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ABSTRACT : The purpose of this paper is to develop inequalities for Kronecker products and Hadamard products of
positive definite matrices. A number of inequalities involving powers, Kronecker powers, and Hadamard powers of linear
combination of matrices are presented. In particular, Hölder inequalities and arithmetic mean-geometric mean inequalities
for Kronecker products and Hadamard products are obtained as special cases.
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INTRODUCTION

Inequalities have proved to be powerful tools in
mathematics. Matrix inequalities arise in various
branches of mathematics and science such as system
and control theory1, optimization2 and semidefinite
programming3. Matrix inequalities are also important
tools in quantum statistical inference and quantum
information theory4. This paper is concerned with
inequalities for Kronecker products and Hadamard
products of special kinds of matrices. Let us begin
with some terminology and notation.

As usual,R stands for the set of real numbers.
Denote the set of allm × n complex matrices by
Mm,n and abbreviateMn,n to Mn for convenience.
The identity matrix inMn is denoted byIn or I if the
size of matrix is clear. A matrixA ∈ Mn is Hermitian
if A∗ = A, where∗ denotes the conjugate transpose.
A ∈ Mn is positive semidefiniteif x∗Ax > 0 for
all vectorsx ∈ Cn (Cn is the set ofn-tuples of
complex numbers). IfA is positive semidefinite and
invertible, thenA is positive definite. An equivalent
condition forA ∈ Mn to be positive definite is that
A is Hermitian and all eigenvalues ofA are positive
real numbers. A Hermitian matrix with the positivity
property (a positive definite matrix), which plays a
similar role to a positive real number, is an important
kind of matrix. The set of alln × n positive definite
matrices is represented byPn.

By inequalities for matrices we mean inequalities
in the Löwner sense. Given Hermitian matricesA and
B of the same size,A 6 B means thatB − A is
positive semidefinite. In particular,A > 0 indicates

thatA is positive semidefinite. The relation “6” is
reflexive, antisymmetric and transitive, i.e., “6” forms
a partial order on the space of Hermitian matrices.
This is known as theLöwner partial order5. In fact,
this relation does not form a total order on the space of
Hermitian matrices; there are Hermitian matricesA,
B of same size which are not comparable, i.e., neither
A 6 B norA > B holds.

Now we introduce matrix products that differ
from the ordinary matrix multiplication. A notion
which is useful in the study of matrix equations and
other applications is the Kronecker product of matri-
ces. TheKronecker productofA = [aij ] ∈ Mm,n and
B = [bij ] ∈ Mp,q is defined to be the block matrix

A⊗B :=

 a11B · · · a1nB
...

...
...

am1B · · · amnB

 ∈ Mmp,nq.

This matrix product has very nice properties. The
most important is the mixed-product property:

(A⊗B)(C ⊗D) = AC ⊗BD

for matricesA,B,C,D with appropriate sizes. The
set of positive semidefinite matrices is closed under
the Kronecker product, i.e.

A > 0, B > 0 =⇒ A⊗B > 0.

The Hadamard productof A,B ∈ Mm,n is the
entrywise product

A ◦B := [aijbij ] ∈ Mm,n.
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The Hadamard product differs from the ordinary
product in many ways. The most important is that
Hadamard multiplication is commutative. The most
basic properties of the product is the closure of
the cone of positive semidefinite matrices under the
Hadamard product (Schur product theorem6), i.e.

A > 0, B > 0 =⇒ A ◦B > 0.

Inequalities for the Kronecker product and the
Hadamard product of matrices have a long history6–10.
There are many results associated with them. In this
paper we study inequalities for Kronecker products
and Hadamard products involving powers, Kronecker
powers and Hadamard powers of linear combinations
of matrices. We derive some inequalities and then in-
vestigate results under special cases. Among these we
obtain Ḧolder and arithmetic mean-geometric mean
(AM-GM) inequalities.

