(L9ESEARCH ARTICLE ScienceAsias (2009) 106-110
doi: 10.2306/scienceasial513-1874.2009.35.106

Inequalities for Kronecker products and Hadamard
products of positive definite matrices

Pattrawut Chansangiam®, Patcharin Hemchote, Praiboon Pantaragphong

Department of Mathematics and Computer Science, Faculty of Science,
King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

* Corresponding author, e-makcpattra@kmitl.ac.th
Received 9 Oct 2008
Accepted 15 Jan 2009

ABSTRACT: The purpose of this paper is to develop inequalities for Kronecker products and Hadamard products of
positive definite matrices. A number of inequalities involving powers, Kronecker powers, and Hadamard powers of linear
combination of matrices are presented. In particul&lder inequalities and arithmetic mean-geometric mean inequalities
for Kronecker products and Hadamard products are obtained as special cases.
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INTRODUCTION that A is positive semidefinite. The relatior<” is
reflexive, antisymmetric and transitive, i.eg™forms

Inequalities have proved to be powerful tools ira partial order on the space of Hermitian matrices.

mathematics. Matrix inequalities arise in variousThis is known as the&dwner partial orderP. In fact,

branches of mathematics and science such as systthis relation does not form a total order on the space of

and control theory, optimizatior? and semidefinite Hermitian matrices; there are Hermitian matricés

programming. Matrix inequalities are also important B of same size which are not comparable, i.e., neither

tools in quantum statistical inference and quanturd < B nor A > B holds.

information theory. This paper is concerned with Now we introduce matrix products that differ

inequalities for Kronecker products and Hadamaréfom the ordinary matrix multiplication. A notion

products of special kinds of matrices. Let us begimvhich is useful in the study of matrix equations and

with some terminology and notation. other applications is the Kronecker product of matri-
As usual,R stands for the set of real numbers.ces. Thekronecker producdf A = [a;;] € M., ,, and

Denote the set of alln x n complex matrices by B = [b;;] € M, , is defined to be the block matrix

M,,.» and abbreviatéVl, ,, to M,, for convenience.

The identity matrix inML, is denoted byf,, or I if the anB -+ a,B

size of matrix is clear. A matrid € M,, is Hermitian A®B = : : € Mynp ng-

if A* = A, where* denotes the conjugate transpose.

A € M, is positive semidefiniteé z*Axz > 0 for

all vectorsz € C™ (C" is the set ofn-tuples of This matrix product has very nice properties. The

complex numbers). I is positive semidefinite and most important is the mixed-product property:

invertible, thenA is positive definite An equivalent

condition for A € M,, to be positive definite is that (A®B)(C® D)= AC® BD

A is Hermitian and all eigenvalues of are positive ; icesA ith _ ) h
real numbers. A Hermitian matrix with the positivity 0" Matrices4, 5, C, D with appropriate sizes. The
set of positive semidefinite matrices is closed under

property (a positive definite matrix), which plays a :
similar role to a positive real number, is an importanin® Kronecker product, i.e.
kind of matrix. The set of alh x n positive definite
matrices is represented By, .

By inequalities for matrices we mean inequalitiesthe Hadamard productof A,B € M,,,, is the
in the Lowner sense. Given Hermitian matricé®ind  entrywise product ’
B of the same sized < B means thatB — A is
positive semidefinite. In particulad > 0 indicates Ao B :=[a;jb;;] € My, 4.

amiB - amnB

A>0,B>0 =— A®B>0.
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The Hadamard product differs from the ordinarywherea, s are scalars. Amagp : P, x P, — P,
product in many ways. The most important is thais jointly concavef for any A, B, C, D € P,, and any
Hadamard multiplication is commutative. The mosbD < € < 1,

basic properties of the product is the closure of

the cone of positive semidefinite matrices under the V(eA+(1-€)B,eC + (1 —€)D))

Hadamard product (Schur product theofdn.e. >ev(AC)+ (1—e)w(B,D).

The following fact is well-known.

Lemma 2 (Ando’) A map® defined byd(4, B) =
Inequalities for the Kronecker product and th A= + B~1)~1 for A, B € P, is jointly concave.

