
ScienceAsia 31 (2005): 383-393

Energy-Based Workforce Scheduling Problem:
Mathematical Model and Solution Algorithms

Kriangchai Yaoyuenyonga and Suebsak Nanthavanijb*

a Industrial Engineering Program, Sirindhorn International Institute of Technology, Thammasat University,
Pathum Thani 12121, Thailand.

b Management Technology Program, Sirindhorn International Institute of Technology, Thammasat
University, Pathum Thani 12121,

 Thailand.

* Corresponding author, E-mail: suebsak@siit.tu.ac.th

Received 16 Feb 2005
Accepted 6 Jul 2005

ABSTRACT: A workforce scheduling problem to schedule the minimum number of workers to perform a set of
physical tasks such that their daily energy capacities are not exceeded is discussed. Firstly, a mathematical
model is formulated. Two heuristics and one exact algorithm are then explained. Based on our computational
experiment, a hybrid procedure consisting of the above mentioned algorithms is found to be very efficient
in solving this workforce scheduling problem to optimality.

KEYWORDS: combinatorial optimization, workforce scheduling, bin packing.

INTRODUCTION

Workforce scheduling is indispensable in most
complex production and service systems such as
factories, constructions, airports, banks, and hospitals.
It enables the system to implement multiple tasks within
specified work duration under available resources and,
in particular, limited workforce. Workforce scheduling
problems using combinatorial methods have been
continuously studied and well known for their
applications. However, most previous works concern
only the completeness of tasks and scheduling cost.1-

4 In this paper, we deal with the workforce scheduling
problem which emphasizes the health and safety issue
of workers.

Industrial workers are often required to expend
moderate to high level of physical energy to perform
their assigned tasks such as lifting/lowering, carrying,
loading/unloading, and operating production
machines. If the workloads are too strenuous, workers
are likely to develop excessive muscular and whole-
body fatigue, which can cause occupational accidents
and over-exhaustion after work. Workforce
scheduling, commonly known as job rotation, is
frequently recommended as a means to reduce the risk
of over-exhausion.5 When assigning a worker to
perform a physical task, it is necessary to know the
amount of energy required to perform the task (or
energy cost) and the energy capacity of the worker (or
energy limit/budget). Based on an ergonomic
recommendation, the daily (8-hr workday) energy

expenditure of a worker should not exceed 33% of his/
her energy capacity.5 (For simplicity, we shall refer to
this recommended capacity as the working energy
capacity.) For different individuals, their working energy
capacities normally vary. Depending on the energy
costs of required tasks, the number of workers who
can be safely assigned to perform the tasks on a
rotational basis might have to be greater than the number
of tasks. The energy-based workforce scheduling
problem (WSP-E) is thus intended to find the minimum
number of workers and their daily work assignments
such that their working energy capacities are not
exceeded. To some extent, WSP-E has some features
that are similar to those in the scheduling problem with
discrete nonrenewable resources.6 Nevertheless, to our
knowledge, a detailed procedure for WSP-E has never
been discussed in the literature.

The remainder of this paper is organized as follows.
Firstly, we introduce a mathematical model of WSP-E.
Then, we propose efficient algorithms for finding the
optimal workforce and their safety daily work
assignments. After that, a hybrid procedure for solving
WSP-E is discussed. A numerical example of WSP-E is
given and solved by the proposed algorithms and the
hybrid procedure. Finally, a computational experiment
is described and its results discussed.

MATHEMATICAL MODEL OF THE ENERGY-BASED
WORKFORCE SCHEDULING PROBLEM

Our strive to study the WSP-E is inspired by the fact

doi: 10.2306/scienceasia1513-1874.2005.31.383

384 ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005)

excellent survey of existing BPP algorithms is discussed
in Coffman et al.15 Stated completely, BPP is intended
to find the minimum number of equal-sized bins that
is sufficient for being packed by a set of items with
various sizes. An item in BPP is analogous to a physical
task in WSP-E, whereas a bin is analogous to a worker.
Since workers have different working energy
capacities, WSP-E can be viewed as the variable-sized
bin packing problem (VSBPP), which is BPP with an
additional assumption that bins have different sizes.16

New algorithms for VSBPP can also be found in the
literature.17, 18 Assumptions required for the
formulation of WSP-E are as follows.

1. For a set of n physical tasks being considered,
their energy costs are known.

2. All tasks are to be performed eight hours per
day.

3. The number of available workers m is known
and is more than the number of tasks. Not all workers
need to be chosen for inclusion in the workforce
scheduling and job rotation. With respect to work
efficiency, all m workers are identical.

4. The daily working energy capacities of the m
workers are known and are unequal.

5. A workday is divided into p equal work
periods.

6. In each work period, a worker can be assigned
to only one task and a task needs only one worker to
perform.

7. A worker does not have to work in every work
period.

The notation used in WSP-E is as shown below.
e

j
energy cost per work period of task j

E
i

daily working energy capacity of worker i
m number of available workers
n number of physical tasks
p number of work periods per day
x

ijk
1 if worker i is assigned to task j during work

period k
0 otherwise

y
i

1 if worker i is chosen from the workforce to
perform any task

0 otherwise
WSP-E can be mathematically expressed as follows.

Minimize
1

m

i
i

y
=
∑

subject to
1 1

pn

j ijk
j k

e x
= =
∑ ∑ ≤ E

i
 y

i
for i = 1,…, m

 ≤ 1 for i = 1,…, m; k = 1,…, p

 = 1 for j = 1,…, n; k = 1,…, p

x
ijk

 = {0,1} for i = 1,…, m; j = 1,…, n; k = 1,… p
y

i
 = {0,1} for i = 1,…, m

that industrial workers are everyday at risk of
occupational injuries and illnesses even when
performing simple physical tasks such as lifting and
carrying. The main causes are over-exertion and over-
exhaustion. When the injury or illness is occupation-
related, its consequence is more severe than just the
worker’s medical expense. Only in U.S.A., the
Department of Labor’s Annual Survey of Occupational
Injuries and Illnesses (ASOII) states that conservative
estimates of direct cost, based on workers’
compensation payments (indemnity and medical
services) and other direct costs, are at least ten billion
dollars per year.7 The total cost to society is believed
to be substantially higher due to various indirect costs,
e.g., lost productivity, costs of hiring and training
replacement workers, overtime, administrative costs,
and miscellaneous transfer payments.8 As a result, it is
greatly important to improve the workplace safety.