PRELIMINARIES

We recall the concept of maps on matrix spaces. Letf
be a continuous real-valued function on a real interval
Ω. Let A ∈ Mn be Hermitian with eigenvalues
λ1, λ2, . . . , λn contained inΩ. SinceA is Hermitian,
A can be decomposed as

A = U diag[λ1, λ2, . . . , λn]U∗

where U is unitary (i.e. U∗U = I) and
diag[λ1, λ2, . . . , λn] is the diagonal matrix with diag-
onal entriesλ1, λ2, . . . , λn. The functional calculus
for A is defined as

f(A) = U diag[f(λ1), f(λ2), . . . , f(λn)]U∗.

For example, ifA ∈ Pn andr ∈ R, then

Ar = U diag[λr
1, λ

r
2, . . . , λ

r
n]U∗.

The following property involving Kronecker products
of positive definite matrices can be derived from the
mixed-product property.

Lemma 1 (Horn and Johnson6) For anyA,B ∈ Pn

andr ∈ R, we have(A⊗B)r = Ar ⊗Br.

A map Φ : Mn → Mm is unital if Φ maps
unit element to unit element, i.e.Φ(In) = Im.
Φ is positive if Φ maps positive element to positive
element, i.e.A > 0 ⇒ Φ(A) > 0. Φ is linear if Φ
preserves addition and scalar multiplication, i.e.,

Φ(αA+ βB) = αΦ(A) + βΦ(B)

whereα, β are scalars. A mapψ : Pn × Pn → Pm

is jointly concaveif for anyA,B,C,D ∈ Pn and any
0 < ε < 1,

ψ
(
εA+ (1− ε)B, εC + (1− ε)D)

)
> ε ψ(A,C) + (1− ε)ψ(B,D).

The following fact is well-known.

Lemma 2 (Ando7) A mapΦ defined byΦ(A,B) =
(A−1 +B−1)−1 for A,B ∈ Pn is jointly concave.

The following identity is used in the next section.

Lemma 3 The following identity holds for any
A,B ∈ Pn ands > 0 :(

(s−1A⊗ I)−1 + (I ⊗B)−1
)−1

= (A⊗B−1)
(
(A⊗B−1)+ (sI⊗ I)

)−1

(I⊗B).

(1)

Proof: SinceA andB are positive definite ands
is positive, all terms in the equality (1) are existent,
positive definite and nonsingular. For convenience,
write X = s−1A ⊗ I, Y = I ⊗ B, Z = A ⊗ B−1

andP = X + Y . It follows from the mixed-product
property of the Kronecker product that(
Z + (sI ⊗ I)

)(
(s−1I ⊗ I)− (s−1Y )P−1(s−1Z)

)
= Z(s−1I ⊗ I) + (sI ⊗ I)(s−1I ⊗ I)

− Z(s−1Y )(X + Y )−1(s−1Z)

− (sI ⊗ I)(s−1Y )(X + Y )−1(s−1Z)

= (s−1Z) + (I ⊗ I)−X(X + Y )−1(s−1Z)

− Y (X + Y )−1(s−1Z)

= (s−1Z) + In2 − (X + Y )(X + Y )−1(s−1Z)
= In2 .

That is

(s−1I ⊗ I)− (s−1Y )(X + Y )−1(s−1Z)

=
(
Z + (sI ⊗ I)

)−1
.

Again, the mixed-product property yields

Z−1
(
X−1 + Y −1

)−1
Y −1

= Z−1
(
X −X(X + Y )−1X

)
Y −1

= (A−1 ⊗B)X(Y −1)

− (A−1 ⊗B)X(X + Y )−1XY −1

= (s−1I ⊗ I)− (s−1Y )(X + Y )−1(s−1Z)

=
(
Z + (sI ⊗ I)

)−1
.

Thus,(X−1+Y −1)−1 = Z
(
Z+(sI⊗I)

)−1
Y which

is (1). �
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INEQUALITIES FOR KRONECKER
PRODUCTS

In this section we derive inequalities for the Kronecker
product of positive definite matrices in the form(αA+
βB)r ⊗ (αC + βD)s andα(Ar ⊗ Cs) + β(Br ⊗
Ds) whereA,B,C,D are positive definite matrices
andα, β, r, s are positive real numbers such thatr +
s = 1.

