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ABSTRACT : The distribution of the trees in a 30 hectare plot in Khao Yai National Park, Thailand containing 16 375 trees,
divided into 63 families and 182 species was studied. The allometric scaling exponent in the relation between number and
diameter of all the trees taken as one group was approximately−2. The spatial heterogeneity of the forest shown by the
variation of this scaling exponent determined for each hectare in the area of study. The box counting method was used to
determine the fractal dimensions (df ) of the spatial patterns of the trees. The spatial pattern for all the trees taken as a whole
had adf of 1.81. The fractal dimensions for the patterns of the six most abundant species ranged from 1.73 to 1.75. On the
other hand, values ofdf as measured from each hectare were less than 1.5, suggesting that the pattern is not self-similar over
a significant range of length scales.
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INTRODUCTION

An ecosystem is a complex system. One recent tool
used to study the universal principles that govern the
structure and dynamics of ecosystems comes from
the concept of fractals1,2. A fractal is a nontrivial
geometrical structure which, in at least a statistical
sense, is invariant under a scale transformation3. The
mathematics of fractals has developed to a point where
it has become a promising way to quantify patterns
exhibiting complex geometries. The need for a new
geometry stems from the fact that classical Euclidean
geometry is not suitable for analysing some aspects of
the irregular shapes that appear in nature. The non-
Euclidean concept of fractional dimensions allows for
a quantitative description of rather abstract quantities
such as heterogeneity, irregularity and complexity4.

Recently, long-range power-law correlations have
been discovered in a wide range of scenarios in na-
ture5. These features have been interpreted as the
result of scale invariance6–8. A power-law dependence
of dependent variableY on independent variableX
takes the formY = Y0X

n whereY0 is a constant and
n is the exponent. A power-law dependence with an
exponent which is a multiple of 1/3 indicates that the
phenomenon exhibits a Euclidean geometric scaling.

The simplest examples of this are the relationships
between the length (L), area (A), and volume (V ).
Self-similar objects of this class scale asA ∝ L2,
V ∝ L3, and A ∝ V 2/3. Biological allometries,
however, exhibit exponents that are multiples of a
quarter8–15. Examples of biological allometries are
the M3/4 scaling of the whole body metabolic rate,
the M1/4 scaling of the development time, lifespan,
and other biological times, and theM−1/4 scaling of
the heart rate and the maximum rate of population
growth, whereM is the mass of the organism.

Most landscapes exhibit patterns intermediate be-
tween a complete spatial independence (df = 1) and
a complete spatial dependence (df = 2). The fractal
dimension provides a measure of the degree of corre-
lation between ‘points’ or patches over space or time.
It provides a new way to understand and to analyse
rough and fragmented spatial phenomena in terms
of self-similarity or self-affinity. Again, the concept
of fractal geometry can provide new insight into the
spatial variability of tree patterns. Recently, there have
been several reviews on the applications of fractals to
ecological research and landscapes16,17. Because a
fractal dimension is scale invariant, it provides us with
a new index to measure ‘point’ patterns and diversity.
Information on the fractal dimensions can be used
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in quantifying the landscape habitat diversity18 and
non-geometric ecological properties such as perme-
ability19.

Habitat complexity and spatial heterogeneity are
important factors in community structure, contributing
to community diversity and to species co-existence in
an ecosystem. Habitat complexity has been shown
to alter the size-density scaling of species in an
ecosystem. Li20 has proposed a theoretical explana-
tion for species-area scaling based on the generalized
MacArthur-Wilson model with a fractal interpretation
of habitats by relating mechanisms of species migra-
tion with habitat heterogeneity. Organizing principles
are needed to link the organism, the community, and
the ecosystem properties across spatial and tempo-
ral scales. A central goal of plant ecology is to
understand the mechanisms controlling the structure
and the dynamics of plant communities21,22. The
mechanistic principles connecting the essential char-
acteristics of different ecological communities across
diverse ecosystems have gradually started to emerge.
West et al8,14,15 have hypothesized that the unique 1/4
power exponent is due to the fractal designs of the
distribution networks and the exchange surfaces. The
fractal nature of the geometry endows these systems
with a ‘fourth spatial dimension.’