One of the most frequently recommended
preventive approaches to reduce the worker exposure
to hazardous tasks is job rotation.5 When implementing
job rotation, it is necessary to assign workers to
alternately perform various tasks in different work
periods during an 8-hour workday. In this way, the
impact of hazardous tasks can be split and shared by
many workers, instead of concentrating on some
particular workers. The determination of worker-task-
period assignments is also known as workforce scheduling.
A recent study conducted in the Philippines showed
that workforce scheduling helps to reduce the risk of
occupational hazards in material handling.9 Workforce
scheduling not only significantly enhances the safety of
workers but also increases their productivity by sharing
energy-demanding tasks among workers.9, 10

The WSP-E is intended to determine the worker-
task-period assignments for m workers and n tasks
such that the number of workers is minimized and, for
each worker, the total energy cost does not exceed the
daily working energy capacity. It is essential to determine
the workers’ work schedules for an 8-hour workday to
correspond to the ergonomically recommended daily
working energy capacity. As commonly practiced in
job rotation, a workday is divided into p equal work
periods and workers are rotated only at the end of the
work period. Since the length of work period is constant
for practical management, WSP-E is a discrete
scheduling problem. Unfortunately, efficient algorithms
for determining an optimal set of worker-task-period
assignments for WSP-E have never been developed.

WSP-E can be viewed as a variation of the classical
bin packing problem (BPP), an NP-hard problem.11

Researchers are still studying BPP extensively since it
plays an important role as the sub-problem of many
real-world applications. As a result, new efficient BPP
algorithms have been developed recently.12-14 An

1

n

ijk
j

x
=
∑

1

m

ijk
i

x
=
∑

ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005) 385

While items in BPP can be freely packed into a bin,
worker-task-period assignments in WSP-E must not
violate the work period assumption (Assumption No.
6). With its complex decision variables and additional
constraints, WSP-E is at least as difficult as BPP. It is thus
essential to develop an efficient solution procedure to
determine either a near-optimal or optimal solution for
WSP-E.

PROPOSED ALGORITHMS FOR WSP-E

In this section, a method for identifying a lower
bound of WSP-E is firstly given. Then, two
approximation algorithms and an exact algorithm for
solving WSP-E are proposed.

Lower BoundLower BoundLower BoundLower BoundLower Bound
Letting n ≤ d ≤ m and E

1
≥ E

2
≥ … ≥ E

m
, a lower bound

(LB) of WSP-E is defined as follows.

LB = min (1)

MMMMM22222-FFD Heuristic-FFD Heuristic-FFD Heuristic-FFD Heuristic-FFD Heuristic
The M2-FFD heuristic is modified from the well-

known BPP heuristic, called “First Fit Decreasing.”19

M2-FFD is implemented as follows. Let I be a set of
energy costs consisting of p copies of each energy cost
e

j
 of all tasks; sort them in non-increasing order. Given

a set of m workers, arrange them in non-increasing
order of the working energy capacity. Next, index the
workers as WK

1
, WK

2
, and so forth. The M2-FFD will

then assign each energy cost in the current order of I
one by one as follows.

To assign an energy cost e
j
, find

(1) the worker with the least index t such that
S(WK

t
) + e

j
 ≤ E

t
, where S(WK

q
) be the total sum of energy

costs assigned to worker q, or S(WK
q
) =

 for all j

∈ WK
q
 in all work periods, and

(2) any work period k (a) that worker t is still
free, and (b) to which the other copies of e

j
 from the

same task have never been assigned.
Then, assign e

j
 to worker t in period k, and remove

e
j
 from I. Continue assigning the next energy costs until

I is empty. The minimum number of workers generated
by M2-FFD is set as the largest index of the workers
required in the assignment.

MMMMM22222-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic
The M2-LPT swap heuristic firstly sets the number

of workers to a value, say UB. Then, it tries to gradually
decrease UB one by one and search for a feasible set
of work assignments for the UB workers. If the search
cannot find any feasible set, the M2-LPT swap heuristic
stops. If the feasible set is found, the heuristic continues
to decrease UB and search for a new feasible set until

the heuristic fails or reaches an optimal solution (i.e.,
UB = LB). The M2-LPT swap heuristic consists of three
consecutive sub-algorithms: (1) M2-LPT algorithm, (2)
swap algorithms, and (3) multi-start algorithm. Each of
these three sub-algorithms tries to identify a feasible
set with UB workers. If any of them finds the feasible
set, UB is decreased by one worker. Then, the solution
procedure is repeated.

M2-LPT algorithm
The M2-LPT algorithm is implemented as follows.

Construct a set I as described in the M2-FFD heuristic.
From a given set of m workers, arrange them in non-
increasing order of the working energy capacity and
index them as WK

1
, WK

2
,…, WK

UB
, where UB is the

current number of workers. Let R
i
 = E

i
 - S(WK

i
), where

R
i
 is the residual working energy capacity of worker i.

The M2-LPT algorithm will assign energy costs in I one
by one as follows. To assign an energy cost e

j
, find (1)

any worker t with the largest R
t
 among the UB workers,

and (2) any work period k (2.a) that worker t is still free
and (2.b) to which the other copies of e

j
 from the same

task have never been assigned. Then, assign e
j
 to worker

t in period k. Remove e
j
 from I and continue assigning

the energy costs until I is empty. Let R
min

= min{R
1
,…,

R
UB

}. If R
min

 is less than zero, continue to the swap
algorithms; otherwise, the feasible set of work
assignments for the UB workers is found.

Swap algorithms
The swap algorithms is intended to swap or

exchange the energy costs assigned to the same period
among the UB workers so that R

min
 is greater than or

equal to zero. For any p periods, there are p swap
algorithms which will be applied consecutively. Half of
the p swap algorithms are for increasing R

min
 while the

other half are for decreasing R
max

where R
max

 = max{R
1
,…,

R
UB

}. The swap algorithms are described below. Let e(i,
k) be the value of the energy cost that is currently
assigned to worker i in period k.

r-period swap for increasing R
min

 (r = 1 to p/2)
1. Let any worker i

min
 be the worker whose R

imin

is the current minimum.
2. Find all

p
rC

 possible combinations of r periods.
Let SSSSS be a set of all combinations s

u
’s such that SSSSS = {s

u
:

u = 1,…, p
rC }, where each s

u
 represents a combination

of r periods.
3. For each s

u
, consider all periods k

a
’s where a ∈

s
u
.

4. Find any worker i
o
 where i

o
 ≠ i

min
 such that the

inequalities 2 and 3 hold.

