
INTRODUCTION

Respiratory failure has become an important health
problem, especially in a disease called acute respiratory
distress syndrome (ARDS) which can harm and destroy
the respiratory system. Many patients who suffer from
this disorder need mechanical ventilation to aid
breathing whenever they are not able to move enough
air in and out of their lungs. Many types of ventilators
and modes of operation may be used for the treatment.
Pressure controlled ventilation is most often prescribed
for patients with severe ARDS.1,2

The mechanism of respiration has gained increasing
importance in the study of guidelines for ventilator
settings in order to protect the lungs from damage.
Many mathematical models for mechanical ventilation
have been developed.3-10 The models are generally
broken down into single compartment models and
multi-compartment models. These models allow the
resistances for inspiration and expiration to be different,
incorporating positive end-expiratory pressure (PEEP),
and covering the basic clinical modes of ventilation.

However, most of these models have assumed the same
constant compliance for the inspiratory and expiratory
phases. The dynamics of the elastic pressure-volume
(P

el
-V) curves have also been studied extensively.11-16

Based on a study of Svantesson et al. in 1998,13 a three-
segment variable compliance model for pressure
controlled ventilation was proposed by Crooke et al. in
2002.17

Oleic acid-injured animal models are used widely
to test a variety of adjunctive therapies in mechanical
ventilation.18-20 Using animal models as a proxy for lung
injury and disease, researchers have probed the effects
of various therapeutic techniques, ranging from liquid
ventilation,21 splanchnic perfusion and oxygenation,22

ventilatory support23-25 to tracheal gas insufflation
(TGI).26 One of the more prominent usages of oleic
acid-injury models is in studies of recruitment.23,27,28

The mathematical model developed in this paper is
based on a subset of data collected from twenty pigs
that were subjected to mechanical ventilation before
and after oleic acid injury. The experimental protocol
for the animal studies was approved by the Animal Care
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inspiration, a pressure P
set

 is applied to the airway, P
vent

= P
set

 , and during expiration, the ventilator applies a
constant pressure P

peep
,P

vent
=P

peep
.

In actual fact, the lungs cannot be emptied of gas,
even by the most forceful expiration. Some gas still
remains as the residual volume. We define the end-
expiratory volume (V

ex
) to be the volume of the lung

above its residual volume during a maximal forced
expiration that starts at the end of a normal tidal
expiration. V(t) denotes the volume of the compartment
above  V

ex 
at any time t. During each breathing cycle,

V
i
(t) and V

e
(t) denote the volumes of the compartment

above its residual volume during inspiration and
expiration, respectively. We then assume that

el
ex

V
P

C(V V )
=

+
 where  C(V+V

ex
) is the compliance function for the

elastic pressure. The residual pressure called the end-
expiratory pressure, P

ex
, is the pressure due to V

ex
.  The

relationship between  V
ex
and  P

ex 
is given by

ex
ex

ex

V
P =

C(V ) .

For the resistive pressure, we assume that
P

r
 = RQε,

where Q  is the flow into or out of the lung, that is,

dV
Q

dt
= ,

 R is a constant, and ε  is a positive parameter. With
these assumptions, the volume of the compartment is
given by the following differential equations.

Inspiration

i
i i

i ex set in
i i ex

dV V
R P P , 0 t t

dt C (V V )

ε
⎛ ⎞ + + = ≤ ≤⎜ ⎟ +⎝ ⎠

         (2)

Expiration

e

e e
e ex peep in tot

e e ex

dV V
R P P , t t t

dt C (V V )

ε
⎛ ⎞− + + = < ≤⎜ ⎟ +⎝ ⎠

.    (3)

In equations (2) and (3), the unknown resistances
R

i
 and R

e
 can be obtained from the experimental data

by plotting resistive pressure against flow and fitted
with a least-squares curve.6 The initial conditions for
the model equations (2) and (3) are  V

i
(0) = 0 and V

e
(t

in
)

= V
T
, respectively, where V

T
 is the tidal volume. The

constant P
ex
 is determined by the equation V

e
(t

tot
) = 0.

The solutions of the simplest model for pressure
controlled ventilation when  ε

i
 = ε

e
 =1 and

i i ex e e exC (V V ) C (V V ) C+ = + ≡ ,

where  C is a constant compliance, and can be derived
easily.5,29 Other solutions of model equations (2) and

and Use Committee of Regions Hospital. In order to
study mechanical ventilation, the experiments were
carried out by using monitoring equipments. The (P

el
-

V) data was collected without applied positive end-
expiratory pressure (PEEP = 0) during inspiration and
expiration from pre- and post-injury pigs. The collected
(P

el
-V) data for each pre- and post-injury pig showed

that the injury has an effect on the lung compliance.
Therefore, we constructed a multi-segment
mathematical model for pressure controlled ventilation
with variable compliance, based on a single
compartment model. Using the experimental (P

el
-V)

data from pre- and post-injury pigs, the lung’s variable
compliance could be approximated by a piecewise linear
function of the lung volume, V. Next, this model was
compared to a linear model with constant compliance
of pressure controlled ventilation which served to link
the clinical input variables, namely pressure level,
frequency, inspiratory time fraction, and impedance,
with key outcome variables of clinical interest, such as
tidal volume, average volume, end-expiratory pressure,
and mean alveolar pressure.

