(+,−)ϕ(−,+) − 2ϕ(kx, kr)ϕ(0)
]
dµdα,

(19)

where

ϕ(~,�) ≡ ϕ

(
kx ~ kµ

2
,

1
2

√
k2

r + k2(1− µ2)� 2krk
√

1− µ2 cos α

)
,

in which~ and� can be either+ or−.
The algorithm for solving the Boltzmann equation

developed in this paper assumes that the distribution
function depends on one space coordinatex and
that the mean gas velocityu is directed along this
coordinate. In this case the distribution function and
its Fourier transform possess the cylindrical symmetry
considered above. Boundaries can be composed of
infinite parallel plates, coaxial circular cylinders, or
concentric spheres. In all these cases the problem can
be stated on finite or semi-infinite intervals. In the first
case the infinite intervalx ∈ (−∞,∞) can also be
considered. In cylindrical and spherical geometries,
the inner boundary can be replaced by aδ-source or
drain.

In this paper the study is restricted to the case of
plane geometry. For definiteness let us consider a gas
flow between two parallel infinite flat plates which are
separated by a distanceL (Fig. 1). In this case the
distribution functionf(x,v, t) only depends on the
variablesx, vx, vr, and t, and the classical initial-

Y

X

Z

L
u

Fig. 1 Flow between two flat plates.

boundary problem has the form1

∂f

∂t
+ vx

∂f

∂x
=

σ0

4π

∫
R3(v)

∫
S2

[f(v′)f(v′1)

− f(v)f(v1)] dndv1,

f(x, vx, vr, 0) = f0(x, vx, vr),

(20)

f(L/2, vx, vr) = n+

(
2πkT+

m

)− 3
2

× e−m(v2
x+v2

r)/2kT+ , (vx < 0),

f(−L/2, vx, vr) = n−

(
2πkT−

m

)− 3
2

× e−m(v2
x+v2

r)/2kT− , (vx > 0).

(21)

Here k is the Boltzmann constant,m is the mass
of the molecules, andn+, T+ and n−, T− are, the
number densities and temperatures at the top and
bottom plates, respectively. Their values depend on
the physical conditions on the plates such as sorp-
tion, evaporation, impenetrability, momentum and
energy accommodation. For curvilinear boundaries
the differential operator of the Boltzmann equation is
more complicated than in (20) and contains additional
terms1.

Characteristic values for the dimensionless form
of the initial-boundary problem, (20) and (21), are
chosen as follows:f0 = n̄(kT−/m)−3/2, t0 =
L(kT−/m)−1/2, v0 = L/t0 = (kT−/m)1/2, x0 =
L. Heren̄ is the mean number density of a gas in the
segment[−L/2, L/2], and is defined as

n̄ =
1
L

∫ L/2

−L/2

n(x) dx,

wheren(x) is the local number density (7).
The dimensionless variables are related to the

original variables byf(t,x,v) = f0f̃(t̃, x̃, ṽ), t =
t0t̃, v = v0ṽ, x = x0x̃, T = T−T̃ . Using these
relations, (20) and (21) become

∂f̃

∂t̃
+ ṽx

∂f̃

∂x̃
=

1
4π Kn

∫
R3(v)

∫
S2

[f(ṽ′)f(ṽ′1)

− f(ṽ)f(ṽ1)] dndṽ1,

f̃(x̃, ṽx, ṽr, 0) = f̃0(x̃, ṽx, ṽr),

(22)

f̃( 1
2 , ṽx, ṽr) = ñ+

(
2πT̃+

)− 3
2

e
− (ṽ2

x+ṽ2
r)

2T̃+ , (ṽx < 0),

(23)

f̃(− 1
2 , ṽx, ṽr) = ñ−(2π)−

3
2 e−

(ṽ2
x+ṽ2

r)
2 , (ṽx > 0),
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whereKn = 1/(σ0f0t0v
3
0) is the Knudsen number.

From now on we drop the tildes.