R
io
 + [] – [] > R

imin
 (2)

 < (3)

1 1

d n

i j
i j

d E p e
= =

⎧ ⎫
≥∑ ∑⎨ ⎬

⎩ ⎭

p
rC

(),
u

o a
a s

e i k
∈
∑

je∑

()min,
u

a
a s

e i k
∈
∑

()min,
u

a
a s

e i k
∈
∑(),

u

o a
a s

e i k
∈
∑

suntaree
Rectangle

386 ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005)

5. If there is such worker i
o
, then swap e(i

o
, k

a
) and

e(i
min

, k
a
) in workers i

o
 and i

min
 in all periods k

a
’s where

a ∈ s
u
.

6. Repeat steps 3 – 5 for “ s
u
∈ SSSSS.

r-period swap for decreasing R
max

 (r = 1 to p/2)
1. Let any worker i

max
 be the worker whose R

imax

is the current maximum.
2. Find all p

rC possible combinations of r periods.
Let SSSSS be a set of all combinations s

u
’s such that SSSSS = {s

u
:

u = 1,…, p
rC }, where each s

u
 represents each

combination of r periods.
3. For each s

u
, consider all periods k

a
’s where a ∈

s
u
.

4. Find any worker i
o
 where i

o
 ≠ i

max
 such that the

inequalities 4 and 5 hold.

R
io
 + [] – [] < R

imax
 (4)

 > (5)

5. If there is such worker i
o
, then swap e(i

o
, k

a
) and

e(i
max

, k
a
) in workers i

o
 and i

max
 in all periods k

a
’s where

a ∈ s
u
.

6. Repeat steps 3 – 5 for “ s
u
∈ SSSSS.

After the swaps, if R
min

 is still less than zero, continue
to the multi-start algorithm; otherwise, the feasible set
of work assignments for the UB workers is found.

Multi-start algorithm
In this step, the current work assignment solution

will be shaken and will re-enter the swap algorithms. To
shake the solution, randomly select one pair of workers
in each of all periods and swap their energy costs.
Then, the resulting work assignments will be improved
by the swap algorithms again. This is called a start. The
number of starts is set to 1,000. While applying the
multi-start algorithm, if R

min
 ≥ 0, the algorithm stops and

checks whether UB = LB. After the algorithm has tried
all 1,000 starts but R

min
 is still less than zero, the overall

search fails to find a feasible set of work assignments
for the UB workers and is, thus, terminated.

The flow chart in Fig. 1 summarizes the
implementation of the M2-LPT swap heuristic.

Dominant Assignment (DA) MethodDominant Assignment (DA) MethodDominant Assignment (DA) MethodDominant Assignment (DA) MethodDominant Assignment (DA) Method
The dominant assignment (DA) method is a branch-

and-bound method designed specially for solving WSP-
E to optimality. The algorithm applies the reduction
procedure along with the dominance rule proposed by
Martello and Toth.20 Let I be a set of energy costs
consisting of p copies of each e

j
 for all tasks. An assignment

contains at most p energy costs from I that are assigned
to a worker. Let f(i) be a feasible assignment for worker
i if ≤ E

i
.

FFFFF
i
 is the set containing all possible and distinctive

f(i)’s; that is, FFFFF
i
 = {f

1
(i), f

2
(i),…, f

v
(i)}. Given two different

f
1
(i) and f

2
(i), let Y(f

1
(i)) be the number of workers in the

optimal solution obtained by forcing the solution to
always include the assignment f

1
(i). Then, we say that

f
1
(i) dominates f

2
(i) if Y(f

1
(i)) ≤ Y(f

2
(i)). According to

Martello and Toth20, f
1
(i) dominates f

2
(i) if there exists

a partition of f
2
(i)

into subsets P

(1)
,…, P

(l)
 and a subset

{j
(1)

,…, j
(l)

} of f
1
(i) such that e

j(h)
 ≥ for h = 1,., l.

Let FFFFF
i
* be the subset of FFFFF

i
 that contains any f

w
(i) ∈

FFFFF
i
 that cannot be dominated by the other f(i) ∈ F F F F F

i
 except

f
w
(i) itself. The DA is implemented as follows. Let E

1
≥

E
2
≥ … ≥ E

m
, for i = 1,…, m. From the root node (or Node

0 of Level 0), calculate a lower bound (LB) from I.
Construct FFFFF

1
* from all energy costs in I. Each branch

of Node 0 is each assignment f(1) ∈ F F F F F
1
*, and leads to

each son node of Node 0 at Level 1. For any Node t of
Level i (worker i), let b = i + 1. Construct FFFFF

b
* from all

unassigned weights in I. Each branch from Node t is
each assignment f(b) ∈ F F F F F

b
*.

Fig 1. Implementation of the M2-LPT swap heuristic.

(),
u

o a
a s

e i k
∈
∑

(),
u

o a
a s

e i k
∈
∑

()max ,
u

a
a s

e i k
∈
∑

()max ,
u

a
a s

e i k
∈
∑

()
j

j f i
e

∀∈
∑

()
k

k P h
e

∈
∑

LB is computed and the number of workers is set to
UB.

1. M2-LPT generates a set of assignments for UB
workers.

M2-LPT swap starts.

M2-LPT swap ends

UB=LB?Yes

No

This set is feasible,
Rmin ≥ 0?

UB = UB −1

2. Swap algorithms try to find the feasible set for UB
workers.

This set is feasible,
Rmin ≥ 0?

Yes

No

3. Multi-start algorithm shakes the solution (the current
set of assignments) and adds the number of starts by

one.

No

Number of starts
exceeds 1000?

Yes

No

M2-LPT swap can find only the solution for
UB+1 workers.

M2-LPT swap yields the optimal solution for
LB workers.

 Yes

ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005) 387

The bounding rule at each Node t of Level i is as
follows. Let UB be the minimum number of workers
known thus far. Let L(t) be the lower bound of Node
t of Level i. L(t) is calculated using the following equation
by considering only the unassigned energy costs of the
remaining I where d ≤ m.

L(t) = i + min (6)

Node t will be fathomed if UB ≤ L(t). At any Node
t whenever all energy costs in I have already been
assigned or L(t) = i and UB > L(t), then a new UB is set
to L(t). Whenever UB = LB, DA terminates with the
optimal solution being LB workers.

HYBRID PROCEDURE

As stated in the previous section, each of the three
algorithms can be utilized separately to solve WSP-E.
The work-task-period assignment solution that is
obtained from either one of the two approximation
algorithms (M2-FFD and M2-LPT swap) is guaranteed
to be optimal only when UB = LB. However, the
assignment solution obtained from the exact algorithm
(DA) is always guaranteed to be optimal. Depending on
the problem size, DA may take a few seconds or hours
of computation time to yield the optimal solution. A
time limit is normally set and the computation is
terminated if the time limit is exceeded. If an initial UB
is set too high, DA may not be able to reach an optimal
solution within the given time limit. To improve the
computation, a hybrid procedure is proposed.

