On Quasi-gamma-ideals in Gamma-semigroups

Ronnason Chinram*

Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.

* Corresponding author, E-mail: ronnason.c@psu.ac.th

Received 18 Jan 2006 Accepted 10 May 2006

Abstract: The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld. The class of quasi-ideals in semigroups is a generalization of one-sided ideals in semigroups. It is well-known that the intersection of a left ideal and a right ideal of a semigroup *S* is a quasi-ideal of *S* and every quasi-ideal of *S* can be obtain in this way. In 1981, M. K. Sen have introduced the concept of Γ -semigroups. One can see that Γ -semigroups are a generalization of semigroups. In this research, quasi- Γ -ideals in Γ -semigroups are introduced and some properties of quasi- Γ -ideals in Γ -semigroups are provided.

Keywords: Γ -semigroups, quasi- Γ -ideals, minimal quasi- Γ -ideals, quasi-simple Γ -semigroups.

INTRODUCTION

Let *S* be a semigroup. A nonempty subset *Q* of *S* is called a *quasi-ideal* of *S* if $SQ \cap QS \subseteq Q$. Let *Q* be a quasi-ideal of *S*. Then $Q^2 \subseteq SQ \cap QS \subseteq Q$. Hence *Q* is a subsemigroup of *S*. The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld (see [1]). The author has studied some properties of quasi-ideals in semigroups (See [2] and [3]).

Example 1.1. Let S = [0, 1]. Then *S* is a semigroup under usual multiplication. Let $Q = [0, \frac{1}{2}]$. Thus $SQ \cap QS = [0, \frac{1}{2}] \subseteq Q$. Therefore, *Q* is a quasi-ideal of *S*.

A nonempty subset *L* of *S* is called a *left ideal* of *S* if $SL \subseteq L$ and a nonempty subset *R* of *S* is called a *right ideal* of *S* if $RS \subseteq R$. Clearly, every left ideal and every right ideal of a semigroup *S* is a subsemigroup of *S*. Next, let *L* and *R* be a left ideal and a right ideal of a semigroup *S*. By the definition of quasi-ideals of semigroups, it is easy to prove that $L \cap R$ is a quasi-ideal of *S* (See [4]). Let *Q* be a quasi-ideal of a semigroup. Then $Q = (Q \cup SQ) \cap (Q \cup QS)$. It is easy to show that $(Q \cup SQ)$ is a left ideal of *S* and $Q \cup QS$ is a right ideal of *S*. Then every quasi-ideal *Q* of *S* can be written as the intersection of a left ideal and a right ideal of *S*.

Example 1.2. Let **Z** be the set of all integers and $M_2(\mathbf{Z})$, the set of all 2×2 matrices over **Z**. We have known that $M_2(\mathbf{Z})$ is a semigroup under the usual multiplication. Let

$$L = \left\{ \begin{bmatrix} x & 0 \\ y & 0 \end{bmatrix} \mid x, y \in \mathbf{Z} \right\}$$

$$R = \{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} | x, y \in \mathbb{Z} \}$$

Then *L* is a left ideal of $M_2(\mathbf{Z})$, *R* is a right ideal of $M_2(\mathbf{Z})$ and $\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \mid x \in \mathbf{Z}$ is a quasi-ideal of $M_2(\mathbf{Z})$.

In 1981, the notion of Γ -semigroups was introduced by M. K. Sen (See [5], [6] and [7]). Let *M* and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times$ $M \rightarrow M$, written (a, γ, b) by $a\gamma b$, *M* is called a Γ -semigroup if *M* satisfies the identities $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all *a*, *b*, $c \in M$ and $\gamma, \mu \in \Gamma$. Let *K* be a nonempty subset of *M*. Then *K* is called a *sub* Γ -semigroup of *M* if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Example 1.3. Let *S* be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semigroup.

Example 1.4. Let
$$M = [0,1]$$
 and $\Gamma = \{\frac{1}{n} \mid n \text{ is a positive integer } \}.$

Then *M* is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that *K* is a nonempty subset of *M* and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then *K* is a sub Γ -semigroup of *M*.