SPLITTING SCHEME AND NUMERICAL
PROCEDURES

For solving the problem formulated above, the split-
ting method with respect to physical processes is used.
The solution of the initial-boundary problem (22),
(23) in each time interval[tn, tn + τ ] is obtained by
successively solving the initial-boundary problem of
the transport equation

f̂t = −Af̂, f̂(x, vx, vr, tn) = f(x, vx, vr, t), (24)

and the Cauchy problem of the space-homogeneous
Boltzmann equation

ft = Q(f, f), f(x, vx, vr, tn) = f̂(x, vx, vr, tn + τ),
(25)

whereA is the differential operator on the left-hand
side of the Boltzmann equation (22) with boundary
conditions (23).

For computingf̂(x,v, tn + τ) the Fourier trans-
form of the space-homogeneous Boltzmann equation
(15) is used:

ϕt = Q̂(ϕ, ϕ). (26)

The use of the fast Fourier transform (FFT) proce-
dure11 at the stage of collision relaxation (25) results
in an algorithm requiringO(N log2 N) operations5,
whereN is the number of grid points in the calculation
domain.

During numerical integration of (24) it is neces-
sary to conserve positive definiteness of the distribu-
tion function f̂(x,v, tn + τ) which is related to the
monotonicity property of the finite-difference scheme.
The upwind scheme possesses such a property12, but
it is first order int andx, and because of the scheme
viscosity it can bring in significant errors. Therefore
the following recommendations13 were used. If suffi-
cient monotonicity conditions were satisfied, then the
Lax-Wendroff scheme

fn+1
k,i,j = fn

k,i,j −
c

2
(fn

k+1,i,j − fn
k−1,i,j)

+
c2

2
(fn

k+1,i,j − 2fn
k,i,j + fn

k−1,i,j), (27)

was applied. Otherwise the upwind scheme

fn+1
k,i,j = fn

k,i,j − c(fn
k+1,i,j − fn

k,i,j) (28)

was used. The sufficient monotonicity conditions are

2
∣∣ fn

k,i,j − fn
k−1,i,j

∣∣ >
∣∣ fn

k+1,i,j − 2fu
k,i,j

+ fn
k−1,i,j

∣∣, vx > 0,

2
∣∣ fn

k+1,i,j − fn
k,i,j

∣∣ >
∣∣ fn

k+1,i,j − 2fn
k,i,j

+ fn
k−1,i,j

∣∣, vx < 0.

Herec = τvx/hx is the Courant number,τ is the time
step,hx is the space step, andk, i, andj are indices
along the coordinatesx, vx, and vr, respectively.
For vx = 0, the solution remains the same as the
initial conditions. Since both schemes are explicit
with respect to time, it is necessary to choose the
ratio τ/hx such that the Courant stability condition
τ |vx|max/hx < 1 is satisfied. In contrast to the
upwind scheme, the Lax-Wendroff scheme is second
order, havingO(τ2, h2

x) errors, but is not monotone.
Both (27) and (28) applied to the transport stage

(24) were tested on the exact stationary solution of the
Boltzmann equation (22) with boundary conditions of
type (23). In dimensionless variables this solution has
the form

f0(x, vx, vr) =


f( 1

2 , vx, vr), vx < 0,

f(− 1
2 , vx, vr), vx > 0,

1
2

[
f( 1

2 , vx, vr) + f(− 1
2 , vx, vr)

]
,

vx = 0,
(29)

where

f( 1
2 , vx, vr) =

2ν

1 + ν
(2πT+)−

3
2 e−

(v2
x+v2

r)
2T+ , vx < 0,

f(− 1
2 , vx, vr) =

2
1 + ν

(2π)−
3
2 e−

(v2
x+v2

r)
2 , vx > 0,

andν = n+/n−. The solution (29) corresponds to
asymptotic free molecular flow1, whereKn → ∞,
and it only depends on the parameterν. The following
relations hold:

ν =
1√
T+

,

n(xn) =
∫

R3
f(xn,v) dv =

1
2
(n+ + n−) = 1,

nUx =
∫

R3
vxf0(xn,v) dv = 0,

T (xn) =
2

3n(xn)

∫
R3

v2f(xn,v) dv = 2
√

T+,

qx(xn) =
1
2

∫
R3

vxv2f(xn,v) dv = −2

√
2
π

(1− ν)
ν2

.