The hybrid procedure consists of three algorithms,
i.e., M2-FFD, M2-LPT swap and DA, which are to be
applied consecutively. The procedure quickly finds a
good UB and either tries to decrease UB until UB is
equal to LB or proves that the solution with the current
UB workers is in fact optimal and the known LB is too
weak and infeasible. The proposed hybrid procedure
is implemented as follows.

Step 1: Compute LB using Eq. (1).
Step 2: Define an initial UB using M2-FFD.
Step 3: Apply the dual strategy using M2-

LPT swap. If the heuristic can find a feasible work
assignment solution (R

min
 ≥ 0) for the initial UB workers,

then decrease UB and find a new feasible work
assignment solution. Continue to decrease UB until UB
= LB or the heuristic fails to find a feasible solution.

Step 4: Improve the current UB by DA. Stop
if UB = LB or the DA method can guarantee the optimality
of the current UB.

Using the approximation algorithm to successively
improve UB (to reduce UB), DA will not need a long
computational time to verify the optimality of the work
assignment solution. It is expected that the hybrid

procedure will outperform each of the three algorithms
if each algorithm is utilized separately. The flow chart
in Fig. 2 summarizes the implementation of the hybrid
procedure.

NUMERICAL EXAMPLE

Let us consider the following example. Suppose
that three physical tasks (A, B, and C) are to be
performed in an 8-hour day that is divided into four
equal work periods. Energy costs per work period, e

j
,

of the three tasks are 1100, 700, and 600 kilocalories
(kcal/2h), respectively. Also, suppose that there are
five available workers (W1, W2, W3, W4, and W5) to
be assigned to the three tasks. The working energy
capacities, E

i
, of the five workers are 2800, 2700, 2500,

2200, and 1800 kcal/8h, respectively.
Using Eq. (1) with m = 5, n = 3, and p = 4, we have

LB = 4 workers.

Solution Based on the MSolution Based on the MSolution Based on the MSolution Based on the MSolution Based on the M22222-FFD Heuristic-FFD Heuristic-FFD Heuristic-FFD Heuristic-FFD Heuristic
A list I is constructed as I = {1100, 1100, 1100,

1100, 700, 700, 700, 700, 600, 600, 600, 600}. M2-
FFD yields the set of daily work assignments for five
workers (i.e., UB = 5) as shown in Table 1. The superscript
represents the order of assignment. Whenever it is
infeasible to assign any energy cost to the existing
workers, a new worker is added and that energy cost
can be assigned to the new worker in any feasible
period. Since UB > LB, it cannot be guaranteed that the
minimum number of workers for this problem is five
workers. The assignment solution is shown in Table 2.

Fig 2. Implementation of the hybrid procedure.

1

d

h j
h i j I

d E e
= + ∈

⎧ ⎫
≥∑ ∑⎨ ⎬

⎩ ⎭ 1. Compute LB.

2. M2-FFD generates an initial UB.

3. M2-LPT Swap tries to improve UB.

4. DA tries to improve UB or proves that the current UB is optimal within
the time limit.

Current UB is optimal.

The current UB is the best solution known thus far. But, DA fails to prove
that it is optimal.

Hybrid procedure starts.

Hybrid procedure ends.

UB=LB?

UB=LB?

Time limit
exceeds?

Yes

No

Yes

No

No

Yes

388 ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005)

Table 1. Assignment of energy costs to workers by M2-FFD.

WWWWWorkerorkerorkerorkerorker WWWWWork Periodork Periodork Periodork Periodork Period Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)
11111 22222 33333 44444 CostCostCostCostCost CapacityCapacityCapacityCapacityCapacity

WK
1

11001 11002 6009 - 2800 2800
WK

2
- - 11003 11004 2200 2700

WK
3

7005 7006 7007 - 2100 2500
WK

4
60010 60011 - 7008 1900 2200

WK
5

- - - 60012 600 1800

Table 2. The assignment solution obtained from M2-FFD
(five workers).

WWWWWorkerorkerorkerorkerorker WWWWWork Periodork Periodork Periodork Periodork Period Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)
11111 22222 33333 44444 CostCostCostCostCost CapacityCapacityCapacityCapacityCapacity

WK
1

A A C - 2800 2800
WK

2
- - A A 2200 2700

WK
3

B B B - 2100 2500
WK

4
C C - B 1900 2200

WK
5

- - - C 600 1800

Solution Based on the MSolution Based on the MSolution Based on the MSolution Based on the MSolution Based on the M22222-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic-LPT Swap Heuristic
Next, the M2-LPT algorithm finds the solution when

UB = 4. Table 3 shows the assignment of energy costs
to four workers as generated by the M2-LPT algorithm.

Clearly, the resulting assignment solution is
infeasible since R

min
 is still less than zero (R

4
 = – 200).

It is found that the 2-period swap algorithm can increase
R

min
by swapping energy costs of workers 2 and 4

between periods 2 and 3. That is,
R

2
 + e(2, 2) + e(2, 3) – e(4, 2) – e(4, 3) > R

4

or 300 + 1100 + 0 – 600 – 700 > – 200
After swapping e(2, 2) and e(4, 2) and swapping e(2,

3) and e(4, 3), R
4
 is still R

min
but is now equal to zero.

Thus, the feasible set of assignments for four workers
is found and is optimal since UB = LB = 4. Readers
should note that the multi-start algorithm is unnecessary
since the optimal solution was already found. Table 4
shows the optimal assignment solution for the four
workers.

Table 3. Assignment of energy costs to four workers using
the M2-LPT algorithm.

WWWWWorkerorkerorkerorkerorker WWWWWork Periodork Periodork Periodork Periodork Period Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)
11111 22222 33333 44444 EEEEE

iiiii
S(WKS(WKS(WKS(WKS(WK

iiiii
))))) RRRRR

iiiii

WK
1

11001 7005 6009 - 2800 2400 400
WK

2
7006 11002 - 60010 2700 2400 300

WK
3

60011 - 11003 7007 2500 2400 100
WK

4
- 60012 7008 11004 2200 2400 -200

Solution Based on the Dominant Assignment (DA)Solution Based on the Dominant Assignment (DA)Solution Based on the Dominant Assignment (DA)Solution Based on the Dominant Assignment (DA)Solution Based on the Dominant Assignment (DA)
MethodMethodMethodMethodMethod

To demonstrate DA, let us solve this numerical
example once again from the beginning. As before, I
= {11001, 11002, 11003, 11004, 7001, 7002, 7003, 7004,
6001, 6002, 6003, 6004}. The superscript indicates the
order of energy cost in its set of four copies. Thus,
11001 is the first of the four copies of the energy cost
of 1100. Note that energy costs from the same task
cannot be assigned to any other worker in the same
period. Figure 3 shows the decision tree generated by
DA.