The spatial patterns of plants can also be charac-
terized by a fractal analysis. The fractal dimension
of the structural components of the ecosystem could
reflect the emerging pattern being produced as a result
of the spatiotemporal interactions between the com-
ponents of the ecosystem. Fractal structures have two
important properties: (a) spatial heterogeneity and (b)
invariability through a range of scales over which the
plant community is self-similar, i.e., displays similar
behaviour, appears to be structurally similar, and is
affected by the same processes23. Fractal dimension
can be used as a criterion to evaluate and diagnose
successional vegetation changes. Changes in the
fractal dimension might indicate substantial change in
the processes that generate spatial patterns of plants2.
Different species may perceive environmental vari-
ability in different ways and thus exhibit different
patterns. The distribution pattern of plants in the
landscape can be characterized by spectral analysis
of intra-specific distribution (1/f noise), which mea-
sures the level of autocorrelation among the spatially
distributed objects. Spectral analysis has generally
been applied to temporal fluctuations, but can also be
applied equally to characterize spatial correlations24.

The purpose of the present study is to investigate
the fractal properties of the distribution of different
species of trees in a forest in Thailand. Brown et

al9 mentions some work done on 0.1 ha plots in two
forests in Colombia; one in Tutunento having 590
trees of 121 species and the other in Baja Calima,
having 556 trees of 263 species. They found that
the scaling between the numbers of stems and the
diameters of the trees in the two forests went as−2.08
and−2.12, respectively.

Our analysis of the data is based on the box
counting method. The box counting method provides
a simple way to determine the fractal dimensional
geometry which here is defined as how much area is
filled with trees (of all species, a given species or a
given family). We wish to see if the spatial pattern
formation of a tropical forest can be explained in terms
of fractal objects. The paper focuses on two keys
aspects: (1) scaling relations between the number of
trees and some of their properties, (2) a geometrical
description using fractal dimensions.

MATERIALS AND METHODS

Study area and data collection

Khao Yai National Park is located about 200 km
northeast of Bangkok. The tree data we used was
from a complete survey of all trees with diameter
above breast height (dbh) larger than 10 cm in a
30 ha plot in the park, and was carried out by the
Center for Conservation Biology, Mahidol University
from April 2001 to April 2002. The survey plot
(14°26′ N, 101°22′ E, elevation 730–860 m) is a large
area in a primary tropical rain forest. The climate is
cool and humid, with a distinct summer and receives
about 2 m of rain a year mostly between April and
September. The average temperature ranges from
17 °C in December and January to 28 °C in April and
May.

The distribution of all the trees in the area studied
is shown onFig. 1. The plot is divided into 30
100 m×100 m quadrats. The quadrats are labelled
Q(i, j) wherei = 1, . . . , 6 andj = 1, . . . , 5. The total
number of trees located in the study plot is 16 375
divided into 63 families and 182 species.

Measurements and analysis

We used MAPINFO to generate the geographic pic-
tures needed to illustrate different aspects of our study.
The maps are of the tree distribution in the entire
area and the geographical distribution (in the total
area of study) of the trees belonging to the six most
abundant families and to the six most abundant species
(Fig. 2). These maps show how the trees (of a
given species) segregate and the patterns they form.
The fractal dimensions of tree pattern structure were
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Fig. 1 Spatial distribution of all the trees in the 30 ha plot.

determined by the box-counting method (BCM) using
the BENOIT program on images of maps of the points.
The reliability of the method was tested with fractals
(Koch snowflake and Sierpinski gasket) of knowndf .
The BCM is one of the most widely used methods25

due to the relative ease of mathematical calculations
and computations involved. It consists basically of
drawing successively larger boxes and counting the
number of boxes that touch the objects being looked
at. The slope of the log-log plot of the number
of boxes versus their respective size is the fractal
dimension.