Theorem 1 For A,B,C,D ∈ Pn andα, β, r, s > 0
such thatr + s = 1,

(αA+ βB)r ⊗ (αC + βD)s

> α(Ar ⊗ Cs) + β(Br ⊗Ds). (2)

Proof: Let f be a real-valued function defined by
f(t) = tr for t > 0 and0 < r < 1. Clearly, f is
continuous. Recall an integral representation off (see
Ref. 8):

tr =
sin rπ
π

∫ ∞

0

sr−1t

s+ t
ds.

For convenience, writeY = I⊗B andZ = A⊗B−1.
Hence, the functional calculus forA ⊗ B−1, namely,
f(A⊗B−1) = (A⊗B−1)r can be written as

sin rπ
π

∫ ∞

0

(sI ⊗ I)r−1Z
(
Z + (sI ⊗ I)

)−1 ds.

It follows from Lemma 1that

Ar ⊗B1−r = (ArI)⊗ (B−rB)

= (Ar ⊗B−r)(I ⊗B)

= (A⊗B−1)r(I ⊗B).

Hence, byLemma 3we obtain

Ar ⊗B1−r

=
sin rπ
π

∫ ∞

0

(sI ⊗ I)r−1Z
(
Z + (sI ⊗ I)

)−1 ds Y

=
sin rπ
π

∫ ∞

0

sr−1Z
(
Z + (sI ⊗ I)

)−1 ds Y

=
sin rπ
π

∫ ∞

0

sr−1Z
(
Z + (sI ⊗ I)

)−1
Y ds

=
sin rπ
π

∫ ∞

0

sr−1
(
(s−1A⊗ I)−1 + Y −1

)−1 ds.

Sinces−1A ⊗ I andI ⊗ B are positive definite, by
Lemma 2we have that the mapΦ : Pn2 ×Pn2 → Pn2

defined by

Φ(s−1A⊗I, I⊗B) =
(
(s−1A⊗I)−1+(I⊗B)−1

)−1

is jointly concave. It is well-known that the positive
linear combination of the jointly concave maps is
jointly concave. Hence, from the viewpoint of the
Riemann integral, the integrand is also jointly con-
cave, and so isAr ⊗ B1−r. This means that for any
A,B,C,D ∈ Pn and scalar0 < ε < 1,

(εA+ (1− ε)B)r ⊗ (εC + (1− ε)D)s

> ε(Ar ⊗ Cs) + (1− ε)(Br ⊗Ds)

for s > 0 andr + s = 1. Since0 < α/(α + β) < 1,
by settingε = α/(α+ β), we get (2). �

From this theorem, we obtain the Hölder inequal-
ity for positive definite matrices as a special case.
Recall that real numbersp, q areconjugate exponents
if p, q are positive and1/p+ 1/q = 1.

Corollary 1 For A,B,C,D ∈ Pn and conjugate
exponentsp, q, we have

(A⊗B)+(C⊗D) 6 (Ap+Cp)
1
p⊗(Bq+Dq)

1
q . (3)

Proof: First, setα = β = 1, r = 1/p ands = 1/q
in Theorem 1. Then swapB with C. Finally, replace
A,B,C,D with Ap, Bq, Cp, Dq, respectively. �

The casep = 2 (henceq = 2) in (3) is the
Cauchy-Schwarz inequality. See Ref.7 for general-
izations of the Ḧolder inequality for positive definite
matrices. Recall that theKronecker sumof A ∈ Mn

andB ∈ Mm is defined as

A⊕B := (A⊗ Im) + (In ⊗B) ∈ Mmn.

With this notation, we obtain the following from the
caseB = C = I in Corollary 1.

Corollary 2 For A,B ∈ Pn and conjugate exponents
p, q, we have

A⊕B 6 (Ap + I)
1
p ⊗ (Bq + I)

1
q . (4)

The equality in (2) occurs ifA = B, C = D.
Now we investigate results under other special cases
of Theorem 1. We consider the cases (i)A = C,B =
D, (ii) A = D,B = C, (iii) r = s, (iv) α = β.