Parameters used in the tests wereν = 1
2 , 1, 2,

τ = 0.01, hx = 1
12 , −8 6 vx < 8, 0 < vr 6 8.

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org


ScienceAsia35 (2009) 75

The numbers of sample points for both thevx andvr

variables were 128. For the chosen parameters, the
stability condition of the Lax-Wendroff and upwind
schemes is satisfied, i.e., the Courant number isc =
0.96 < 1.

Analysis of calculations shows that the Lax-
Wendroff and upwind numerical schemes give prac-
tically the same sufficiently satisfactory results for
the mesh distribution function. The greatest errors in
hydrodynamic parameters were obtained forν = 2.
The corresponding values fort = 1.0 are presented in
Table 1. The errors mostly result from the quadrature
formula employed despite it being based on the spline
interpolation.

Fourier and Hankel discrete transforms were used
for solving the Cauchy problem (25) forward and
back. Special attention was paid to the discrete Hankel
transform for which standard code is absent. The
algorithm proposed in14 was chosen. Applying the
exponential change of variableskr = k0ex, vr =
v0e−y, the initial Hankel transform

g(kr) = 2π

∫ ∞

0

vrf(vr)J0(2πkrvr) dvr (30)

is reduced to the convolution type integral

ĝ(x) = 2π

∫ ∞

−∞
e2y f̂(y)J0(2πk0v0ex−y) dy (31)

which can be effectively computed using the standard
FFT numerical procedures11. To precisely calcu-
late the high-energy tail of the distribution function,
the interval of the velocity variables was chosen as
−vmax 6 vx 6 vmax, 0 < vr 6 vmax, with vmax =
8. For computing the fast Hankel transform (31) we
set v0 = vmax, krmax = vmax = v0, andvrmin =
krmin = v0e−(Nr−1)hr , whereNr is the number of
grid points andhr = ln(vmax/vrmin)]/(Nr − 1).

For the Fourier transform with respect tovx the
following values were used

hvx =
2vxmax

Nvx

,

kx ∈ [−kxmax , kxmax) =
[
− nvx

4vxmax

,
nvx

4vxmax

)
.

In further calculations the numbers of grid points were
Nvx

= 256 andNr = 2048.
The algorithm for solving problem (25), (26) as a

whole was tested with the well-known exact solutions
of the space-homogeneous Boltzmann equation. For
numerical integration with respect to time, the Runge-
Kutta schemes of first, second and fourth orders with

the time stepτ = 0.05 were applied. The number of
sample points on the variables of integrationα, µ in
the collision integral (19) (over the unit sphere) were
both 16. The integrands were evaluated using two-
dimensional spline interpolation.

Most of the tests were made with the Bobylev-
Krook-Wu (BKW) solution9

f(t,v) =
(2π)3/2

(1− θ)3/2
e−

(2π)2

2(1−θ) v2
[
1 +

θ

1− θ

×
(

(2π)2

2(1− θ)
v2 − 3

2

) ]
, θ = 0.4e−t/6.

(32)

Its combined Fourier-Hankel transform has the form

ϕ(k, t) = (1− 0.2k2e−t/6)e−
k2
2 +0.2k2e−t/6

. (33)

It is important that for (33) the collision integral is not
zero, but is

Q̂(ϕ, ϕ) =
0.04
6

k4e
(
0.2e−t/6− 1

2

)
k2−t/3

. (34)

Calculations showed that the second and fourth
order schemes took an unreasonable amount of com-
puting time. Thus, for further calculations, the first
order Runge-Kutta scheme was chosen. The essen-
tial component of the realization of the Runge-Kutta
scheme both with respect to the volume of calculations
and computational precision is the computing of the
collision integral. Therefore the computing procedure
for the collision integral was separately tested. Com-
parison of the results of the calculations with the exact
solution in the relativeL∞-norm of error is presented
in Table 2. Similar results were obtained for the
Maxwell solution

f(v, t) =
1

(2π)3/2
e−v2/2, (35)

which is the stationary solution of the problem and has
a collision integral equal to zero.