RESULTS

As can be seen from Figs.1 and2, the distributions
of the total number of trees and of the individual
species are not homogeneous. While not shown, the
distributions of the trees belonging to the six most
abundant families are also inhomogeneous. Instead,
the properties of the trees and the patterns they form
exhibit great variations in the different quadrats of the
plot. In other words, this particular plot of forest
exhibits an enormous complexity which we hope to
understand.

Spatial distribution pattern of trees

The spatial distribution of all the trees is shown in
Fig. 1. To see the tree patterns at a more local level, we
have divided the total area of 30 ha into 30 quadrats of
one ha each and have analysed the fractal nature of the
tree distribution within each quadrat. We have listed in
Table 1the number of trees (400–700), the number of
species (60–90), the most abundant family and most
abundant species in each of the thirty quadrats. These
numbers indicate that the number of trees do not differ

Fig. 2 Spatial patterns of trees belonging to the six most
abundant species. The top frame shows the overlap of the six
patterns of these species. The bottom frames are the spatial
patterns: (a)Ilex chevalieri(b) Sloanea sigun(c) Symplocos
cochinchinensis(d) Mastixia pentandra(e) Dipterocarpus
gracilis (f) Nephelium melliferum.

significantly from quadrat to quadrat. However, the
spatial patterns of the individual species of trees were
different in each of the quadrats. The heterogeneity
in the patterns of the trees belonging to the six most
abundant families in the different quadrats was also
seen.

Size

I. chevalieri was the most abundant species hav-
ing 1021 individuals. S. sigun, S. cochinchinensis,
M. pentandra, D. gracilis, and N. melliferum had
1007, 808, 768, 762, and 736 trees, respectively.
The six most abundant families are Lauraceae, Meli-
aceae, Elaeocarpaceae, Aquifoliaceae, Icacinaceae,
and Sapindacea. The numbers of trees belonging to
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Table 1 Fractal dimension, exponent, most abundant family and species and total number of trees and species in each
quadrat

Quadrat df (SD) Exponent Family (No. of treesa ) Species (No. of treesb ) trees species

1,1 1.408 (0.043) −2.29 Lauraceae (75) N. melliferum(37) 431 71
1,2 1.396 (0.035) −1.66 Elaeocarpaceae (84) S. sigun(84) 392 61
1,3 1.453 (0.015) −1.97 Lauraceae (59) Ficus nervosa(42) 536 76
1,4 1.456 (0.025) −2.07 Dipterocarpaceae (57) D. gracillis (57) 563 82
1,5 1.437 (0.023) −1.95 Cornaceae (65) M. pentandra(65) 496 72
1,6 1.478 (0.026) −2.32 Lauraceae (120) Knema elegans(56) 647 66
2,1 1.446 (0.025) −2.21 Lauraceae (86) N. melliferum(69) 542 85
2,2 1.462 (0.024) −1.91 Lauraceae (87) N. melliferum(37) 591 67
2,3 1.430 (0.023) −2.05 Elaeocarpaceae (123) S. sigun(122) 484 71
2,4 1.427 (0.023) −1.55 Elaeocarpaceae (84) S. sigun(83) 465 71
2,5 1.443 (0.026) −1.98 Lauraceae (76) F. nervosa(47) 528 68
2,6 1.464 (0.026) −2.15 Lauraceae (101) M. pentandra(72) 592 63
3,1 1.442 (0.026) −1.49 Lauraceae (106) F. nervosa(44) 521 76
3,2 1.459 (0.022) −1.93 Lauraceae (66) S. sigun(56) 572 91
3,3 1.470 (0.028) −2.10 Lauraceae (69) S. sigun(52) 613 86
3,4 1.419 (0.018) −1.92 Elaeocarpaceae (90) S. sigun(88) 434 79
3,5 1.450 (0.022) −2.03 Symplocaceae (60) S. cochinchinensis(62) 538 74
3,6 1.461 (0.024) −2.10 Cornaceae (80) M. pentandra(80) 566 74
4,1 1.412 (0.026) −1.37 Elaeocarpaceae (95) S. sigun(94) 414 73
4,2 1.425 (0.023) −1.92 Euphorbiaceae (68) S. sigun(57) 465 83
4,3 1.444 (0.018) −2.52 Rubiaceae (45) I. chevalieri(43) 520 90
4,4 1.478 (0.023) −2.42 Aquifoliaceae (101) I. chevalieri(101) 660 82
4,5 1.450 (0.023) −2.42 Aquifoliaceae (118) I. chevalieri(118) 552 74
4,6 1.466 (0.027) −2.12 Aquifoliaceae (164) I. chevalieri(163) 611 68
5,1 1.445 (0.027) −1.54 Lauraceae (115) Cinnamomum subavenium(45) 529 77
5,2 1.452 (0.026) −1.97 Lauraceae (66) Gonocaryum lobbianum(42) 561 81
5,3 1.456 (0.026) −2.33 Lauraceae (61) G. lobbianum(51) 577 80
5,4 1.477 (0.023) −2.50 Theaceae (104) I. chevalieri(93) 651 84
5,5 1.453 (0.022) −2.39 Symplocaceae (59) S. cochinchinensis(56) 577 89
5,6 1.429 (0.019) −2.26 Myrtaceae (66) Cleistocalyx operculatus(46) 485 91