Many inequalities can be obtained via combining
these cases. ForA,B,C,D ∈ Pn andα, β, r, s > 0
such thatr + s = 1, we have the following results:

(αA+ βB)r ⊗ (αA+ βB)s

> α(Ar ⊗As) + β(Br ⊗Bs) , (5)

(αA+ βB)r ⊗ (βA+ αB)s

> α(Ar ⊗Bs) + β(Br ⊗As) , (6)
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(
(αA+ βB)⊗ (αC + βD)

) 1
2

> α(A⊗ C)
1
2 + β(B ⊗D)

1
2 , (7)

(A+B)r ⊗ (C +D)s

> (Ar ⊗ Cs) + (Br ⊗Ds). (8)

From inequalities (5)-(8), it follows that(
(A+B)⊗ (C +D)

) 1
2

> (A⊗ C)
1
2 + (B ⊗D)

1
2 , (9)

(A+B)r ⊗ (A+B)s

> (Ar ⊗As) + (Br ⊗Bs) , (10)

(A+B)r ⊗ (A+B)s

> (Ar ⊗Bs) + (Br ⊗As) , (11)(
(αA+ βB)⊗ (βA+ αB)

) 1
2

> α(A⊗B)
1
2 + β(B ⊗A)

1
2 . (12)

Recall that thekth Kronecker powerof A ∈ Mn

is defined inductively for any positive integerk by
A⊗1 := A andA⊗k := A ⊗ A⊗(k−1), for k > 1.
It is easy to see that for anyA ∈ Pn, positive integer
k, and real numberr,

(A⊗k)r = (Ar)⊗k. (13)

With this notation and property (13), we get the
following results:(

(αA+ βB)
1
2
)⊗2

> α(A
1
2 )⊗2 + β(B

1
2 )⊗2, (14)(

(A+B)
1
2
)⊗2

> (A
1
2 )⊗2 + (B

1
2 )⊗2, (15)(

(A+B)
1
2
)⊗2

> (A⊗B)
1
2 + (B ⊗A)

1
2 . (16)

The next result is the AM-GM inequality for matrices
involving the Kronecker product.

Corollary 3 If A,B ∈ Pn commute under the Kro-
necker product, then

(A⊗B)
1
2 6

1
2
(
(A+B)

1
2
)⊗2

(17)

with equality if and only ifA = B.

Proof: The inequality (16) becomes (17) if A⊗B =
B ⊗ A. The equality part follows from the fact that
A⊗B = B ⊗A if and only if there is a scalarc such
thatA = cB orB = cA. �

Remark 1 (i) If A andB are comparable, then (15)
is sharper than (16). The reason is that the closure of
Pn under the Kronecker product yields

(A
1
2 −B

1
2 )⊗ (A

1
2 −B

1
2 ) > 0

and hence

(A
1
2 )⊗2 + (B

1
2 )⊗2 > (A⊗B)

1
2 + (B ⊗A)

1
2 .

Similarly, if A andB are comparable, then (10) is
sharper than (11). Note that giving positive definite
matricesA,B does not always implyA > B orA 6
B. (ii) Without the commutativity ofA andB under
the Kronecker product, the inequality (16) becomes
the AM-GM inequality for real numbers whenn = 1.

INEQUALITIES FOR HADAMARD
PRODUCTS

In this section we derive inequalities for Hadamard
products of positive definite matrices.

Theorem 2 For A,B,C,D ∈ Pn andα, β, r, s > 0
such thatr + s = 1,

(αA+ βB)r ◦ (αC + βD)s

> α(Ar ◦ Cs) + β(Br ◦Ds). (18)

Proof: Let us defineΦ : Pn × Pn → Pn2 by
Φ(A,B) = Ar ⊗ Bs. Recall that the Hadamard
product of matrices is the principal submatrix of the
Kronecker product of matrices. Consequently, there
exists a unital positive linear mapϕ : Pn2 → Pn such
thatϕ(A⊗B) = A ◦B. Hence,

(ϕ ◦ Φ)(A,B) = ϕ(Φ(A,B))
= ϕ(Ar ⊗Bs) = Ar ◦Bs.

Since Φ is jointly concave (byTheorem 1) and ϕ
is positive and linear, the compositionϕ ◦ Φ is also
jointly concave. This means that for anyA,B,C,D ∈
Pn and any scalar0 < ε < 1,

(εA+ (1− ε)B)r ◦ (εC + (1− ε)D)s

> ε(Ar ◦ Cs) + (1− ε)(Br ◦Ds).

