
INTRODUCTION

Glover1 proposed the tabu search (TS) method in
1986 to solve combinatorial optimization problems.
The principles of the TS method are the neighborhood
search approach and the tabu list (TL). Although tabu
search has been around for many years, and its
fundamental principles are well-elaborated, it is still
often implemented in a very simplistic form that
disregards all but the most rudimentary features of the
method. We refer to such a version by the name “Naïve
Tabu Search” (NTS). Successful applications of the
method are found in many areas such as flow shop,2

finance,3 food processing,4 power systems,5

transportation,6 etc. However, it was shown that the
NTS method, of the type sometimes applied in the
literature, could not completely escape a local minimum
lock.7 The NTS method was enhanced by two
mechanisms: namely back-tracking, and adaptive
search radius mechanisms,7 in order to avoid such a
lock. They can be regarded generally as the
intensification strategies8,9 of (1) re-starting from high
quality prior solutions and (2) progressive
neighborhood contraction, respectively. Moreover, the
back-tracking concept is akin to the approach used by
Nowicki and Smutnicki2 and the search subspace
reduction has been applied to solve some control
problems in finance.3 The NTS method presented by
Areerak7 was also modified to possess a random
movement of solution findings in the preset
neighborhood. These additional features have made

the modified TS more efficient. This modified version
of the NTS has been named the adaptive tabu search
(ATS) and successfully applied to linear and nonlinear
system models.10

The convergence analysis of the conventional TS
method has been proved.11,12 The proofs were based
on the deterministic recency and frequency
approaches. In this paper, new proofs are provided for
the ATS method to ensure its finite convergence.
Particularly, our analysis applies to a form of TS that
uses the two fundamental intensification strategies
mentioned earlier. The proofs are divided into two
main parts. Firstly, finite convergence of all solutions of
interest in a finite search space is proceeded. Secondly,
verification of global convergence for the searching
process of the ATS algorithms is accomplished. Both of
them are based on pure logic and heuristics. This paper
also provides two applications of the ATS method to
confirm its performance in the last section.

FINITE CONVERGENCE OF SOLUTIONS

Finite convergence of solutions is the convergent
proof of entirely interested solutions in finite search
space.

Definition 1: Definition 1: Definition 1: Definition 1: Definition 1: Let Ω be a finite search space having
the finite members, n, which are entirely interested
solutions x

i
 , i = 1,…,n , where n is the finite positive

integer and n < ∞.
Definition 2:Definition 2:Definition 2:Definition 2:Definition 2: Let the finite search space Ω have k

strictly local minima and be divided into k regions
denoted by Λ

i
 (i = 1,2,…,k). Each region having a total
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of w members contains only one local minimum and the
local minimum must not be located at the region
boundary.

As defined above, all regions are mutually exclusive.

So, two key properties are shown as follows: Λ Ωi
i=

=
1

n

∪

and Λi
i=

=
1

n

∩ ∅ .

Definition 3:Definition 3:Definition 3:Definition 3:Definition 3: Let     Ψ be sub search spaces in Ω, Ψ
⊂ Ω, containing the finite members, m, which are entirely
interested solutions x

i
 , i = 1,…,m , in each sub search

space, where m is also the finite positive integer, m < n,
and m is constant.

The mechanism of creation of Ψ is defined as
follows. In the search process for the optimum solution,
the current solution is defined as x

0
. The Ψ will be

uniformly randomly created around x
0
 by �x x− ≤ ρ , in

which �x  is any random solution and r is a finite search
radius.

Definition 4: Definition 4: Definition 4: Definition 4: Definition 4: Let a finite sequence S x i pi= { } =0 1 2, , , ,..., ,
be a collection of solution movements, 0x , consisting of
p solutions to reach the global minimum (k < p).

Regarding definition 4, based on the sequence S, a
collection of sub-spaces, θ = { } =Ψ i i, , ,..., p1 2 , is thus
formed. The search space is not necessary to be entirely

explored, i.e. Ψ Ωi
i

p

=
⊂

1
∪ . Construction of the next

generated sub-spaceΨ
i+1

 according to the ATS
mechanism performs by assigning the best solution of
the previously generated sub-space Ψ

i
 as the centre

point x
0,i+1

. This random approach gives Ψι ∩ Ψι+1 ≠ ∅,
where ∅ is the empty set, because at least the centre
point x

0,i+1 
is in both Ψ

i 
and Ψ

i+1
.

Definition 5: Definition 5: Definition 5: Definition 5: Definition 5: Let Time(x) be a time consumed to
visit any single solution x in the search space Ω and
assumed to be constant for visiting any x∈Ω . That is
Time(x

i
)=Time(x)>0  for i=1,2,...,n.