CONSERVATION LAWS AT THE
RELAXATION STAGE

For computing the relaxation stage it is very important
to minimize errors in the discrete versions of the con-
servation laws for density, mean velocity (momentum)
and temperature (energy). A conservative method for
the relaxation stage based on a polynomial correction
of the computed distribution function was proposed
in3. Since in the present paper the relaxation stage is
calculated in the Fourier representation (26), one can
use the correction of the Fourier transformϕ(kx, kr, t)
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Table 1 Comparison between exact and numerical solutions att = 1.

moments exact x = −0.5 x = 0.0 x = 0.5

n 1 1.00001 0.999998 1.00001
nUx 0 1.05133× 10−3 1.05025× 10−3 1.04382× 10−3

T 1 1.00001 1.00001 1
qx 0.398942 0.398958 0.398957 0.398952

Table 2 Comparison between exact BKW and numerical solution (relativeL∞-norm of error),τ = 0.05.

t = τ t = 2τ t = 3τ t = 4τ t = 5τ

‖Q̂(ϕ, ϕ)− Q̂(ϕ̃, ϕ̃)‖∞ 4.8× 10−4 9.5× 10−4 1.4× 10−3 1.8× 10−3 2.2× 10−3

‖ϕ− ϕ̃‖∞ 2.9× 10−5 5.5× 10−5 8.1× 10−5 1.0× 10−4 1.2× 10−4

‖f − f̃‖∞ 1.0× 10−3 1.9× 10−3 2.7× 10−3 3.5× 10−3 4.3× 10−3

proposed in Ref.15. In this case it is necessary to re-
formulate (7)–(9) in terms of the functionϕ(kx, kr, t).
These relations for density, momentum, and energy
are

ϕ(x, 0, 0, t) = n(x, t) = C1(x), (36)

∇ϕ|k=0 = −2πiexn(x, t)u(x, t) = C2(x)ex, (37)

1
2
∆ϕ|k=0 = −4π2

(
3
2
nT +

1
2
nu2

)
= C3(x).

(38)

In the one-dimensional case,u = (Ux, 0, 0).
Applying Runge-Kutta schemes for solving equa-

tion (26), the density conservation law (36) holds, but
there are no discrete analogues of (37) and (38)5. To
improve on this shortcoming, an asymptotic solution
of the relaxation problem (26) near the zero grid point
kx = kr = 0 was applied. The Taylor series
expansion of the functionϕ(hx, hr) for smallhx and
hr is

ϕ(t, hx, hr) = ϕ(t, 0, 0) + δϕ|k=0

+
1
2
δ2ϕ|k=0 + O(k3), (39)

wherehx andhr are the spacings along corresponding
coordinates of the grid points nearest to zero, and
δ and δ2 are differentials of first and second orders.
Using the cylindrical symmetry and (36)–(38), one
can obtain

ϕ(t, hx, hr) = n− 2πinUxhx − 2π2n
[
(Uxhx)2

+
3
2
h2

rT + Tx(2h2
x − h2

r)
]
+ O(h3), (40)

where

nTx = 2π

∫ ∞

−∞

∫ ∞

0

1
2
c2
xf(x, t, vx, vr)vr dvr dvx.

(41)

Substitution of expansion (40) into the space homoge-
neous Boltzmann equation (25) gives

2Ṫx +
n

Kn
Tx =

n

2 Kn
T (42)

which has the general solution

Tx(t) =
T

2
+

(
Tx(0)− T

2

)
e−nt/2 Kn. (43)

The improved procedure for the discrete conser-
vation laws is the following. Let the computation at
time stepp + 1 start from the relaxation stage. At the
end of the computations at the previous time stepp,
the values (36)–(38) are used to obtain values of the
grid functionsnp

m, np
mUp

x,m, T p
m, andT p

x,m. These
values are used to improve the values of the distri-
bution function at the grid points(0, 0), (±hx, 0),
(0, h1), and(±hx, h1). Using (40), one obtains

ϕp+1
m (0, 0) = np

m, (44)

ϕp+1
m (±hx, 0) = np

m − 2πinp
mUp

x,m(±hx)