Since0 < α/(α+β) < 1, by replacingεwith α/(α+
β), we get (18). �

We obtain the Ḧolder inequality for positive defi-
nite matrices as a special case ofTheorem 2.

Corollary 4 For A,B,C,D ∈ Pn and conjugate
exponentsp, q, we have

(A◦B)+(C◦D) 6 (Ap+Cp)
1
p ◦(Bq+Dq)

1
q . (19)

Proof: First setα = β = 1, r = 1/p and s =
1/q in (18). Then swapB with C. Finally, replace
A,B,C,D with Ap, Bq, Cp, Dq, respectively. �
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The casep = 2 (henceq = 2) in (19) is the
Cauchy-Schwarz inequality. The Hadamard sum of
matrices is defined and studied in Ref.11. The
Hadamard sumof A,B ∈ Mn is

A •B := A ◦ I + I ◦B.

In particular, fromCorollary 4, we get

Corollary 5 For A,B ∈ Pn and conjugate exponents
p, q, we have

A •B 6 (Ap + I)
1
p ◦ (Bq + I)

1
q . (20)

The equality in (18) occurs ifA = B, C = D.
Now we investigate results under other special cases
of Theorem 2. We consider the cases (i)A = C, B =
D, (ii) A = D,B = C, (iii) r = s, (iv) α = β.

Many inequalities can be derived from these
cases. The following inequalities hold for any
A,B,C,D ∈ Pn andα, β, r, s > 0 with r + s = 1:

(αA+ βB)r ◦ (αA+ βB)s

> α(Ar ◦As) + β(Br ◦Bs), (21)

(αA+ βB)r ◦ (βA+ αB)s

> α(Ar ◦Bs) + β(As ◦Br), (22)

(αA+ βB)
1
2 ◦ (αC + βD)

1
2

> α(A
1
2 ◦ C 1

2 ) + β(B
1
2 ◦D 1

2 ), (23)

(A+B)r ◦ (C +D)s

> (Ar ◦ Cs) + (Br ◦Ds). (24)

From inequalities (21)-(24), it follows that

(A+B)
1
2 ◦ (C +D)

1
2

> (A
1
2 ◦ C 1

2 ) + (B
1
2 ◦D 1

2 ) , (25)

(A+B)r ◦ (A+B)s

> (Ar ◦As) + (Br ◦Bs) , (26)

(A+B)r ◦ (A+B)s

> (Ar ◦Bs) + (As ◦Br) , (27)

(αA+ βB)
1
2 ◦ (βA+ αB)

1
2

> (α+ β)(A
1
2 ◦B 1

2 ). (28)

Recall that thekth Hadamard powerof A ∈ Mn

is defined byA(k) := [ak
ij ], k being a positive integer.

It is easy to see that(αA)(k) = αkA(k) and

A(k) = A ◦A(k−1), k = 2, 3, . . . .

With this notation, we have the following results:(
(αA+ βB)

1
2
)(2)

> α(A
1
2 )(2) + β(B

1
2 )(2), (29)(

(A+B)
1
2
)(2)

> (A
1
2 )(2) + (B

1
2 )(2), (30)(

(A+B)
1
2
)(2)

> 2(A
1
2 ◦B 1

2 ). (31)

Remark 2 If A andB are comparable, then (30) is
sharper than (31). Indeed, the closure ofPn under the
Hadamard product implies

(A
1
2 −B

1
2 ) ◦ (A

1
2 −B

1
2 ) > 0

and hence

(A
1
2 )(2) + (B

1
2 )(2) > 2(A

1
2 ◦B 1

2 ).

Similarly, if A andB are comparable, then (26) is
sharper than (27).

Now we obtain, from (31), the AM-GM inequal-
ity for matrices involving the Hadamard product.

Corollary 6 For A,B ∈ Pn, we have the following
inequality:

A
1
2 ◦B 1

2 6
1
2
(
(A+B)

1
2
)(2)

. (32)

CONCLUSIONS

We have obtained many matrix inequalities involving
Kronecker products and Hadamard products of pos-
itive definite matrices using the concept of maps on
matrix spaces. We believe that one can get other
inequalities by appropriate use of this concept. Our
results should be applicable in fields related to matrix
theory.
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