Furthermore, for traditional modes of ventilation,
the tidal volume (V

T
), minute ventilation (V

E
), end-

expiratory pressure (P
ex
), mean alveolar pressure (P

m
),

and power (W
m
) are asymptotic to finite limiting values

as the cycling frequency f becomes sufficiently
large.5,29,30 It is therefore informative to calculate these
limiting values as f→∞, in order to make some clinically
relevant observations concerning these important key
outcome variables. Such linkages between these key
outcome variables (V

T
,V

E
, P

ex
, P

m
 and W

m
) and the

physiologic variables (compliances and resistances) as
f→∞  will provide limits or bounds for these quantities,
which can assist clinicians in the optimization of the
desired outcomes on a particular clinical settings.

PREVIOUS MODEL

The mathematical model for pressure controlled
ventilation incorporates pressure support ventilation
that is applied to a single lung with compliance C,
inspiratory resistance R

i
, and expiratory resistance R

e
.

The ventilator cycle is split into two parts: inspiration
of duration t

in
 and expiration of duration t

ex
. The total

length of each cycle is t
tot 

= t
in
 + t

ex
.

One compartment models for mechanical
ventilation are formed by assuming a pressure balance
within the compartment:

P
r 
+ P

el 
+ P

res
 = Pvent          (1)

in which the pressure balance at any time t during
each period of breathing cycle is composed of pressures
due to resistive losses (P

r
), pressures due to elastic

forces (P
el
), residual pressures (P

res
), and applied

pressures to the compartment (P
vent

). During
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expiration C
i
(V) of the multi-segment model, with J

segments during inspiration and K segments during
expiration, have the forms:

i1 i1 i1

i2 i2 i1 i2
i

ij ij i( j 1) T

          a b V   if         0 V v

          a b V  if       v V v
C (V)

                            

          a b V   if  v V V−

+ ≤ ≤⎧
⎪ + ≤ ≤⎪= ⎨
⎪
⎪ + ≤ ≤⎩

#           (7)

and

ek ek e(k 1)

e(k 1) e(k 1) e(k 1) e(k 2)
e

e1 e1 e1 T

         a b V   if          0 V v

a b V  if  v V v
C (V)

                            

         a b V   if       v V V ,

−

− − − −

+ ≤ ≤⎧
⎪ + ≤ ≤⎪= ⎨
⎪
⎪ + ≤ ≤⎩

# (8)

where ν
ij 
 and ν

ek 
 denote the volumes at which the

compliance function changes its form during
inspiration and expiration, respectively. The constants
ν

ij 
and ν

ek
, where  j=1,2,..,J and k=1,2,..,K , as well as the

numbers  J and K are determined as those which yield
the least-squares fitting of the collected  P

el
-V data.

Thus, the multi-segment approximation of the
compliance functions as in equations (7) and (8) is used
in order to obtain a more accurate fit. To test the
accuracy of our model, a Mathematica program was
written to accept the experimental P

el
-V data and

obtained a least-squares fit of the experimental  data up
to 5 segments in each part of the breathing cycle. The
resulting curves are shown in Fig 1 for both pre- and
post-injury cases of a particular pig. The parameters
used in a five-segment fit of  P

el
-V curves in Fig 1 are

listed in Table 1. In this table, the parameters, a
i
, b

i
, a

e
,

b
e
, ν

i
 and ν

e
 for inspiration and expiration of pre- or

post-injury pig for each segment are listed.
The basic one-segment model given in equations

(4) and (5) has been generalized to a multi-segment
model by assuming that the compliance functions  C

i
(V)

and  C
e
(V) vary according to equations (7) and (8),

which results in the following multi-segment model.
Inspiration

 

j j

j

(j 1) j

i i

i ex set
ij ij i ex

i i

dV V
R P P ,  

dt a b (V V )

t t t , j 1, 2, , J,
−

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟ + +⎝ ⎠

≤ ≤ = …
        (9)

Expiration

 

k k

k

(k 1) k

e e
e ex peep

ek ek e ex

in e in e

dV V
R P P ,  

dt a b (V V )

t t t t t , 
−

⎛ ⎞
+ + =⎜ ⎟ + +⎝ ⎠

+ < ≤ +
(10)

where t
i0
=0=t

e0
, t

iJ
=t

in
, and t

eK
=t

ex
. The initial and boundary

(3), with constant compliance and  ε
i
 = ε

e
 = 1

2
 or 2, were

found by Crooke and Marini in 1993.6 Most other
researchers put ε

i
 = ε

e
 = 1 finding that their models work

reasonably well and are more mathematically
tractable.3,5,6-10,17  In 2002, Crooke et al.17 proposed,
solved and analyzed a one-segment mathematical model
for pressure controlled ventilation with variable
compliance. Their one-segment model is of the form
given in equations (2) and (3), when ε

i
 = ε

e
 = 1,

i i ex i i i exC (V V ) a b (V V )+ = + + ,

and

e e ex e e e exC (V V ) a b (V V )+ = + + ,

where a
i
, b

i
, a

e
 and b

e
 are parameters obtained from P

el
-

V the  curves. That is,
Inspiration

i i
i ex set in

i i i ex

dV V
R P P , 0 t t

dt a b (V V )
⎛ ⎞ + + = ≤ ≤⎜ ⎟ + +⎝ ⎠           (4)