Hadamard product of matrices have along histoy The following identity is used in the next section.
There are many results associated with them. In this . . )
paper we study inequalities for Kronecker products®mma 3 The following identity holds for any
and Hadamard products involving powers, Kroneckef': B € Fn ands >0
powers and Hadamard powers of linear combinations ,, _; 1 1
of matrices. We derive some inequalities and then in- ((S Ael)™ + (2 B) ) .
vesti_gate results und(_ar spe(_:ial cases. Among thesewe (4 @ B~1) ((A®Bfl) + (sI@I)) (I® B).
obtain Hdlder and arithmetic mean-geometric mean

A>0,B>0 = AoB>0.

1

(AM-GM) inequalities. (1)
Proof: Since A and B are positive definite and
PRELIMINARIES is positive, all terms in the equalityl)l are existent,

We recall the concept of maps on matrix spaces.fLet POSitive definilte and nonsingular. For conveniel:nce,
be a continuous real-valued function on a real interv¥1it¢ X = s~ A® Y =1 ® B, Z = A® B~
0. Let A € M, be Hermitian with eigenvalues andP = X +Y. It follows from the mixed-product

A, A2, . .., A, contained in2. SinceA is Hermitian, Property of the Kronecker product that

A can be decomposed as (Z+ (sI® 1)) ((3711 1) — (5715/)1371(8712))
A=U diag[A1, A2, ..., A\ U" =Z(s QD)+ (sIQI) (s T®I)

where U is unitary (i.e. U*U = I) and —Z(sTY)X +Y) (s 2)

diag[A1, Aa, . . ., A ] is the diagonal matrix with diag- —(ID(IYX +Y) s 2)

onal entries\1, A2, ..., \,. Thefunctional calculus — ()T ol) - X(X +Y)*1(s*12)

for A is defined as 1, -1
—Y(X+Y) (s712)

f(A) =Udiag[f(A1), f(A2),-- -, F(AR)] U™ =)+ L — (X + V)X +Y) ' (s712)
For example, ifA € P, andr € R, then -
That is
A" = Udlag[)\l,A27...,)\n]U . (S_II®I) - (S_IY)(X—FY)_I(S_IZ)
The following property involving Kronecker products = (Z + (sI ® ]))_1_

of positive definite matrices can be derived from th

mixed-product property. PAgam, the mixed-product property yields

Z7UX TPy Tyt
=Z'(X-X(X+Y)'X)y!
=(A'eB)X(Y )

Lemma 1 (Horn and Johnsorf) ForanyA, B € P,
andr € R, we havg A® B)" = A" ® B".

Amap® : M, — M, is unital if & maps C(A'@B)X(X + V)XY !
unit element to unit element, i.e.®(l,) = I. o L o
® is positiveif & maps positive element to positive = (7R = (sTY)(X+Y) (s 2)
element, i.e.A > 0 = ®(A) > 0. dislinear if ® = (Z+ (sI®I))71.

preserves addition and scalar multiplication, i.e., .
Thus,(X'+Y 1)1 = Z(Z+(sI®I)) Y which
O(aA + GB) = a®(A) + 5P(B) is (1). d
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INEQUALITIES FOR KRONECKER is jointly concave. It is well-known that the positive
PRODUCTS linear combination of the jointly concave maps is

In this section we derive inequalities for the Kroneckej(o.mtly concave. Hencg, from th? viewp_oi!'\t of the
product of positive definite matrices in the fofmA+ Riemann integral, the integrand is also jointy con-
BB)" ® (aC + AD)* and (A" ® C*) + B(B" ® cave, and so isl” ® B'~". This means that for any
D#) where A, B, C, D are positive definite matrices 4,B,C,D € P, and scalad <e <1,
anda, 8, r, s are positive real numbers such that
s=1. (cA+(1—€¢)B) @ (eC + (1 —€)D)*

> e(A"®C%)+ (1 —¢€)(B"® D?)
Theorem1 For A,B,C,D € P, anda, 3,7, > 0

suchthatr +s =1, fors > 0andr + s = 1. Since0 < a/(a + 3) < 1,
by settinge = /(. + 3), we get R). O
(A + BB)" @ (aC + 3D)* From this theorem, we obtain theélder inequal-

ity for positive definite matrices as a special case.
Recall that real numbers ¢ areconjugate exponents

Proof: Let f be a real-valued function defined byif ¢ are positive and/p +1/q = 1.
fit)y =t"fort > 0and0 < r < 1. Clearly, f is
continuous. Recall an integral representatiorf ¢(ee
Ref. 8):