−2π2np
m

[(
Up

x,mhx

)2 + 2T p+1
x,m h2

x

]
,

(45)

ϕp+1
m (0, hr) = np

m − 2π2np
mT p+1

r,m h2
r, (46)

From the definition ofT (x, t) and (43), we get

T p+1
r,m =

3
2
T p

m − T p+1
x,m , (47)

T p+1
x,m =

T p
m

2
+

(
T p

x,m − T p
m

2

)
e−

np
mτ

2 Kn . (48)

For smallτ , instead of (48) one can write the asymp-
totic expansion

T p+1
x,m =

T p
mnp

mτ

4 Kn
+ T p

x,m

(
1− np

mτ

2 Kn

)
. (49)

www.scienceasia.org

http://www.scienceasia.org/2009.html
www.scienceasia.org


ScienceAsia35 (2009) 77

The improved discrete conservation laws are ex-
pressed through (44)–(48) by means of symmetric
finite differences which approximate the differential
relations (37) and (38) to O(h2

x + h2
r).

For some one-dimensional problems one has
Ux = 0. To satisfy this conservation law up toO(h2

x),
it is necessary to make

ϕp+1
m (hx, 0) = ϕp+1

m (−hx, 0). (50)

NUMERICAL EXAMPLE

To demonstrate the possibilities of the new method
the classical one-dimensional heat transfer problem1

was calculated. From the computational point of view
it is of interest because all numerical methods used
in rarefied gas dynamics have been tested on this
problem.

The problem is set as follows. Monatomic gas
is contained between two parallel plates separated
by a distanceL (seeFig. 1). The plates have fixed
temperaturesT− andT+, T− 6 T+. It is assumed that
on the plates complete accommodation of momentum
and energy hold: molecules leaving the plates have
half-space Maxwellian distributions. In dimensionless
variables, the stationary problem has the form of (22)
with (23). The parameters of the problem are

Kn =
1

n̄σ0L
√

kT−/m
,

where n̄ is the mean number density, and the ratio
of the temperatures which isT+ in the dimensionless
form. In this case using impenetrable conditions of the
hard boundary surfaces, the values of the densitiesn−
andn+ in (23) are given by

n−
(2π)3/2

+
∫ 0

−∞

∫ ∞

0

f(− 1
2 , vx, vr)vxvr dvr dvx = 0,

(51)

n+

(2πT+)3/2
+

∫ ∞

0

∫ ∞

0

f( 1
2 , vx, vr)vxvr dvr dvx = 0.

(52)

Here the values of the distribution functionf are
obtained by solving the transport equation at each time
step.

In the calculations we usedKn = 1, 1/2
√

2,
1
4 , and1/20

√
2, with T+ = 4. Such values of the

parameters were considered in many papers studying
this problem (see Ref.16 and references therein). In
our calculations the grid parameters coincided with
the parameters chosen in the tests. The stationary
solution of the problem was obtained by an iterative

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

n

x

t = 20τ

t = 40τ

t = 60τ

t = 80τ

t = 100τ

τ = 0.05

Fig. 2 Convergence of the density profiles forKn = 1
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Fig. 3 Convergence of the temperature profiles forKn = 1.

method based on the described splitting method. The
time step of the relaxation stage was five times that of
the transport stage. In the first set of calculations (with
Kn = 1) the free molecular solution (29) was used as
initial data. In the remaining calculations the results
obtained from the previous value of theKn were taken
as the initial data for the smaller Knudsen number.

Convergence of the density profile forKn =
1/2

√
2 and the temperature profile forKn = 1 are

shown in Figs.2 and3, respectively. The maximum
time values on the graphs correspond to the stationary
solutions obtained. Additional control of convergence
was carried out through the behaviour of the profiles
of the mean velocityUx and the heat fluxqx. In
the stationary solution the mean velocity isUx = 0
and the heat flux is constant. In all calculations these
demands were satisfied to an accuracy of‖Ux‖∞ 6
10−3 and‖∆qx‖∞ 6 0.15. A relatively large error in
the heat flux was obtained at the boundary grid points.
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Fig. 4 Comparison of the shearing of the distribution
function forKn = 1.