Expiration

e e
e ex peep in tot

e e e ex

dV V
R P P , t t t

dt a b (V V )
⎛ ⎞ + + = < ≤⎜ ⎟ + +⎝ ⎠ .    (5)

MULTI-SEGMENT MODEL

In 2002, Crooke et al.17 suggested a nonlinear
mathematical model for pressure controlled ventilation
called the three-segment model, in which the compliance
of the compartment was allowed to be a piecewise
linear function that varies with the compartment
volume. Their compliance for each phase of breathing
cycle was segmented into three parts, each of which
varied linearly with volume up to a particular lung
volume. In this paper, we attempt to improve the
accuracy by proposing a multi-segment model in which
the compliance for each part of the breathing cycle
consists of multiple segments.

First, we consider the elastic pressure in the
lung in its simplest form, that is

el
V

P
C(V)

=                         (6)

where P
el
 is the elastic pressure of a single

compartment lung and V is the lung volume above its
residual volume. The experimental P

el
-V data for

inspiration and expiration, pre- and post-injury pigs
applied in this paper was collected without applied
PEEP and the end-expiratory pressure, P

ex
, of the lung

was assumed to be zero. Then, the function C(V), the
compliance function of the model, is allowed to be a
piecewise linear function over the inspiratory and
expiratory phases for each breath. In particular, the
compliance functions for inspiration C

i
(V) and
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Pre-injury Post-injury  
Segment 

 

 
Parameters 

 Inspiration Expiration Inspiration Expiration 

a 0.027363 0.237805 0.000641 0.143059 

b  0.012846 -0.435540 0.070513 -0.080896 
 

1 
 

v  0.30 1.15 0.35 1.25 

a 0.027451 0.182155 0.003172 0.097537 

b 0.016631 -0.268782 0.045721 -0.044771 
 

2 
 

v 0.55 0.95 0.45 1.05 

a 0.039757 0.065133 0.009588 0.070584 

b -0.005182 -0.010138 0.024759 -0.019948 
 

3 
 

v 0.80 0.60 0.95 0.90 

a 0.042238 0.083840 0.026285 0.058010 

b -0.008795 -0.029532 0.006863 -0.005957 4 

v 0.90 0.40 1.20 0.60 

a 0.037296 0.147569 0.046200 0.248390 
5 

b -0.002475 -0.082240 -0.009205 -0.323795 

Fig 1.An example of P
el
-V data for pre-injury (a) and post-injury (b) pig approximated by five-segment compliance functions.

The dots represent P
el
-V data obtained from the experiments, while the solid lines are the approximate P

el
-V. curves.

Table 1. The parameters a, b and v obtained from the least squares fit of experimental data using five-segment compliance
functions during inspiration and expiration periods, for pre- and post-injury pig. The units for a, b, and v are L/cm
H

2
O, L/cm H

2
O, and liter (L), respectively.

aaaaa bbbbb
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conditions for the model equations (9) and (10) are  V
i1

= 0, V
ij
(t

in
) = V

T
 and V

eK
(t

tot
) = 0, while the solutions are

required to satisfy the continuity conditions

j j (j 1) ji i i iV (t ) V (t ),  j 1, 2, , J 1,
+

= = −…
and

( 1)
( ) ( ),  1, 2, , 1

k k k ke e e eV t V t k K
+

= = −… .

Applying the above continuity conditions, the
following restrictions are to be placed on the parameters
of compliance functions:

( 1) ( 1)( )i j ij ij i j ija a b b v+ += + −        (11)

and

( 1) ( 1)( )+ += + −e k ek ek e k eka a b b v .        (12)

The unknown  P
ex
 is determined by the equation

V
eK

(t
tot

) = 0. The parameters 1 2 ( 1), , , −…i i i Jv v v , for

inspiration, and , for expiration, are inputs of the model,
and are obtained from the experimental data. The
transition times, t

ij
 and t

ek
, which appear in the model

equations (9) and (10) are found from the

equations ( )ij ij ij exV t v V= −  and ( )
k ke e ek exV t v V= − ,

where  1, 2, , j J= … and 1, 2, , k K= … , respectively,
whenever these equations can be solved analytically
for the transition times.17

In order to carry out the simulation of the multi-
segment model, the numbers  J≤5 and K≤5, of the
segments for the variable compliance, which depend
on the values of  V

ex
 and V

T
, are required. Depending on

the values of  V
ex

 and V
T
, we then classify the segments

during the inspiratory and expiratory periods by means
of the values of the times t

ij
 and t

ek
, and the

compartmental volumes  v
ij 
and  v

ek 
as follows.