Table 4. The optimal work-task-period assignment solution
obtained from M2-LPT swap (four workers).

WWWWWorkerorkerorkerorkerorker WWWWWork Periodork Periodork Periodork Periodork Period Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)
11111 22222 33333 44444 EEEEE

iiiii
S(WKS(WKS(WKS(WKS(WK

iiiii
))))) RRRRR

iiiii

WK
1

A B C - 2800 2400 400
WK

2
B C B C 2700 2600 100

WK
3

C - A B 2500 2400 100
WK

4
- A - A 2200 2200 0

Level 0 (t = 0)
At the root node or Node 0 (t = 0), LB = 4. Although

knowing that the optimal solution for this example is
four workers, let us use the solution (five workers)
from M2-FFD as the initial UB for DA. At Node 0 in Level
1 (worker 1 whose E

1
 = 2800) and from all energy costs

in I, FFFFF
1
* can be constructed as follows.

FFFFF
1

* = {(0, 11001, 11002, 6001), (0, 11001, 7001,
7002), (7001, 7002, 7003, 7004)}

It is seen that assignment (0, 11001, 11002, 6001)
cannot dominate assignments (0, 11001, 7001, 7002)
and (7001, 7002, 7003, 7004), and vice versa. Thus,
there are 3 son nodes for Node 0, which are Nodes 1,
2, and 3, respectively.

Fig 3. Decision tree generated by DA.

ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005) 389

Level 1 (i = 1, t = 1)
At i = 1 and t = 1, remove 11001, 11002, and 6001

from I. From Eq. (6), L(1) = 4. Since UB > L(1), Node
1 cannot be fathomed and the method continues. Next,
construct FFFFF

2
* at Node 1 from the remaining I, where E

2

= 2700.
FFFFF

2
* = {(11003, 0, 0, 11004), (11003, 7001, 7002, 0),

(6002, 7001, 7002, 7003)}
Thus, there are 3 son nodes of Node 1, which are

Nodes 4, 5, and 6, respectively.

Level 2 (i = 2, t = 4)
At i = 2 and t = 4, remove 11003 and 11004 from I.

From Eq. (6), L(4) = 4. Since UB > L(4), Node 4 cannot
be fathomed. Next, construct FFFFF

3
* at Node 4 from the

remaining I, where E
3
= 2500.

FFFFF
3

* = {(7001, 7002, 7003, 0), (6002, 6003, 6004,
7001)}

Thus, there are 2 son nodes of Node 4, which are
Nodes 7 and 8, respectively.

Level 3 (i = 3, t = 7)
At i = 3 and t = 7, remove 7001, 7002, and 7003 from

I. From Eq. (6), L(7) = 4. Once again, since UB > L(7),
Node 7 cannot be fathomed. Next, construct FFFFF

4
* at

Node 7 from the remaining I, where E
4
= 2200.

FFFFF
4

* = {(6002, 6003, 0, 7004)}
There is only 1 son node of Node 7, which is Node 9.

Level 4 (i = 4, t = 9)
At i = 4 and t = 9, remove 6002, 6003, and 7004 from

I. From Eq. (6), L(9) = 5. Node 9 is fathomed since UB
= L(9). Also, Node 7 at i = 3 is fathomed.

Level 3 (i = 3, t = 8)
At i = 3 and t = 8, remove 6002, 6003, 6004, and 7001

from I. From Eq. (6), L(8) = 4. Since UB > L(8), Node
8 cannot be fathomed. Next, construct FFFFF

4
* at Node 8

from the remaining I, where E
4
= 2200.

FFFFF
4

* = {(7002, 7003, 7004, 0)}
There is only 1 son node of Node 8, which is Node

10.

Level 4 (i = 4, t = 10)
At Node 10 where i = 4 and t = 10, remove 7002,

7003, and 7004 from I. From Eq. (6), L(10) = 4. Set I now
becomes an empty set and no son node can be further
generated. A new UB is then set to L(10), i.e., UB = 4.
Since the new UB = 4 = LB, the optimal solution (with
LB workers) is found at Node 10. Table 5 shows the
optimal assignment solution generated by the DA
method. From Tables 4 and 5, readers should note that
the two optimal assignment solutions while yielding the
same number of workers (four workers) have different
work assignments.

COMPUTATIONAL EXPERIMENT AND RESULTS

TTTTTest Prest Prest Prest Prest Problemsoblemsoblemsoblemsoblems
Three sets (A, B, and C) of test problems (WSP-E)

were randomly generated. Each set consisted of 100
problems which were divided into five levels of the
number of tasks (n), i.e., 10, 20, 30, 40, and 50 tasks,
respectively. For each n, there were 20 test problems.
The number of work periods per day p was assumed to
be four equal periods. In our experiment, we considered
physical tasks ranging from moderate to very heavy.21

Energy costs e
j
’s were randomly generated using a

uniform distribution between these following ranges:
Set A: e

j
 ~ [300, 900] – moderate to heavy

Set B: e
j
 ~ [600, 1200] – heavy to very heavy

Set C: e
j
 ~ [300, 1200] – moderate to very heavy

A worker population of 1,000 male workers was
then generated and the available workforce for each
test problem was randomly drawn from that worker
population. The daily energy capacities of the 1,000
male workers were generated using a normal distribution
with its mean and standard deviation of 2400 and 243.2
kcal/8h, respectively.5 To generate an initial number of
workers m that is sufficient and feasible for each test
problem, the 5th percentile energy capacity (12.5 kcal/
min or 2000 kcal/8h) was used as a representative for
a worker’s energy capacity. The initial number of workers
could be computed from the following formula.

m = (7)

To select workers for job rotation, m workers were
randomly chosen from the 1000-worker population.

ExperimentExperimentExperimentExperimentExperiment
All three algorithms and the hybrid procedure

were coded in Visual Basic Application on Microsoft
Excel and run on a 2.66 GHz, 512 MB RAM, Pentium IV
personal computer. Each of the 300 test problems was
solved by each of the three algorithms and the hybrid
procedure with the same initial number of workers m.
The computation time was measured in seconds. The
time limit for DA when used either separately or as part
of the hybrid procedure was set at 1,000 seconds. The

Table 5. The optimal work-task-period assignment solution
obtained from DA .