a number of individuals in dominant family
b number of individuals of dominant species

these families of trees are 1873, 1083, 1082, 1024,
911, and 808 trees, respectively. The histograms of
the frequency distribution of the diameters for all the
trees, of the most abundant species and of the most
abundant family are shown inFig. 3. The histograms
for the remaining species and families look similar.
The frequency distribution of the diameters for all six
species and six families are described by a nonlinear
monotonically decreasing function. Among these
trees, the dbh ranged from 10 cm to 70 cm.

Allometric scaling of the total number of trees as a
function of trunk diameter

We have looked for an allometric scaling relationship
between the numbers of trees (N ) and the diameter
(D), i.e., N ∝ Dx. The power exponents were ob-
tained from the log-log plot of the number of trees (N )

as a function of the diameter (D) of the tree trunk.
Fig. 4 shows the log-log plot for all the trees in the
30 ha plot.Fig. 5 shows the log-log plot for the trees
found in two selected quadrats. All of the log-log plots
gave an exponent value of about−2. The values of the
exponents in the relations for each quadrat are listed in
Table 1.

In Table 2 and Table 3, we have also listed
the exponents in the allometric relation for the trees
belonging to the six most abundant species and most
abundant families.

Fractal analysis of the spatial patterns of the trees

We used the box-counting determination of the fractal
dimensions (df ) to quantify the pattern of the tree
distribution in the area of study. Looking at the
distribution of all the trees catalogued in this study, we
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Fig. 3 Histograms of the frequency of the dbh values of
(a) all trees (b)I. chevalieri(c) Lauraceae trees.

obtaineddf ≈ 1.81±0.03. We then determined the
fractal dimensions of the six most abundant species
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Fig. 4 Log-log plot of the number of all species of the trees
versus their diameters. Straight line:N = 3.24×105D−2.15.
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Fig. 5 Log-log plots of N versusD for two selected
quadrats within the 30 ha plot: (a)Q(2, 3): straight line
is N = 7.26× 103D−2.05 (b) Q(4, 6): straight line is
N = 1.08× 104D−2.12.

Table 2 Fractal dimension and scaling exponent of the six
most abundant species.