Regarding definition 5, by the solution-visited time
defined above, visiting m randomly generated solutions
of Ψ spends m×Time(x). So, to entirely explore all
generated sub-spaces, the overall time consumed is p×
m×Time(x). Note that by the proposed method, the
overall time to explore all generated sub-spaces must
be less than the overall time to explore the entire search
space to ensure the fast and robust convergence. That

is, w Time x p m Time x m Time x Time xi
i

n

⋅ > ⋅ ⋅ > ⋅ > >∑
=

( ) ( ) ( ) ( ) 0
1

.

Definition 6: Definition 6: Definition 6: Definition 6: Definition 6: Let     Interation be a cumulative number
of iterations to count how many solutions in Y were
already visited. Interation is set to be zero before starting
a new sub-space exploration. Once any solution in the
sub-space was visited, thus Interation=Interation+1.
After all generated solutions in Ψ have been explored,
Interation is now equal to m and the time is now
m×Time(x).

Definition 7: Definition 7: Definition 7: Definition 7: Definition 7: Let Count be a cumulative search
round of sub-space explorations to count how many
sub-spaces in Ω were already explored entirely. Count
is set to zero only once at the beginning. When all
solutions in any Ψ have been visited, thus
Count=Count+1. After all generated subspaces in have
been explored entirely, Count is equal to p and the
overall time consumed is p×m×Time(x).

Definition 8: Definition 8: Definition 8: Definition 8: Definition 8: Let BT denote the back-tracking
mechanism to allow the use of any previously visited
local minimum recorded in the TL for generating a new
starting point rather than the one just obtained. This
scheme is added to enhance the ability to escape a local
minimum entrapment.

Definition 9: Definition 9: Definition 9: Definition 9: Definition 9: Let AR denote the adaptive search
radius mechanism to give an alternative sub-space
which is able to reduce the time to access a local
minimum. Given that r = µ×r is the adaptive radius
where r is a nominal radius and an arbitrary constant
while 0 < µ ≤ 1. The radius is used to define a
neighborhood around a current solution.

The formulation of the ATS method is based on the
nine definitions and the corresponding ATS algorithms
are as follows.

Step 1) Initialise the Tabu List (TL=∅), Interation =
0 and Count = 0.

Step 2) Randomly select an initial solution x
0,Count

from
the search space Ω and assign it as an initial global
minimum x*. The time used for visiting the initial solution
is Time(x).

Step 3) Set Count =Count +1, then create a sub-
space Ψ

Count
. Evaluate the objective function of

∀∈Ψ
Count

. Iteration is updated when a single x is
examined (Iteration = Iteration + 1). A solution that gives
the minimum objective function among them is given
as x′. When the exploration of the subspace is finished
(Iteration = m), the cumulative time consumed is
m×Time(x).

Step 4) If x′< x
0,Count

, keep x
0,Count 

in the TL and set
x

0,Count
=x′. Otherwise put x′ in the TL instead.

Step 5) Update the global minimum. x*= x
0,Coun

if
x

0,Coun
< x*.

Step 6) Check the termination criteria (TC) and the
aspiration criteria (AC), respectively.
-Go to step 7 if TC is satisfied, otherwise repeat step 3.
-Activate the AR mechanism if necessary to speed up
the searching process.
-Activate the BT mechanism if a local minimum trap
occurs. Reset Iteration and repeat step 3.

Step 7) Terminate the search process. The last
updated x* is the global minimum found.

As can be seen, only a number of solutions in Ω
would be randomly visited and it is sufficient to locate
the global minimum by Count=p and p×m×Time(x) of the
overall time consumed.
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VVVVVerification of the global convererification of the global convererification of the global convererification of the global convererification of the global convergencegencegencegencegence
Verification of the global convergence is the proof

of convergence of the ATS algorithms to the global
optimum solution. This proof is based on three principles
as follows.

1. Guarantee the local minimum: this proves the
convergence of the search process to a local optimum
solution in each sub search space Ψ.

2. Guarantee the speed of search process: This proof
shows that the search process having the AR mechanism
can converge to a local optimum solution with shorter
time by decreasing the search radius r.

3. Guarantee the global minimum: this proof shows
that the use of the BT mechanism makes it possible for
the ATS method to find the multiple local minima. When
the process is finished, one of the many local optimum
solutions is the (near) global one.

Theorem A:     If a total number of members, m, in a
sub-space Ψ is large enough to give good
representatives of a neighborhood, a local minimum
nearby can be found by generating a sequence of a few
successive sub-spaces.

Proof: A sub-space Ψ is, uniformly and randomly,
generated around an initial x

0
 solution with a certain

radius ρ. The set of all solutions x, which are contained
in the ball x x0− ≤ ρ , is denoted by Nρ(x0

) and called
“Neighborhood” of x

0
. It is clear that Ψ⊂Nρ(x0

) and m
must be less than a total number of neighborhood
members.

Let x̆ be a strictly local minimum in a considered
region,Λ(x

0
), of x

0
. That is f( x̆ )<f(x) for ∀x∈Λ(x

0
) and

also for ∀x∈Nρ(x0
). This implies that both Nρ(x0

) and
sets of solutions nearby lie on the same region, Λ(x

0
).