From example 1.3, we have that every semigroup is a Γ -semigroup. Therefore, Γ -semigroups are a generalization of semigroups.

In this research, we generalize some properties of quasi-ideals of semigroups to some properties of quasi- Γ -ideals in Γ -semigroups.

and

MAIN RESULTS

Let *M* be a Γ -semigroup. A nonempty subset *Q* of *M* is called a *quasi*- Γ -*ideal* of *M* if $M\Gamma Q \cap Q\Gamma M \subseteq Q$. Let *Q* be a quasi- Γ -*ideal* of *M*. Then $Q\Gamma Q \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. This implies that *Q* is a sub Γ -semigroup of *M*.

Example 2.1. Let *S* be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. From example 1.3, *S* is a Γ -semigroup. Let Q be a quasi-ideal of *S*. Thus $SQ \cap QS \subseteq Q$. We have that $S\Gamma Q \cap Q\Gamma S = SQ \cap QS \subseteq Q$. Hence, Q is a quasi- Γ -ideal of *S*.

Example 2.1 implies that the class of quasi- Γ -ideals in Γ -semigroups is a Generalization of quasi-ideals in semigroups.

Theorem 2.1. Let *M* be a Γ -semigroup and Q_i a quasi- Γ -ideal of *M* for each $i \in I$. If $\bigcap_{i \in I} Q_i$ is a nonempty set, then $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of *M*.

Proof. Let *M* be a Γ -semigroup and Q_i a quasi- Γ ideal of *M* for each $i \in I$. Assume that $\bigcap_{i \in I} Q_i$ is a nonempty set. Take any $a, b \in \bigcap_{i \in I} Q_i$, $m_1, m_2 \in M$ and $\gamma, \mu \in \Gamma$ such that $m_1\mu b = a\gamma m_2$. Then $a, b \in Q_i$ for all $i \in I$. Since Q_i is a quasi- Γ -ideal of *M* for all $i \in I$, $m_1\mu b = a\gamma m_2 \in M\Gamma Q_i$ $\cap Q_i\Gamma M \in Q_i$ for all $i \in I$. Therefore $m_1\mu b = a\gamma m_2 \in \bigcap_{i \in I} Q_i$. Thus $M\Gamma \bigcap_{i \in I} Q_i \cap \bigcap_{i \in I} Q_i \Gamma M \in \bigcap_{i \in I} Q_i$. Hence, $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of *M*.

In Theorem 2.1, the condition $\bigcap_{i \in I} Q_i$ is a nonempty set is necessary. For example, let **N** be the set of all positive integers and $\Gamma = \{1\}$. Then *M* is a Γ -semigroup. For $n \in \mathbf{N}$, let $Q_n = \{n+1, n+2, n+3, ...\}$. It is easy to show that each Q_n is a quasi- Γ -ideal of *M* for all $n \in \mathbf{N}$ but $\bigcap_{n \in \mathbf{N}} Q_n$ is a empty set.

Let *A* be a nonempty subset of a Γ -semigroup *M* and $\mathfrak{T} = \{Q \mid Q \text{ is a quasi}-\Gamma$ -ideal of *M* containing *A*}. Then \mathfrak{T} is a nonempty set because $M \in \mathfrak{T}$. Let $(A)_q = \bigcap_{Q \in \mathfrak{T}} Q$. It is clear to see that $A \subseteq (A)_q$. By Theorem 2.1, $(A)_q$ is a quasi- Γ -ideal of *M*. Moreover, $(A)_q$ is the smallest quasi- Γ -ideal of *M* containing *A*. $(A)_q$ is called *the quasi*- Γ -ideal of *M* Generated by *A*.