The five segments used in the simulation during the
inspiratory period are

 

1

1 2

2 3

1

1 2

2 3

1st segment:                  0     and       0 ( ) ,  

2nd segment:                   and    ( ) ,

3rd segment:                    and    ( ) ,

4th segment:

i i i

i i i i i

i i i i i

t t V t v

t t t v V t v

t t t v V t v

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

3 4

4

3 4

4

                    and    ( ) ,

and,  5th segment:                and    ( ) .

i i i i i

i in i i T

t t t v V t v

t t t v V t V

⎫
⎪
⎪
⎪
⎬
⎪≤ ≤ ≤ ≤ ⎪
⎪≤ ≤ ≤ ≤ ⎭

   (13)

Similarly, the five segments used in the simulation
during the expiratory period are

1

1 2

2 3

4

4 3

3 2

1st segment:                and       0 ( ) ,  

2nd segment:       and    ( ) ,

3rd segment:        and    ( ) ,

4th segment:     

in in e e e

in e in e e e e

in e in e e e e

in

t t t t V t v

t t t t t v V t v

t t t t t v V t v

t

≤ ≤ + ≤ ≤

+ ≤ ≤ + ≤ ≤

+ ≤ ≤ + ≤ ≤

+
3 4

4

2 1

1

   and    ( ) ,

and,  5th segment:                 and    ( ) .

e in e e e e

in e tot e e T

t t t t v V t v

t t t t v V t V

⎫
⎪
⎪
⎪
⎬
⎪≤ ≤ + ≤ ≤ ⎪
⎪+ ≤ ≤ ≤ ≤ ⎭

  (14)

Hence, 225 cases are possible depending on
whether v

ij 
 or v

ek 
exceed , V

T 
or V

ex
, when attempting to

obtain the best fit. A Mathematica program was written

for the multi-segment model that covers these 225
cases to calculate the lung volume over one breathing
cycle for parameter settings obtained above. From the
above conditions shown in the expressions (13) and
(14), five segments will be applied to both inspiration
and expiration in the model simulation if

1 40 ,  ex i i TV v v V< < < , 40 ex eV v< <  and 1e Tv V< .

In Fig 2, the resulting elP V−  curves subjected to the
continuity conditions (11) and (12) are shown for both
pre- and post-injury cases of a particular pig. The
parameters used in this data fitting are as listed in Table
1. The compliance functions in the simulations of the

elP V− curves shown in Fig 2 are presented in Fig 3. In
Figs 2 and 3, the dashed lines indicate the volumes at
which the compliance function changes its form, while
the solid vertical lines in the graphs shown in Figure 3
indicate the values of  V

ex
 and V

T
+V

ex
.

A simulation of the multi-segment variable
compliance model can be seen as solid curves in Figure
4, which shows the lung volume over one breathing
cycle for pre- and post-injury cases using the parameter
values given in Table 1 obtained by curve fitting of the

elP V− data shown in Fig 1. In this simulation, the
compliance functions for inspiration and expiration
are different. Here, in the pre-injury case, four segments
are used for inspiration period and two segments are
used for expiration period since we have  and  during
inspiration, while  and  during expiration. In the post-
injury case, on the other hand, two segments are used
for inspiration period and one segment is used for

expiration period since we have 1 2i ex iv V v< < and

4i Tv V<   during inspiration, while  4 3e ex ev V v< <  and

3 2e T ev V v< < during expiration in the post-injury case.
Then, the segments numbered 2-5 and numbered 1-2
as shown in equation (13) are used in the simulation
during inspiration for pre- and post-injury cases,
respectively, while the segments numbered 2-3 and
numbered 1 as shown in equation (14) are used in the
simulation during expiration for pre- and post-injury
cases, respectively. Therefore, for both pre- and post-
injury cases, the multi-segment models are of the form
given in equations (9) and (10), where  j = 2,3,4,5 and
k = 2, 3, for pre-injury case, while for post-injury case,
j = 1,2 and k = 1. Here, we assume  t

i1
= 0 and t

i0
= 0 as

the starting times for the inspiration period in the pre-
and post-injury cases, respectively, and t

e1
= 0 and t

e0
=

0 as the starting times for the expiration period in both
pre- and post-injury cases. Also, t

i5
= t

in
,t

i2
= t

in
 , t

e3
= t

ex
  and

t
e1
= t

ex
 as the ending times for the inspiration and

expiration periods for both pre- and post-injury cases.
Having the compartment volume, the key outcome

variables of the clinical interest; namely, tidal volume
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Fig 2.Continuous P
el
-V curve for pre-injury (a) and post-injury (b) pig using five-segment approximating compliance function

subject to continuity conditions (11) and (12).  The arrow indicates inspiration (  ) or expiration  ( ).

Fig 3.Compliance functions used in Fig 3. The dashed lines indicate the volumes at which the compliance function changes its
form and the solid lines indicate V

ex
 and V

T
+V

ex
.