®
> a(A"®C*%) + B(B"® D). (2)

Corollary 1 For A,B,C,D € P, and conjugate
exponentp, ¢, we have

sinrm

. o0 gr—1y 1 1
- / s, (A©B)+(CoD) < (AP+CP) @ (B1+DY)4. (3)
0

™ s+t

For convenience, writt' = I© BandZ = A@ B~!. Proof: First, seta = =1, r = 1/pands = 1/q
Hence, the functional calculus fot ® B—!, namely, in Theorem 1 Then swapB with C'. Finally, replace

f(A® B = (A® B~)" can be written as A, B,C, D with AP, B1,C?, D1, respectively. [
The casep = 2 (henceq = 2) in (3) is the
sin rm 1 Cauchy-Schwarz inequality. See Ré&ffor general-

/731 @) Z(Z+ (sI®I))  ds.

0 izations of the Hlder inequality for positive definite

matrices. Recall that th€ronecker sunof A € M,
It follows from Lemma 1that andB € M,, is defined as

A"®@ BT = (A"I)® (B"B) A®B:=(A®I,)+ (I, ® B) € My,.
= (A" ®B™")(I® B)

. With this notation, we obtain the following from the
=(A® B~ )"(I® B).

caseB = C = [ in Corollary 1

Hence, byL,emma 3we obtain Corollary 2 For A, B € P,, and conjugate exponents
,q, we have
AT ® Blfr P.q
1 1
51 > _ < (AP » q q,
:bmrﬂ-/(sI®I)T_1Z(Z+(sI®I)) Lds v ADB< (AP +1)» @ (BT +1) 4
™
- o . The equality in @) occurs ifA = B, C = D.
= / sr—lz(z +(sI® I)) dsY Now we investigate results under other special cases
7 o of Theorem 1 We consider the cases @)= C, B =
_ s rﬂ’/ 87'_1Z(Z+(SI®I))_1YdS D, (ii)A:.D,Bf.C, (i) r = s, (i\./)a:-ﬂ. .
7T 0 Many inequalities can be obtained via combining
_osinrm [, 1 -1 these cases. Fot, B,C,D € P, anda,3,r,5 > 0
T oor _/0 ST AR DT YT ds. such that + s = 1, we have the following results:

Sinces 'A ® I andI ® B are positive definite, by («A+ BB)" ® (eA+ BB)*

Lemma 2we have thatthe map : P2 x P2 — P2 > (A" ® A%) + B(B" ® B*), (5)
defined by (A + BB)" ® (BA + aB)*
o(s 'AI I®B) = ((s 'A@l) ' +(IeB)™) " >a(A"®B*)+p(B"®@A%), (6)
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(A + 6B) (aC + ﬂD))% and hence

(A®C)* +B(BaD)?, (7) (A2)%2 4 (B2)®2 > (A® B)? + (B® A)=.
Asnr (C+D) larly, if A and ble, therlQ)
r s r s Similarly, i and B are comparable, therl@) is
> (A" C B" ® D?). 8 . - L
(A" ® ")+ (B @ DY) ®) sharper than1(1). Note that giving positive definite
From inequalities%)-(8), it follows that matricesA, B does not always implyl > B or A <
B. (ii) Without the commutativity ofA and B under

Nl

(A+B)® (C+ D)) the Kronecker product, the inequalit§g) becomes
1 1 the AM-GM inequality for real numbers when= 1.
> (A O) + (Bo D)}, ©) quatty
(A+B)"® (A+ B)* INEQUALITIES FOR HADAMARD
> (A" ® A®) + (B" @ B*), (10) PRODUCTS
(A+B)"®(A+ B)® In this section we derive inequalities for Hadamard
> (A" ® BY) + (B" @ A°) (11) products of positive definite matrices.
(A + BB) @ (BA+ o<B))é Theorem 2 For A,B,C,D € P, ando, 3,7, > 0

a(Ae B +a(Be A}, 1z SUhArEs=1
Recall that thekth Kronecker powenf A € M,, (@A +BB)" o (aC + BD)*
is defined inductively for any positive integér by > a(A” o C) + B(B" o D%). (18)
ABl = A and A®F = A ® A®*-D) fork > 1.
It is easy to see that for any € P,,, positive integer Proof: Let us define® : P, x P, — P,2 by

k, and real number, ®(A,B) = A" ® B*. Recall that the Hadamard
ok . product of matrices is the principal submatrix of the
(A®F)" = (A7) (13)  Kronecker product of matrices. Consequently, there

exists a unital positive linear map: P,,- — P,, such

With this notation and propertyl8), we get the thate(A @ B) — Ao B. Hence,

following results:
(po®)(A,B) = o(®(4, B))