Theorem 2.2. Let *A* be a nonempty subset of a Γ -semigroup *M*. Then

 $(A)_a = A \cup (M\Gamma A \cap A\Gamma M).$

Proof. Let *A* be a nonempty subset of a Γ -semigroup *M*. Let $Q=A\cup(M\Gamma A \cap A\Gamma M)$. It is easy to see that $A \subseteq Q$. We have that $M\Gamma Q \cap Q\Gamma M=M\Gamma [A \cup (M\Gamma A \cap A\Gamma M)] \cap [A \cup (M\Gamma A \cap A\Gamma M)]\Gamma M \subseteq M\Gamma (A \cup M\Gamma A) \cap [A \cup (A\Gamma M)]\Gamma M \subseteq M\Gamma A \cap A\Gamma M \subseteq Q$. Therefore, *Q* is a quasi- Γ -ideal of *M*.

Let *C* be any quasi- Γ -ideal of *M* containing *A*. Since *C* is a quasi- Γ -ideal of *M* and $A \subseteq C$, $M\Gamma A \cap A\Gamma M \subseteq C$. Therefore, $Q = A \cup (M\Gamma A \cap A\Gamma M) \subseteq C$.

Hence, Q is the smallest quasi- Γ -ideal of M containing A. Therefore,

 $(A)_a = A \cup (M\Gamma A \cap A\Gamma M)$, as required.

Example 2.2. Let **N** be the set of natural integers and $\Gamma = \{5\}$. Then **N** is a Γ -semigroup under usual addition.

(i) Let $A = \{2\}$. We have that $(A)_q = \{2\} \cup \{8, 9, 10, ...\}$. (ii) Let $A = \{3, 4\}$. We have that $(A)_q = \{3, 4\} \cup \{9, 10, 11, ...\}$.

Let *M* be a Γ -semigroup. A sub Γ -semigroup *L* of *M* is called a *left* Γ -*ideal* of *M* if $M\Gamma L \subseteq L$ and a sub Γ -semigroup *R* of *M* is called a *right* Γ -*ideal* of *M* if $R\Gamma M \subseteq R$. The following theorem is true.

Theorem 2.3. Let *M* be a Γ -semigroup. Let *L* and *R* be a left Γ -ideal and a right Γ -ideal of *M*, respectively. Then $L \cap R$ is a quasi- Γ -ideal of *M*.

Proof. Let *L* and *R* be any left Γ -ideal and any right Γ -ideal of a Γ -semigroup *M*, respectively. By properties of *L* and *R*, we have $R\Gamma L \subseteq L \cap R$. This implies that $L \cap R$ is a nonempty set. We have that

 $M\Gamma(L \cap R) \cap (L \cap R) \Gamma M \subseteq M\Gamma L \cap R\Gamma M \subseteq L \cap R.$ Hence, $L \cap R$ is a quasi- Γ -ideal of M.

Theorem 2.4. Every quasi $-\Gamma$ -ideal Q of a Γ -semigroup *M* is the intersection of a left Γ -ideal and a right Γ -ideal of *M*.

Proof. Let Q be any quasi- Γ -ideal of a Γ -semigroup M. Let $L = Q \cup M\Gamma Q$ and $R = Q \cup Q\Gamma M$.

Then $M\Gamma L = M\Gamma (Q \cup M\Gamma Q) = M\Gamma Q \cup M\Gamma M\Gamma Q \subseteq M\Gamma Q \subseteq L$ and $R\Gamma M = (Q \cup Q\Gamma M) \Gamma M = Q\Gamma M \cup Q\Gamma M\Gamma M \subseteq Q\Gamma M \subseteq R$. Then L and R is a left Γ -ideal and a right Γ -ideal of M, respectively.

Next, we claim that $Q = L \cap R$. It is easy to see that $Q \subseteq (Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq L \cap R$. Conversely, $L \cap R = Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq Q \cup (M\Gamma Q \cap Q\Gamma M) \subseteq Q$. Hence, $Q = L \cap R$.

Let *M* be a Γ -semigroup. *M* is called a *quasi-simple*

 Γ -semigroup if *M* is a unique quasi- Γ -ideal of *M*. A quasi- Γ -ideal *Q* of *M* is called a minimal quasi- Γ -ideal of *M* if *Q* does not properly contain any quasi- Γ -ideals of *M*.