Fig 4.Comparison of constant compliance and multi-segment variable compliance models. Here, the lung volume curves are
simulated over one breath by multi-segment model, in pre-injury case (a) with P

set
=35 cm H

2
O, P

peep
=5, t

tot
=6s, t

in
=2s,

R
i
=16 cm H

2
O/L/s and R

e
=17 cm H

2
O/L/s, and in post-injury case (b) with P

set
=35 cm H

2
O, P

peep
=15, t

tot
=6s, t

in
=3s,

R
i
=13.75 cm H

2
O/L/s and R

e
=14.25 cm H

2
O/L/s. The solid curves correspond to the lung volume obtained from the

multi-segment models, and the dashed curves correspond to the volume obtained from the constant compliance models

with 0.0335536ave
iC C= =  and 0.0296673ave

iC C= = L/cm H
2
O for pre- and post-injury cases, respectively. The dots indicate the

real data. The solid vertical lines indicate the time t
in
.

(a) Pre-injury Case. (b) Post-injury Case.
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Fig 5.The end-expiratory pressures, tidal volumes, average volumes, and mean alveolar pressures, for both pre-injury (a) and
post-injury (b) cases, obtained from the multi-segment model and the constant compliance model, as functions of
breathing frequency. The plus signs (+) indicate quantities obtained from the multi-segment model, and the dots (·)
indicate those from the constant compliance model.
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V
T
, average volume V

ave
, end-expiratory pressure P

x
,

and mean alveolar pressure P
m
, can be calculated. In

particular,  and  are expressed mathematically as

( 1) ( 1)

      

     
1 1

1
( )  ( ) i ej k

j k
i ej k

J Kt t

ave i et t
j kin tot in

D D
V V t dt V t dt

t t t− −= =

−⎛ ⎞ ⎛ ⎞= + ⎜ ⎟⎜ ⎟ − ⎝ ⎠⎝ ⎠
∑ ∑∫ ∫ (15)

and

( 1)

( 1)

   

   
1

   

   
1

( )
 

( ( ) )

( )1
 

( ( ) )

i jj

i j
j j

ek k

e k
k k

J t i

m t
jin i i ex

K t e
ext

ktot in e e ex

V tD
P dt

t C V t V

V tD
dt P

t t C V t V

−

−

=

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

⎛ ⎞−
+ +⎜ ⎟⎜ ⎟− +⎝ ⎠

∑ ∫

∑ ∫
       (16)

where D denotes the inspiratory time fraction, t
in
/t

tot
, or

the duty cycle. The intervals, 
( 1)

[ , ]
j ji it t
−

 and 
( 1)

[ , ]
k ke et t
− ,

are the subintervals of  [0,t
in
] and [t

in
,t

tot
], respectively,

for the different segments in the variable compliance
model.

In Table 2, the computed values of the clinical
outcomes are given for a particular pig in pre- and post-
injury cases using the model equations (9) and (10). In
this table, we can see that the tidal volume and average
volume decrease with the increasing level of PEEP for
both pre- and post-injury cases. At each level of PEEP,
the reductions in the tidal and average volumes are
approximately 3% in the pre-injury case and
approximately 5% in the post-injury case, while the
increases in the mean alveolar pressures are more
moderate. However, approximately 82% and 70% of
the beginning (PEEP = 0) tidal and average volumes still
remain at the last level of PEEP (PEEP = 6) in pre- and
post-injury cases, respectively.

COMPARISON OF MODELS

The changes in the clinical outcome variables as
functions of the breathing frequency (f) and duty cycle
(D) are now investigated. This could yield the optimal
choice of  and  for a clinical setting of P

set
 and P

peep
. Using

the multi-segment variable compliance model and the
constant compliance model, numerical simulations for
some clinical important outcomes will be carried out
as functions of f. Then, the comparisons of these models
are made.

We first consider a linear model for pressure
controlled ventilation with constant compliance C. This
model is given by the differential equations (2) and (3)

when 1i eε = ε = and ( ) ( )i i ex e e exC V V C V V C+ = + ≡ .

Here, we use the average inspiratory compliance ave
iC

from the multi-segment model to approximate the value
of C. Thus, the average compliance during inspiration
was calculated by means of the formula

( 1)

   

   
1

1
( )  ,ij ex

i j ex

J v Vave
i iv V

jT

C C V dV
V −

+

+
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑ ∫        (17)

where v
i0 

= 0 and v
iJ 
= V

T
. We can see the effect that the

use of a multi-segment variable compliance has on the
simulated lung volume in Fig 4. In this figure, the lung
volumes are plotted using the multi-segment variable
compliance model (solid curve) and the constant
compliance model (dashed curve) while the dots indicate

real data. We used 0.0335536ave
iC C= =  in the pre-

injury case, and 0.0296673ave
iC C= =   in the post-

injury case, in the constant compliance model
simulation of a particular pig. The multi-segment model
clearly gives a better fit to the real data than the one-
segment constant compliance model.