WWWWWorkerorkerorkerorkerorker WWWWWork Periodork Periodork Periodork Periodork Period Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)Energy (kcal/8h)
11111 22222 33333 44444 EEEEE

iiiii
S(WKS(WKS(WKS(WKS(WK

iiiii
))))) RRRRR

iiiii

WK
1

- A A C 2800 2800 0
WK

2
A - - A 2700 2200 500

WK
3

B C C B 2500 2500 0
WK

4
C B B - 2200 2100 100

12000

n

j
j

p
e

=
∑

390 ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005)

algorithm (and the hybrid procedure) is said to have
solved the test problem to optimality when (1) UB = LB,
or (2) the DA method can find the optimal solution
within the given time limit.

RESULTS

Table 6 shows the number of test problems that
each algorithm can guarantee an optimal solution by
itself. When considering individual algorithms
separately, it is seen that M2-LPT swap is the most
efficient heuristic since it could guarantee the optimality
for 252 problems (or 84.00%). M2-FFD is the least
efficient heuristic, with only 9 optimal problems
guaranteed. DA could guarantee only 53 problems
perhaps because it has reached a 1000-second time
limit before it could prove the optimality. As expected,
the hybrid procedure is superior to any of the three

Table 6. The number of optimal solutions guaranteed by
each solution procedure.

SetSetSetSetSet MMMMM22222-FFD-FFD-FFD-FFD-FFD MMMMM22222-LPT Swap-LPT Swap-LPT Swap-LPT Swap-LPT Swap DADADADADA Hybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid Procedure
(UB=LB)(UB=LB)(UB=LB)(UB=LB)(UB=LB) (UB=LB)(UB=LB)(UB=LB)(UB=LB)(UB=LB) (UB=LB)(UB=LB)(UB=LB)(UB=LB)(UB=LB)(BnB*)(BnB*)(BnB*)(BnB*)(BnB*) (UB=LB(UB=LB(UB=LB(UB=LB(UB=LB (BnB*)(BnB*)(BnB*)(BnB*)(BnB*)

A(100) 7 99 12 0 99 0
B(100) 1 65 10 6 65 11
C(100) 1 88 25 0 88 0
Total 9 252 47 + 6 = 53 252 + 11 = 263

*BnB means that LB is too weak and the current best UB is optimal.

algorithms when they are utilized separately. The hybrid
procedure could find an optimal solution for 263 test
problems (or 87.67%) but failed in the remaining 37
problems within the 1000-second time limit.

It is of interest to further investigate how the three
algorithms and the hybrid procedure perform in each
problem set with respect to the problem size. Table 6
shows the detailed summary of the results. Specifically,
it shows the number of test problems that each
algorithm can reach the best solution known (called
hits), whether or not it (the algorithm) can guarantee if
the solution is an optimal solution. A breakdown of
numbers of hits shows the efficiency of individual
algorithms in each problem size (five levels) of each set
of the test problems. It is seen that M2-LPT swap was
able to score 263 hits since there were additional 11
test problems that it could not guarantee the optimality
but the lowest UB is in fact the optimal solution (as later
verified by DA). Furthermore, the maximum differences
(max dif) between the lowest UB generated by each
algorithm and LB for individual solutions are presented
in Table 7.

When DA is unable to verify the optimality, there
will be a difference between UB and LB. In fact, the
lowest UB could be optimal and LB is infeasible.
However, the hybrid procedure fails to confirm that LB
is infeasible.

The maximum differences between UB and LB from
M2-FFD, M2-LPT swap, DA method, and the hybrid
procedure are 23, 3, 29, and 3, respectively. Once

Table 7. Detailed summary of hits and maximum difference between UB and LB .

SetSetSetSetSet nnnnn RepRepRepRepRep Algorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used Separately Hybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid Procedure
MMMMM22222-FFD-FFD-FFD-FFD-FFD MMMMM22222-LPT Swap-LPT Swap-LPT Swap-LPT Swap-LPT Swap DADADADADA

HitHitHitHitHit Max DifMax DifMax DifMax DifMax Dif HitHitHitHitHit Max DifMax DifMax DifMax DifMax Dif HitHitHitHitHit Max DifMax DifMax DifMax DifMax Dif HitHitHitHitHit Max DifMax DifMax DifMax DifMax Dif

10 20 4 2 20 0 12 1 20 0
20 20 2 4 20 0 0 7 20 0

A 30 20 1 5 19 1 0 9 19 1
40 20 0 6 20 0 0 11 20 0
50 20 0 6 20 0 0 17 20 0

10 20 1 4 18 1 16 1 18 1
20 20 0 8 18 2 0 5 18 2

B 30 20 0 15 15 3 0 15 15 3
40 20 0 17 15 2 0 22 15 2
50 20 0 23 10 1 0 29 10 1

C 10 20 1 2 19 1 18 1 19 1
20 20 0 4 18 1 7 7 18 1
30 20 0 6 17 1 0 11 17 1
40 20 0 7 19 1 0 18 19 1
50 20 0 7 15 1 0 23 15 1

TTTTTotal Hitotal Hitotal Hitotal Hitotal Hit 99999 263263263263263 5353535353 263263263263263

Max DifMax DifMax DifMax DifMax Dif 2323232323 33333 2929292929 33333

ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005) 391

again, it is seen that the hybrid procedure outperforms
the other algorithms in all three problem sets. Among
the 37 test problems that the hybrid procedure could
not prove the optimality within the 1000-second time
limit, the maximum difference between UB and LB of
these 37 problems is not greater than 3. This result
shows that the consecutive use of the algorithms can
help to quickly improve (reduce) UB to perhaps its
lowest.

From the comparison of computation times that
individual algorithms and the hybrid procedure require
to solve WSP-E (see Table 8), M2-FFD is the fastest
solution algorithm with its maximum computation time
of only 1.0 second. M2-LPT swap is very fast if
performing only one start. With the multi-start
algorithm (i.e., 1,000 re-starts), however, it required
much longer time. For DA, the 1,000-second time limit
was reached in all five problem sizes of the three problem
sets. It is also seen that the average time of the hybrid
procedure was much less than that of the DA method,
owing to the consecutive use of the algorithms.