Example 2.3. Let *G* be a group and $\Gamma = \{e_G\}$. It is easy to see that Γ is a unique quasi- Γ -ideal of Γ under the usual binary operation. Then *G* is a quasi-simple Γ -semigroup.

Theorem 2.5. Let *M* be a Γ -semigroup. Then *M* is a quasi-simple Γ -semigroup if and only if $M\Gamma m \cap m\Gamma M$ = *M* for all $m \in M$.

Proof. Let *M* be a Γ -semigroup.

The proof of (\rightarrow) : Assume that *M* is a quasi-simple Γ -semigroup. Take any $m \in M$. First, we claim that $M\Gamma m \cap m\Gamma M$ is a quasi-ideal of *M*. We have that $m\Gamma m \in M\Gamma m \cap m\Gamma M$ is a quasi-ideal of *M*. We have that $m\Gamma m \in M\Gamma m \cap m\Gamma M$, this implies $M\Gamma m \cap m\Gamma M$ is a nonempty set. Moreover, $M\Gamma (M\Gamma m \cap m\Gamma M) \cap (M\Gamma m \cap m\Gamma M) \Gamma M \subseteq M\Gamma (M\Gamma m) \cap (m\Gamma M) \Gamma M = (M\Gamma M) \Gamma m \cap m\Gamma (M\Gamma M) \subseteq M\Gamma m \cap m\Gamma M$. Therefore, $M\Gamma m \cap m\Gamma M$ is a quasi- Γ -ideal of *M*. Since *M* is a quasi-simple Γ -semigroup, $M\Gamma m \cap m\Gamma M = M$.

The proof of (\leftarrow) : Assume that $M\Gamma m \cap m\Gamma M = M$ for all $m \in M$. Let Q be a quasi- Γ -ideal of M and $q \in Q$. By assumption, $M = M\Gamma q \cap q\Gamma M$. Since Q is a quasi- Γ -ideal of $M, M = M\Gamma q \cap q\Gamma M \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. Therefore Q = M. Hence, M is a quasi-simple Γ -semigroup.

Theorem 2.6. Let *M* be a Γ -semigroup and *Q* a quasi- Γ -ideal of *M*. If *Q* is a quasi-simple Γ -semigroup, then *Q* is a minimal quasi- Γ -ideal of *M*.

Proof. Suppose *M* be a Γ -semigroup and *Q* a quasi- Γ -ideal of *M*. Assume that *Q* is a quasi-simple Γ semigroup. Let *C* be a quasi- Γ -ideal of *M* such that *C* $\subseteq Q$. Then $Q\Gamma C \cap C\Gamma Q \subseteq M\Gamma C \cap C\Gamma M \subseteq C$. Therefore, *C* be a quasi- Γ -ideal of *Q*. Since *Q* is a quasi-simple Γ semigroup, *C* = *Q*. Then *Q* is a minimal quasi- Γ -ideal of *M*.

ACKNOWLEDGEMENT

The author would like to thank the referees for their useful and helpful suggestions.

REFERENCES

- Steinfeld O (1956) Uber die quasiideale von halpergruppen. Pulb. Math. Debrecen 4, 262-75
- 2. Chinram R (2005) Generalized transformation semigroups

whose sets of quasi-ideals and bi-ideals coincide. *Kyungpook Math. Journal* **45**, 161 – 6.

- Kemprasit Y and Chinram R (2003) 0-minimal quasi-ideals of generalized linear transformation semigroups. *Comm. in Alg.* **31**, 4765 -74.
- Steinfeld O (1978) Quasi-ideals in rings and semigroups. Akademiai kiado, Budapest.
- Sen MK (1981) On Γ-semigroups. Proceeding of International Conference on Algebra and it's Applications. Decker Publication, New York 301.
- Sen MK and Saha NK (1986) On Γ-semigroup I. Bull. Cal. Math. Soc. 78, 180-6.
- Saha, NK (1987) On Γ-semigroup II. Bull. Cal. Math. Soc. 79, 331-5.