The linkage between the clinical outcome variables
and the frequency has been studied by Marini et al.
using the constant compliance model.29,30 It was shown
that the mathematical model gave robust predictions
for the key outcome variables that the clinicians require
as the input parameters of mechanical ventilation in
order to optimize the desired results. Here, we offer the
predictions of the multi-segment model for the key
outcome variables as functions of f, and compare these
with the predictions of the constant compliance model.
In Fig 5, comparisons of the key outcome variables
between the two models are shown as functions of
frequency. The following values for the physiologic and
ventilatory parameters have been chosen: in the pre-
injury case; R

i 
=16 cm H

2
O L/s, R

e 
=17 cm H

2
O L/s, P

set
=

35 cm H
2
O,  P

peep
= 5 cm H

2
O and D =1/3, and in the post-

injury case;  R
i 
=13.75 cm H

2
O L/s, R

e 
=14.25 cm H

2
O

L/s, P
set

= 35 cm H
2
O,  P

peep
= 15 cm H

2
O and D =1/2. The

values of the parameters in the compliance functions
are listed in Table 1 for both pre- and post-injury cases.
The compliance in the constant compliance model
simulations is taken to be the average inspiratory
compliance of the multi-segment model and ranges

from 0.0335280ave
iC =  to 0.0337998  L/cmH

2
O for f=5

to 40 cycles / min in the pre-injury case and from  to
0.0298058  for f=5  to 40 cycles / min in the post-injury
case. As can be seen in Fig 5, the plots of the end-
expiratory pressure simulated from the two models
diverge away from each other as the frequency becomes
higher (f>10), while the plots of other outcomes (tidal
volume and average volume) resulting from the two
models converge toward each other as the frequency
increases. A similar comparison can be made of the key
outcome variables as functions of duty cycle D.

LIMITING QUANTITIES

In this section, we examine the tidal volume V
T
, the

end expiratory alveolar pressure P
ex

, the minute
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ventilation V
E
 = fV

T
, the mean alveolar pressure P

m
, and

the power (work per minute) W
m 

= fW
br
, when W

br
 is the

work per breath and is given by P
set 

V
T
. We will investigate

these quantities as the breathing frequency f tends to
infinity, treating first the one-segment model in which
the compliances are linear functions of V.

We define the frequency f cycle/min, and the duty
cycle D = t

in
/t

tot
, so that t

in 
= 60D/f  seconds and

t
ex 

= 60(D-1)/f seconds. Letting , ∆P
i 
= P

set
-P

ex
 and ∆P

e 
=

P
peep

-P
ex
, equations (4) and (5) then become

, 0
( )

i i
i i in

i i i ex

dV V
R P t t

dt a b V V
⎛ ⎞ + = ∆ ≤ ≤⎜ ⎟ + +⎝ ⎠        (18)

,  
( )

e e
e e in tot

e e e ex

dV V
R P t t t

dt a b V V
⎛ ⎞ + = ∆ < ≤⎜ ⎟ + +⎝ ⎠ .(19)

These can be solved in a straight forward fashion to
yield

,  0

i

i
i i i

t
B

V Ri i i
in

i

A B V
e e t t

A

β
−

α ⎛ ⎞+
= ≤ ≤⎜ ⎟

⎝ ⎠
       (20)

and

( ) ,  

e
i

e
e e T e

t t
B

V V Re e e
in tot

e e T

A B V
e e t t t

A B V

β
− −

α − ⎛ ⎞+
= < ≤⎜ ⎟+⎝ ⎠

      (21)

where

( ) ( ) ,   i i i ex i e e e ex eA a b V P A a b V P= + ∆ = + ∆       (22)

 1 , 1i i i e e eB b P B b P= ∆ − = ∆ −        (23)

e, i e
i

i e

b b

B B
α = α =        (24)

and

, .i i ex e e ex
i e

i e

a b V a b V

B B

+ +
β = β =        (25)

TTTTTidal Vidal Vidal Vidal Vidal Volumeolumeolumeolumeolume
We recall that V

i
(t

in
) = V

T
 , so that (20) yields

.

i
in

i
i T i

t
B

V Ri i T

i

A B V
e e

A

β
−

α ⎛ ⎞+
=⎜ ⎟

⎝ ⎠
       (26)

We now note that all terms in equation (18) are
positive and therefore,

  ex setP P≤ < ∞ .

This means that P
ex
  approaches a finite limit, exP∞ , as

f→∞, and so do the parameters Aω, Bω, αω and βω,
where ω=i for inspiration, and e for expiration, which
are all dependent on P

ex
 . Using these observations, we

may now take the limit as f→∞ of (26) to obtain

 ln 1i i
i T T

i i

B
V V

B A

∞ ∞
∞ ∞ ∞

∞ ∞

⎛ ⎞β
α = +⎜ ⎟

⎝ ⎠
       (27)

where the superscript ∞ denotes the limiting value of
each of the above quantities. Notice that the graph of
the left hand side of (27) is a straight line through the

origin ( TV∞  being the independent variable) and the

graph of the right hand side is that of a logarithmic

function of TV∞ , also passing through the origin. The

values of  that satisfy (27) are the intersection of the line
with the logarithmic curve. Using (22)-(25), we can
show that

i
i

iA

β
α >

and therefore the slope at the origin of the straight line
is greater than that of the logarithmic curve. Hence, the
two curves intersect only at the origin, which means
that

lim  0.T T
f

V V∞

→∞
= =        (28)

We note that this is the same result as in the constant
compliance case proposed by Marini & Crooke in
1993.29

End-expiratory PressureEnd-expiratory PressureEnd-expiratory PressureEnd-expiratory PressureEnd-expiratory Pressure
We recall that V

e
(t

tot
) = 0, so that (21) yields

e
e

e
e T e

t
B

V Re

e e T

A
e

A B V

β
−

−α ⎛ ⎞
=⎜ ⎟+⎝ ⎠

       (29)

From (29), we obtain

ln 1  .e
e e T e T

e e

B
t R V V

B A

⎡ ⎤⎛ ⎞β
= + − α⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
       (30)

As f increases, t
e
 decreases, so that differentiation

of both sides of (30) with respect to t
e
 results in the

following equation.