However, at most other points this error did not exceed
10−3.

There are numerous data for the one-dimensional
heat transfer problem with the hard spheres molecular
model (see Ref.16 and references therein). This
model is the opposite to the model of Maxwellian
molecules with respect to the “rigidity” of molecular
collisions. Hence, one can expect satisfactory coinci-
dence neither for the distribution function nor even for
the profiles of hydrodynamic variables such asn, T ,
and qx. Nevertheless, comparison of corresponding
data is useful from the point of view of their qualita-
tive behaviour. Shearing of the distribution function,
defined by the relation

f̄(x, vx) = 2π

∫ ∞

0

f(x, vx, vr)vr dvr,

was compared forx = 0 as shown inFig. 4.
Examples of comparison of hydrodynamic pa-

rameters are presented in Figs.5 and6. Comparisons
were made forKnM = KnS/2

√
2, whereKnM and

KnS are the Knudsen numbers of the Maxwellian and
the hard spheres molecular models, respectively. This
relation follows from comparison of the dimensionless
forms of the Boltzmann equation for these models.

One can see that in general, the behaviour of the
macroscopic parameters and shearing of the distribu-
tion function are similar for both models for the Knud-
sen numbers considered. To explain the differences in
the slopes of the hydrodynamic parameter profiles one
can derive a corresponding estimation for the density
curves. Let us integrate the Boltzmann equation for
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Fig. 5 Density profiles for different Knudsen numbers.
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Fig. 6 Temperature profiles for various Knudsen numbers.

the Maxwellian and hard spheres molecular models:(
dn

dx

)
i

=
d
dx

(∫
R3

f(x,v) dv
)

=
∫

R3

1
vx

ciQi(f, f) dv,

(53)

wherei = 1 andi = 2 correspond to Maxwellian and
hard spheres molecules, respectively,

Q1 =
∫

R3

∫
S2

[f ′f ′1 − ff1] dndv1,

Q2 =
∫

R3

∫
S2
|v − v1| [f ′f ′1 − ff1] dndv1,

andc1 = (4π Kn1)−1, c2 = (
√

2π Kn2)−1. For the
comparison it was assumed thatc1 = c2. Using the
generalized mean value theorem, one can rewrite (53)
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as (
dn

dx

)
1

= S1 × I1,

(
dn

dx

)
2

= S2 × I2,

where

S1 =
[

1
vx

[f ′f ′1 − ff1]
f0(v)f0(v1)

]
|v=v∗,v1=v1∗

,

S2 =
[

1
vx

[f ′f ′1 − ff1]
f0(v)f0(v1)

]
|v=ṽ∗,ṽ1=ṽ1∗

,

I1 =
∫

R3

∫
R3

∫
S2

f0(v)f0(v1) dndv1 dv,

I2 =
∫

R3

∫
R3

∫
S2

f0(v)f0(v1)|v − v1|dndv1 dv.

Since the Boltzmann brackets are normalized by the
product of Maxwellian functions it can be shown that
|S1| ≈ |S2| and hence∣∣∣∣(dn

dx

)
2

∣∣∣∣ ≈ 4√
π

∣∣∣∣(dn

dx

)
1

∣∣∣∣ . (54)

This means that in any one-dimensional problem
under the same conditions the slope of the number
density profile for the hard sphere model is greater
than that for Maxwellian molecules. Such behaviour
can be seen inFig. 5.

CONCLUSIONS

A new deterministic numerical method for solving
the Boltzmann equation with cylindrical symmetry
in velocity space for the Maxwell molecular model
was developed. The method is based on the split-
ting scheme with respect to physical processes. The
main feature of the method is the use of the Fast
Fourier and Hankel procedures which determine a
computational efficiency of the method estimated as
O(N log2 N). Code realizing the proposed algorithm
was worked out. All parts of the code were carefully
tested on exact solutions. As a sample application of
the proposed method, the classical problem of heat
transfer between two parallel plates was calculated
for a wide interval of the Knudsen numbers. The
results of calculations confirmed a good availability of
the created mathematical tools. The developed code
can be applied to many other similar problems of the
gas kinetic theory, some of which were listed at the
beginning of the paper.