DISCUSSION

It is seen that the hybrid procedure shows an
outstanding performance in solving WSP-E. When
comparing it to the other three algorithms based on the
number of optimal solutions that can be guaranteed,
it outperforms all of them. Of the 300 test problems,
the hybrid procedure succeeded in solving 263

problems (or 87.67%), followed closely by M2-LPT swap
(252 problems or 84%), DA (53 problems or 17.67%),
and M2-FFD (9 problems or 3%). When considering
the number of hits (the capability to reach the best
solution known), M2-LPT swap, although unable to
verify, had also solved additional 11 problems to
optimality; yielding the total of 263 hits (equal to that
of the hybrid procedure). When comparing the average
computation times between DA and the hybrid
procedure, the use of M2-LPT swap in the hybrid
procedure to improve the initial UB yields a 78%
improvement in the computation efficiency. Since M2-
LPT swap could quickly find a good UB, DA in the
hybrid procedure could prove the optimality within
the given time limit; thus, resulting in a much less average
computation time than that of DA alone.

In each set of the 300 test problems, the hybrid
procedure achieved the highest hits and could, by itself,
prove that all are the optimal solutions. For the 100
problems in Set A where e

j
 ~ [300, 900], M2-FFD and

DA performed poorly, scoring only 7 and 12 hits,
respectively. M2-LPT swap and the hybrid procedure
both performed equally well irrespective of the problem
size, being able to score 99 hits. This might be because
most of the randomly generated e

j
’s are small when

compared with E
i
’s, which would make it relatively easy

to assign the tasks to workers. From the results, all 20
test problems with n = 50 in Set A have the optimal
solutions (the minimum number of workers) equal to
n, which also equal to LB.

Table 8. Computational times (in seconds) to find an optimal solution.

SetSetSetSetSet nnnnn RepRepRepRepRep Algorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used SeparatelyAlgorithm When Used Separately Hybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid ProcedureHybrid Procedure
MMMMM22222-FFD-FFD-FFD-FFD-FFD MMMMM22222-LPT Swap-LPT Swap-LPT Swap-LPT Swap-LPT Swap DADADADADA

AAAAAvg.vg.vg.vg.vg. Max.Max.Max.Max.Max. AAAAAvg.vg.vg.vg.vg. Max.Max.Max.Max.Max. AAAAAvg.vg.vg.vg.vg. Max.Max.Max.Max.Max. AAAAAvg.vg.vg.vg.vg. Max.Max.Max.Max.Max.

10 20 0.0 0.0 0.5 2.0 430.0 1000.0 1.0 2.0
20 20 0.0 0.0 0.9 7.0 1000.0 1000.0 1.0 7.0

A 30 20 0.1 1.0 1.0 11.0 1000.0 1000.0 51.0 1011.0
40 20 0.1 1.0 2.8 5.0 1000.0 1000.0 3.0 5.0
50 20 0.4 1.0 4.3 7.0 1000.0 1000.0 5.0 7.0

10 20 0.0 1.0 18.0 64.0 341.0 1000.0 187.0 1043.0
20 20 0.0 0.0 26.9 137.0 1000.0 1000.0 129.0 1137.0

B 30 20 0.1 1.0 136.9 393.0 1000.0 1000.0 433.0 1393.0
40 20 0.2 1.0 164.0 618.0 1000.0 1000.0 414.0 1618.0
50 20 0.2 1.0 310.3 929.0 1000.0 1000.0 811.0 1929.0

10 20 0.0 1.0 2.1 30.0 131.0 1000.0 52.0 1030.0
20 20 0.0 0.0 1.3 8.0 856.0 1000.0 101.0 1008.0

C 30 20 0.1 1.0 4.6 18.0 1000.0 1000.0 155.0 1016.0
40 20 0.1 1.0 20.6 286.0 1000.0 1000.0 190.0 1286.0
50 20 0.2 1.0 146.4 471.0 1000.0 1000.0 397.0 1471.0

AAAAAverage Tverage Tverage Tverage Tverage Timeimeimeimeime 0.10.10.10.10.1 56.056.056.056.056.0 850.7850.7850.7850.7850.7 187.3187.3187.3187.3187.3

Maximum TimeMaximum TimeMaximum TimeMaximum TimeMaximum Time 1.01.01.01.01.0 929.0929.0929.0929.0929.0 1000.01000.01000.01000.01000.0 1929.01929.01929.01929.01929.0

392 ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005)

In Set B where e
j
 ~ [600, 1200], M2-FFD and DA

scored only 1 and 16 hits, respectively, in problems
with n = 10. M2-LPT swap could guarantee the optimality
for 65 of the 100 test problems. With the hybrid
procedure, DA could further guarantee in 11 additional
test problems that the current UBs obtained by M2-LPT
swap were in fact optimal. Thus, M2-LPT swap and the
hybrid procedure could both score 76 hits. From Table
6, the problem size does have a negative effect on the
performance of both solution procedures.

In Set C where e
j
 ~ [300, 1200], M2-FFD could find

an optimal solution of only one test problem (with n =
10) while DA could score 25 hits. Once again, M2-LPT
swap and the hybrid procedure both scored equally at
88 hits. The problem size also does have some negative
effect on their performances.

The main reason why M2-LPT swap demonstrated
such an outstanding performance lies in its three
algorithms: M2-LPT, swap, and multi-start. In several
cases, the swap algorithms could improve the current
work assignment solution for the current UB workers
such that the number of required workers could be
reduced. In the multi-start algorithm where the current
work assignment solution is shaken, only one pair of
workers is chosen to exchange their assigned energy
costs in each period. This so-called shaking helps to
move the work assignment solution to a new point in
the feasible solution space, so that the new search for
an optimal solution can be re-started. It is noted that
the number of re-starts is chosen to be 1,000 times
based on the result from our preliminary experiment.

Since DA makes use of the branch-and-bound
scheme, the computation time increases progressively
with the problem size, especially when solving WSP-E.
Thus, the 1000-second time limit was used in the
experiment to terminate the solution search in large-
sized problems. Although DA can guarantee the optimal
solution when LB is too weak or infeasible, its
performance decreases drastically when n is more than
10 tasks in all three problem sets.

From our observation, problems in Set A (in which
the task level ranges from moderate to heavy) are very
easy to solve irrespective of the problem size. This
perhaps is due to the fact that most of the energy costs
are comparatively smaller than one-fourth of the
worker’s average energy capacity (2400 kcal/8h).
Problems in Set C (in which the task level ranges from
moderate to very heavy) are also relatively easy to
solve, perhaps for the same reason as that in Set A. For
problems in Set B, the level of task ranges from heavy
to very heavy. The large energy cost of the task makes
it difficult to yield a work assignment for a worker that
has the sum of energy costs close to his/her daily energy
capacity.