1
1

ln 1

e e
T T

e ee
e e T

ee
T

e

e e
e T e T

e e

B B
V V

A A
R V

BB V
A

B
R V V

B A

′⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟′ + ⎜ ⎟⎢ ⎥⎜ ⎟β ⎝ ⎠ ′= − α⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
′⎡ ⎤⎛ ⎞ ⎛ ⎞β⎢ ⎥+ + − α⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

where the prime denotes the derivative with respect to
t

e
. We now let f→∞, recalling thatV

T
→0 , and obtain

( )
 .e

T
e e ex e

A
V

a b V R

∞

′ → −
+

Since t
e 
= 60(1-D)/f, one arrives at
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( )
( )2

60 1
 as    .eT

e e ex e

D AdV
f

df f a b V R

∞−
→ →∞

+        (31)

On the other hand, the same can be done with the
equation (20) to arrive at

( )2

60
     as    .T i

i i ex i

dV DA
f

df f a b V R

∞−
→ →∞

+        (32)

Equating (31) and (32), one then obtains

 
( )

( ) ( )
1

 .e i

e e ex e i i ex i

D A DA

a b V R a b V R

∞ ∞− −
=

+ +

Using (22), and the corresponding definitions of
∆Pω, ω=i,e,  we then find that

( )
( )
1

lim  .
1

e set i peep
ex ex

f
e i

DR P D R P
P P

DR D R
∞

→∞

+ −
= =

+ −        (33)

Minute VMinute VMinute VMinute VMinute Ventilationentilationentilationentilationentilation
By definition, the minute ventilation is defined as

  E TV f V=� . Raising (29) to the power / ef α , one obtains

 
( )60 1

  .

e

e e
e eT

f
D

B
Rf V e

e e T

A
e e

A B V

β− −
− α

α ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

       (34)

Letting
 

 ,
k f

e

e e T

A
y

A B V

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

where e

e e

k
B

β
= −

α
, we see that

ln   ln e

e e T

A
y k f

A B V

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

which tends to an indeterminate form 0∞⋅  as f →∞ ,
thus allowing for the use of L’Hopital’s rule. This yields

( )60 1
lim  ln  .
f

e e

D
y

b R→∞

−
= −        (35)

Using (35) while letting f →∞  in (34) yields

( ) ( )60 1
lim   1T e
f

e e

D
f V B

b R
∞

→∞

−
= − +

or

( )( )
( )

60 1
 

1

set peep
E

e i

D D P P
V

DR D R
∞

− −
=

+ −
�        (36)

using (23) and (33).
Mean Alveolar PressureMean Alveolar PressureMean Alveolar PressureMean Alveolar PressureMean Alveolar Pressure

The mean alveolar pressure is defined as

0
 

( )

1
  .

( )

in

tot

in

t i
m

in i i ex

t e
ext

ex e e ex

D V
P dt

t C V V

D V
dt P

t C V V

=
+

−
+ +

+

∫

∫
       (37)

On using equations (18) and (19) to substitute for

( )
i

i i ex

V

C V V+  and ( )
e

e e ex

V

C V V+ , respectively, it is then

straight forward to carry out the integrations. As a
result, we obtain the following expression for the mean
alveolar pressure as a function of f:

 ( ) ( )  
1  .

60
e i T

m i e ex

R R f V
P D P D P P

−
= ∆ + − ∆ + +

Thus, we let f →∞  and use (33) and (36) to obtain

the limiting value mP∞  of P
m
 as :

( )
( )
1

 .
1

e set i peep
m

e i

DR P D R P
P

DR D R
∞ + −
=

+ −        (38)

We note that m exP P∞ ∞=  which is the same as that

which has been discovered in the constant compliance
case.6

PowerPowerPowerPowerPower
The power, W

br
, is defined as the frequency times

the work per breath, which has been shown to be equal
to P

set 
V

T
. Therefore

   m set TW f P V=�
and hence

  lim     .m set T set E
f

W P f V P V∞ ∞

→∞
= =� �

Using (36), one then finds

( )( )
( )

60 1
  .

1

set peep set
m

e i

D D P P P
W

DR D R
∞

− −
=

+ −
�        (39)

The limits evaluated in this paper are summarized
in Table 3. When compared with the limits obtained for
the constant compliance models with linear resistive
pressure P

r 
= RQ, studied by Marini et al. in 1989,30 and

nonlinear resistive pressure P
r 
= RQε presented by

Crooke & Marini in 1993,6 we notice that there are
slight differences. In the previous works, it was assumed
that P

peep
 = 0 and hence, the formulae given in Table 3

are more general. Also, the calculation of the limiting

value exP∞  is new. Otherwise, the limiting values in the

case of linear resistive pressure, with constant and
variable compliances, are the same.