A%@Q %@2 14
o(AB)P 4 B(BH, (14) A

2
((A+B>%) > (A3)®2 4 (B%)®2, (15)
P

1 Since @ is jointly concave (byTheorem } and ¢
((A +B)? ) (4@ B) +(B@A)z. (16) is positive and linear, the compositiano @ is also

The next result is the AM-GM inequality for matricesjointly concave. This means that for ady B, C, D €
involving the Kronecker product. P, and any scalab < e < 1,

Corollary 3 If A,B € P, commute under the Kro- (A+(1—€)B) o (eC + (1 — €)D)*
necker product, then > (A" 0 C%) + (1 — €)(B" 0 D)
€ o — € ] .

1 1 1\ ®2
(A®B)? < 5((A+B)2) (A7) Sinced < a/(a+5) < 1, by replacing with a./(a+
. _ o 0), we get (9). O
with equality if and only it4 = B. We obtain the Blder inequality for positive defi-
Proof: The inequality {6) becomes7)if A@ B = hite matrices as a special caseTdieorem 2

B ® A. The equality part follows from the fact that
A® B =B® Aifand only if there is a scalarsuch  Corollary 4 For A, B,C,D < P, and conjugate
thatA — cBor B — cA. ] exponentg,q, we have

Remark 1 (i) If A and B are comparable, thelf)  (AoB)+(CoD) < (Ap+Cp)%o(Bq+Dq)%. (19)
is sharper thanl@). The reason is that the closure of

PP,, under the Kronecker product yields Proof: Firstseta = 3 = 1,r = 1/pands =
) ) ) . 1/q in (18). Then swapB with C. Finally, replace
(A2 —=B2)® (A2 —B?) >0 A, B,C, D with AP, B1,C?, D1, respectively. O
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The casep = 2 (henceq = 2) in (19) is the Remark 2 If A and B are comparable, ther8Q) is
Cauchy-Schwarz inequality. The Hadamard sum cofharper than31). Indeed, the closure df, under the
matrices is defined and studied in Refl. The Hadamard productimplies
Hadamard sunof A, B € M, is 1 1 1 1

unmor A, 5 € Bl (A® —B¥)o(A® —B¥) >0

AeB:=Aol+10B.
and hence

(A2)® 4 (B2)® > 2(A7 o B2).
Corollary 5 For A, B € P, and conjugate exponents ] ]
p, q, we have Similarly, if A and B are comparable, ther2§) is
sharper than7).

In particular, fromCorollary 4 we get

1 1
AeB L (AP +1)r o (BY+1)u. 20 . .
° . _( +DEe (_ +D (20) Now we obtain, from §1), the AM-GM inequal-
The equality in £8) occurs ifA = B, C = D. ity for matrices involving the Hadamard product.
Now we investigate results under other special cas

of Theorem 2 We consider the cases @)= C, B — %Sorollary 6 For A, B € P, we have the following

D, (i) A= D, B =C, (iii) r = s, (iv) a = 3 inequality:
Many inequalities can be derived from these Ao Bt < = ((A+ B)*)?, 32
cases. The following inequalities hold for any ° 2 (( +B) ) (32)
A, B, C,DeP,anda, 3,7, >0withr +s=1: CONCLUSIONS
(A + BB)" o (A + BB)° We have obtained many matrix inequalities involving
a(A" 0 A®) + B(B" o BY), (21) Kronecker products and Hadamard products of pos-

itive definite matrices using the concept of maps on

(@A +5B) o (B4 +aB) matrix spaces. We believe that one can get other

a(A" o B®) + (A° o B"), (22)  inequalities by appropriate use of this concept. Our
(A + ﬂB)% o (aC + ﬁD)% results should be applicable in fields related to matrix
1 1 theory.
a(A} o CH) 4+ BB o DY), (23) Y
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