M2-LPT swap dominates M2-FFD and DA in all three

problem sets, owing to its efficient algorithms in
improving (decreasing) the UB. However, it lacks the
capability to guarantee the optimality of a solution
when LB is too weak. The hybrid procedure combines
the strengths of M2-LPT swap and DA together and
results in an efficient and also robust solution
procedure.

CONCLUSION

A new workforce scheduling problem is treated in
this paper. While most workforce scheduling problems
aim to complete all tasks within the required time under
limited resources and workers, our problem additionally
considers the safety of workers. Job rotation is widely
recommended when assigning workers to hazardous
or physically strenuous tasks. Based on safety concerns,
workers should be assigned to physical tasks with the
daily sum of energy costs not more than their energy
capacity to avoid over exhaustion. Our workforce
scheduling problem is a variation of a well known
combinatorial optimization problem, called the bin
packing problem. It is however different from most bin
packing problems since bin sizes in here are unequal
(i.e., workers have different daily energy capacities).

Three solution algorithms (two heuristics and one
exact) and a hybrid procedure are developed for solving
the energy-based workforce scheduling problem (WSP-
E). The problem objective is to find the minimum
number of workers and their daily work assignments
for a given set of physical tasks, with each worker not
expending more than his/her working energy capacity.
The method for finding the lower bound (LB) for WSP-
E and a formula for estimating the initial upper bound
(UB) are proposed. Among the two heuristics, i.e., M2-
FFD and M2-LPT swap, the latter is much more efficient
than the former due to its special algorithms to improve
UB. An optimal solution is obtained when the algorithm
could show that UB = LB. The dominant assignment
(DA) method uses the branch-and-bound scheme to
improve UB or to guarantee the optimality of UB. Lastly,
a hybrid procedure that utilizes M2-LPT swap and DA
consecutively is proposed to improve the computation
efficiency.

Based on the computational experiment on
randomly generated 300 test problems, the hybrid
procedure outperforms all three algorithms (when they
are utilized separately) by obtaining an optimal solution
for 263 problems. For the 37 problems in which the
optimal solutions cannot be proved, the maximum
difference between UB and LB is only three workers.

For future studies, the method for proving the
optimality of UB can be improved in order to guarantee
more problems and solve larger-sized problems
efficiently. A stronger lower bound for WSP-E should

ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 31 (2005)31 (2005)31 (2005)31 (2005)31 (2005) 393

be developed. Also, more practical constraints should
be included in WSP-E. For example, some workers
might not be able to perform certain tasks due to lack
of required skills.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the
Thailand Research Fund for providing the financial
support for this research study through the RGJ-PHD
grant (Grant No. PHD/0138/2544). The authors also
would like to thank the anonymous referees for their
valuable comments.

REFERENCES

1. Bhaba RS (1986) Optimum manpower models for a
production system with varying production rates. European
Journal of Operational Research 2424242424(3), 447-54.

2. Rangarajan N (1996) An algorithm for single shift scheduling
of hierarchical workforce. European Journal of Operational
Research 9696969696, 113-21.

3. Vicente V, Angeles P and Sacramento Q (1996) A graph
colouring model for assigning a heterogeneous workforce
to a given schedule. European Journal of Operational Research
9090909090, 285-302.

4. Vairaktaraki GL, Cai XQ and Lee CY (2002) Workforce
planning in synchronous production systems. European
Journal of Operational Research 136(3)136(3)136(3)136(3)136(3), 551-72.

5. National Institute for Occupational Safety and Health
(NIOSH) (1981) Work practices guide for the design of manual
handling task. Washington, DC.

6. Blazewicz J, Brauner N and Finke G (2004) Scheduling with
discrete resource constraints. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis (Edited by Leung
J Y-T), pp. 23-1 – 23-18. Chapman & Hall/CRC, Boca
Raton, FL.

7. National Institute for Occupational Safety and Health
(NIOSH) (1996) National occupational research agenda.
Washington, DC.

8. National Institute for Occupational Safety and Health
(NIOSH) (1997) Musculoskeletal disorders and workplace factors
(No. 97-141). Washington, DC.

9. Kogi K, Kawakami T, Itani T and Batino JM (2003) Low-cost
work improvements that can reduce the risk of
musculoskeletal disorders. International Journal of Industrial
Ergonomics 31(3)31(3)31(3)31(3)31(3), 179-84.

10. Musliu N, Gärtner J and Slany W (2002) Efficient generation
of rotating workforce schedules. Discrete Applied Mathematics
118118118118118, 85-98.

11. Garey MR and Johnson DS (1979) Computers and intractability:
a guide to the theory of NP-completeness. W.H. Freeman and
Company, San Francisco, CA.

12. Fleszar K and Hindi S (2002) New heuristics for one-
dimensional bin-packing. Computers and Operations Research
29(7)29(7)29(7)29(7)29(7), 821-39.

13. Berghammer R and Reuter F (2003) A linear approximation
algorithm for bin packing with absolute approximation factor
1.5. Science of Computer Programming 4848484848, 67-80.

14. Bourjolly JM and Rebetez V (2005) An analysis of lower
bound procedures for the bin packing problem. Computers
and Operations Research 32(3)32(3)32(3)32(3)32(3), 395-405.

15. Coffman EG-Jr, Csirik J and Woeginger GJ (1999)

Approximate solutions to bin packing problems. In:
Handbook of Applied Optimization (Edited by Pardalos PM
and Resende MCG). Oxford University Press, Inc. New
York, NY.

16. Friesen DK and Langston MA (1986) Variable sized bin
packing. SIAM Journal of Computing 1515151515(1), 222-30.

17. Kang J and Park S (2003) Algorithms for the variable sized
bin packing problem. European Journal of Operational Research
147(2)147(2)147(2)147(2)147(2), 365-72.

18. Milind D, Jayant K, and Jay S (2001) Variable sized bin
packing with color constraints. Electronic Notes in Discrete
Mathematics 77777, 1-4.

19. Johnson DS, Demers A, Ullman JD, Garey MR and Graham
RL (1974) Worst-case performance bounds for simple one-
dimensional packing algorithm. SIAM Journal of Computing
33333(4), 299-325.

20. Martello S and Toth P (1990) Lower bounds and reduction
procedure for the bin packing problem. Discrete Applied
Mathematic 2828282828, 59-70.

21. Astrand PO and Rodahl K (1986) Textbook of work physiology:
physiological bases of exercise. McGraw-Hill, New York, NY.