Furthermore, we note that the limiting values of the
key outcome variables obtained from the one-segment
model agree with the corresponding values derived for
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Pre-injury Post-injury 
PEEP 

VT 
(Liters) 

Pex 
(cm H2O) 

Pm 
(cm H2O) 

Vave 
(Liters) 

VT 
(Liters) 

Pex 
(cm H2O) 

Pm 
(cm H2O) 

Vave 
(Liters) 

0.0 1.09810 1.02785 16.7525 0.59194 1.04794 0.128811 15.0985 0.73416 

1.0 1.06547 1.91729 17.1220 0.57192 0.98528 1.12434 15.7421 0.69830 

2.0 1.03335 2.80452 17.5090 0.55609 0.92513 2.11974 16.3799 0.66341 

3.0 1.00180 3.68633 17.9185 0.53436 0.86750 3.11500 17.01200 0.62950 

4.0 0.97110 4.60791 18.3972 0.51764 0.81240 4.11019 17.6383 0.59659 

5.0 0.94011 5.57522 18.9963 0.50359 0.75982 5.10533 18.2587 0.56468 

6.0 0.90943 6.54479 19.5109 0.48709 0.70974 6.10045 18.8735 0.53377 

Table 2. Tidal volumes, end-expiratory pressures, mean alveolar pressures, and average lung volumes for different levels of
applied PEEP using the multi-segment model for both pre- and post-injury cases with 35=setP OH cm 2  and s 6=tott .
Here, in the pre-injury case, 18iR = 2cm H O / L / s , 15eR = 2cm H O / L / s  and D=1/3, and in the post-injury case,

13.75iR = 2cm H O / L / s , 14.25eR = 2cm H O / L / s  and D=1/2.

Table 3. Limiting values for variable compliance model.

Outcome Variables Formulae 

Tidal Volume 0=∞
TV  

End-expiratory Pressure 
( )
( ) ie

peepisete
ex RDDR

PRDPDR
P

−+

−+
=∞

1
1

 

Minute Ventilation 
( )( )

( ) ie

peepset
E RDDR

PPDD
V

−+

−−
=∞

1
160

  

Mean Alveolar Pressure ∞∞ = exm PP  

Power 
( )( )

( ) ie

setpeepset
m RDDR

PPPDD
W

−+

−−
=∞

1
160
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the constant compliance model.6,30 This is to be
expected since it was found that these limiting values
are independent of the compliances of the system and
only depend on the duty cycle D, the respiratory
resistance constants R

i
 and R

e
, and the applied pressures

P
set

 and P
peep

. This leads us to conclude that the same will
be found for the multi-segment model. In fact, the
outcome variables plotted in Fig 5 do indeed tend to
their respective limiting values given by the formulae

in Table 3 as f →∞ .

DISCUSSION AND CONCLUSION

It has been recently discovered experimentally and
clinically that high pressure mechanical ventilation at
volumes above the upper inflection point can cause
lung damage. The current ventilatory strategies are
aimed at avoiding overdistention and repetitive cycles
of recruitment-derecruitment. In such cases, pressure
targeted ventilation with high applied PEEP provides a
valuable adjunct, since it restricts the maximal alveolar
pressure. Hence, these strategies with high applied
PEEP may minimize lung injury. Furthermore, pressure
limiting ventilatory strategies have been shown to lower
mortality in ARDS.

A mathematical model for pressure controlled
ventilation with multi-segment variable compliance
function has been developed and presented in this
paper. The clinical important outcomes can then be
computed using this multi-segment model. In Table 2,
the tidal volume V

T
, end-expiratory pressure P

ex
, mean

alveolar pressure P
m
, and average lung volume V

ave
, are

given for different levels of applied PEEP. These
calculations illustrate the usefulness of a mathematical
model, being a means by which we can experiment with
the ventilatory parameters to achieve the desired levels
of the clinical outcome variables. Here, we observe that
the tidal and average volumes decrease with increasing
levels of applied PEEP.

Moreover, the tidal volume diminishes significantly
with increasing breathing frequency in the simulation
obtained from the constant model. The decline arises
from the effects of shortened inspiratory time. The
multi-segment model predicts a much smaller
dependence of tidal volume on ventilatory frequency.
This is potentially important in the clinical setting
because it suggests that increasing breathing frequency
in the pressure controlled ventilation mode may
preserve tidal volume and increase minute ventilation
more than that predicted by the constant compliance
model.

Although some other researchers on this topic have
attempted to fit the P

el
-V curve with continuous

functions, such as the sigmoidal function used by

Venegas et al.,14 the resulting models become quite
intractable mathematically which is less desirable for
analytical proposes. The multi-segment model given in
equations (9) and (10) for pressure controlled
ventilation has been found to be mathematically
tractable and give accurate simulations of mechanical
ventilation of normal and injured lungs. The model may
be used to study effects of clinical-set inputs on the key
ventilatory outcome variables in pigs. The ability to
predict these effects can be extremely useful in
optimizing ventilatory strategies in the clinical setting
for humans.
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