Species df (SD) Exponent R2

I. chevalieri 1.746 (0.076) −2.337 0.918
S. sigun 1.754 (0.069) −1.019 0.855
S. cochinchinensis 1.743 (0.080) −1.659 0.811
M. pentandra 1.748 (0.076) −1.826 0.894
D. gracilis 1.738 (0.084) −2.305 0.850
N. melliferum 1.731 (0.091) −1.993 0.903

and families in the 30 ha plot. The results are given
in Table 2andTable 3. The fractal dimensions of the

Table 3 Fractal dimension and scaling exponent of the six
most abundant families.

Family df (SD) Exponent R2

Lauraceae 1.742 (0.041) −2.404 0.953
Maliaceae 1.737 (0.062) −3.337 0.869
Elaeocarpaceae 1.751 (0.064) −1.079 0.869
Aquifoliaceae 1.743 (0.077) −2.340 0.918
Icacinaceae 1.735 (0.072) −3.210 0.915
Sapondaceae 1.747 (0.072) −2.085 0.906
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distributions of the six most abundant families and the
most abundant species are more or less the same. This
finding points to the development of the complexities
in the patterns for the individual species or families
being independent of each other.

To see the complexity, we have also determined
the fractal dimensions of the trees within each of
the thirty quadrats. The fractal dimensions are listed
in Table 1with the other characteristics of the tree
distribution in the quadrat. The fractal dimensions
range from 1.39 to 1.48. The departure from the
value ofdf found for the whole area seems to indicate
that tree patterns are not self-similar and tend to a
homogeneous distribution (df = 2) at large scales.

The quadratsQ(1, 6) and Q(4, 4) had the max-
imum df (1.478). The densities of trees in these two
quadrats were 647 and 660 trees per ha. The minimum
df (1.396) was obtained forQ(1, 2). The density of
trees in this quadrat was 392 trees per ha.

The frequency of the values of thedf ’s is shown
in Fig. 6. The exponents in the allometric relations
betweenN and D for these three quadrats were
−2.32, −2.42 and−1.66, respectively. The above
three examples are evidence of a possible correlation
between the fractal dimensions of the tree patterns in
each quadrat and the number of trees in the quadrat.

DISCUSSION

From the enormous physical and biological diversity
occurring in ecosystems, patterns of ecological or-
ganization emerge. The emerging patterns represent
the outcome of the fundamental law-like processes in
physics, chemistry, and biology. We have focused on
one class of emerging ecological phenomena: patterns

that are self-similar or fractal-like over a wide range
of spatial scales. Ecologists have used indices of
spatial diversity to describe the richness, abundance,
and evenness among species in defined geographical
areas. One way to do this is to determine the fractal
dimensions of the patterns formed by plant or animal
species in the ecosystem. This, however, is not
the only way. Parrott5 has suggested the use of a
‘Shannon entropy’26,27. A low Shannon entropy value
indicates that the data are ordered while a high value
indicates disordered data.

We still need to establish a connection between
the higher fractal dimension and more complexity or
between higher Shannon entropy and more disorder.
One possible connection is the size. Size is probably
the single most obvious feature of any organism that
can profoundly affect the structure and function of
the pattern. On average, larger trees have higher
metabolic rates. They also have a lower population
density than smaller ones. This is partly supported by
our data (Figs.4 and5) if we takeD to be a measure
of the size. The reason for this has been touched on by
West et al14. They reasoned that nature would develop
a network to feed the different parts of the system in
such a way that all parts receive the same nutrients.
The network (vascular system) would be a self-similar
one. Thus nature would develop a fourth dimension.
This would then require a new geometry to describe
the system, a fractal geometry28,29.

In this paper, we have presented some examples
which show the relative usefulness of scaling and frac-
tal analysis in the characterization of spatial patterns
of trees in an ecosystem. Although natural objects
are never true fractals, many of them have fractal-
like features. The ecological significance of scaling
and fractals is that they describe very compactly the
relation between the spatial variability of the patterns.
A key problem is to understand how and why nature
gives rise to fractal structures or power-law distribu-
tions.
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