Acknowledgements: This work was supported by the
Thailand Research Fund RGJ PhD programme (Contract
No. PHD/0272/2546). One of the authors (Y.N.G.) was
partially supported by the Russian Basic Research Fund

(Project No. 08-01-00116). The authors would like to
express their special thanks to E. Schulz for valuable dis-
cussions. We would also like to thank the Centre for Com-
puting Services and the School of Mathematics at Suranaree
University of Technology for making available high perfor-
mance computing facilities throughout this work.

REFERENCES

1. Kogan MN (1969)Rarefied Gas Dynamics, Plenum
Press, New York.

2. Cercignani C (1975)Theory and Application of the
Boltzmann Equation, Elsevier, New York.

3. Aristov VV (2001) Direct Methods for Solving the
Boltzmann Equation and Study of Nonequilibrium
Flows, Kluwer Academic Press, Dordrecht.

4. Bird GA (1976)Molecular Gas Dynamics, Clarendon
Press, Oxford.

5. Grigoriev YN, Mikhalitsyn AN (1983) A spectral
method of solving Boltzmann’s kinetic equation nu-
merically.USSR Comp Math Math Phys23, 105–11.

6. Pareschi L, Russo G (2000) Numerical solution of the
Boltzmann equation. I. Spectrally accurate approxima-
tion of the collision operator.SIAM J Numer Anal37,
1217–45.

7. Filbet F, Russo G (2003) High order numerical methods
for the space non-homogeneous Boltzmann equation.
J Comput Phys186, 457–80.

8. Kolobov VI, Arslanbekov RR, Aristov VV, Frolova
AA, Zabelok SA (2007) Unified solver for rarefied
and continuum flows with adaptive mesh and algorithm
refinement.J Comput Phys223, 589–608.

9. Bobylev AV (1975) The method of Fourier transform
in the theory of the Boltzmann equation for Maxwell
molecules.Dokl Akad Nauk SSSR225, 1041–4.

10. Sneddon IN (1972)The Use of Integral Transforms,
McGraw-Hill.

11. Brigham EO (1974)The Fast Fourier Transform,
Prentice-Hall.

12. Drikakis D, Rider W (2005)High-Resolution Methods
for Incompressible and Low-Speed Flows, Springer,
Berlin.

13. Larina IN, Rykov VA (2000) Method for numeri-
cal solving the Boltzmann equation with linearized
collision integral.Computing Center of the Russian
Academy of Sciences, 3–26.

14. Siegman AE (1977) Quasi-fast Hankel transform.Optic
Lett 1, 13–5.

15. Bobylev AV, Rjasanow S (1997) Difference scheme
for the Boltzmann equation based on the fast Fourier
transform.Eur J Mech B16, 293–306.

16. Aristov VV, Ivanov MS, Cheremisin FG (1990) Two
methods for solving the problem of heat transfer in a
rarefied gas.USSR Comp Math Math Phys30, 193–5.

www.scienceasia.org

http://www.scienceasia.org/2009.html
http://dx.doi.org/10.1016/S0041-5553(83)80083-4
http://dx.doi.org/10.1016/S0041-5553(83)80083-4
http://dx.doi.org/10.1016/S0041-5553(83)80083-4
http://dx.doi.org/10.1016/S0021-9991(03)00065-2
http://dx.doi.org/10.1016/S0021-9991(03)00065-2
http://dx.doi.org/10.1016/S0021-9991(03)00065-2
http://dx.doi.org/10.1016/j.jcp.2006.09.021
http://dx.doi.org/10.1016/j.jcp.2006.09.021
http://dx.doi.org/10.1016/j.jcp.2006.09.021
http://dx.doi.org/10.1016/j.jcp.2006.09.021
http://dx.doi.org/10.1364/OL.1.000013
http://dx.doi.org/10.1364/OL.1.000013
http://dx.doi.org/10.1016/0041-5553(90)90097-C
http://dx.doi.org/10.1016/0041-5553(90)90097-C
http://dx.doi.org/10.1016/0041-5553(90)90097-C
www.scienceasia.org