As applying the similar concept of the local search
or the so-called Hill-climbing algorithm, updating a
current solution leads the descent direction to a nearby
local minimum. Since any Ψ

i 
is formed and the best

solution is already obtained, that gives  f(x′
i
) ≤ f(x′

j
) for

i > j. At any ith search round, a distance between x′
i 
and

the local minimum x̆  is defined by a positive number
ξi ix= −’ x̆  and the associated error of the objective

functions is given by g x f xi i= −f ( ’ ) ( ˘) . If the search round
ith  is relatively large, say M, the error and solution found
thus far are bounded. This yields g x f xi i= − <f ( ’ ) ( ˘) ε for

ξ δi = − <x’ xi ˘  where ε and δ are relatively small positive
numbers being the maximum error allowances of f(x′

i
)

and x′
i
, respectively. To summarise the proof, the

following steps are presented.
i) Define the descent property of the algorithm,

f(x′
i
) ≤ f(x′

j
) for i > j > 0 .

ii) That is for 0 1≤ − ≤ −+f x f x f x f xi i( ’ ) ( ˘) ( ’ ) ( ˘)  for ∀i < 0.
iii) The ATS algorithms have finite convergence

property when the following statement is satisfied.

lim lim
i M

i
i M

i→ →
< → <ξ δ εg , where 1 < M < n < ∞.

iv) If there exists at least one positive integer M
which satisfies (iii), the process is said to have the finite
convergence to a local minimum with M×Time(x) of the
time consumed.

Theorem B:     The AR mechanism can accelerate the
search process to succeed finding the minimum. By
appropriately adjusting the search radius ρ, the process
can rapidly converge to the local minimum in a
considered region, Λ.

Proof:     The AR mechanism is used for increasing the
speed of the search process. It can make the process
converge to a local minimum faster than the
conventional Tabu search without this scheme.

Let the sub-space Ψ have a search radius ρ=µ×r. At
the beginning of the search process, initiate the search
radius ρ=r(µ=1.0). From theorem A, when an updated
solution is very close to x̆ , say ξ <  ρ or x̆ ∈Nρ(x′

i
), the

probability of getting x̆  (one of N) is 
m m

N N N m

×
− − +

!

( ) ( )1 1"

where N is a total number of Nρ(x′
i
) members and m <

N due to the previous clarification in theorem A. Clearly,
the larger radius leads (larger N) to the smaller
probability. By this simple logic, the radius is thus
reduced by a factor of µ (0< µ <1) to yield a better
chance to reach x̆ faster. After successfully obtaining
x̆ , the radius must be reset to the default value of r to
restart a new search round again by using a different
initial solution. Briefly, this proof is summarised below.

i) Let ρ µ µ= ⋅ < ≤ ∧ ∈ℜ+r r, .0 1 0 , where +ℜ is positive
real numbers.

ii) ξ <  ρ that is 
!

ˆ ˆ( ' ) ( )
( 1) ( 1)ρ ρ

×
∈ → =

− − +"i

m m
x N x P x

N N N m

iii) Let ' ( ' )+ξ < ρ < ρ∧ > ∈N N I . Thus,

'

! !
ˆ ˆ( ) ( )

'( ' 1) ( ' 1) ( 1) ( 1)ρ ρ

⎛ ⎞ ⎛ ⎞× ×
= > =⎜ ⎟ ⎜ ⎟− − + − − +⎝ ⎠ ⎝ ⎠" "

m m m m
P x P x

N N N m N N N m

where ρ′ is a new decreased radius, N is the total
number of Nρ′(x′

i
) members, N′ is the total number of

Nρ′(x′
i
) members and m < N′ < N.

iv) With decreasing radius as shown in iii), the speed
of the search process is improved due to increasing the
local-minimum-found probability. If a total number of
search rounds to locate a local minimum is M (M is a
positive integer) without the adaptive radius, the time
consumed is thus M×Time(x). Once the AR mechanism
is applied, the total search round is reduced by a factor
of α where 0 < α < 1, therefore the time consumed is
α×M×Time(x) < M×Time(x).

The AR mechanism is activated when a current
solution is sufficiently close to a local minimum. With
a sequence of p sub-spaces, only k local minima can be
found. This implies that the AR mechanism is activated
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only k times throughout the searching process. Thus,
the overall searching time when the AR mechanism is
included is

  
1 1 1

( ) ( ) ( ) ( )
= = =
α × × < × = × × < ×∑ ∑ ∑

k k n

j j j q
j j q

M Time x M Time x p m Time x w Time x.

In addition, local convergence of the ATS
method can be proved by using probabilistic modeling.

Given an initial solution x
t=0

 in a finite sub-space
Ψ

t
⊂Ω, to generate a sequence of x

t+1
, the descent

property must be held to guarantee that a next move
leads to a local minimum. At any current solution, there
are only two possible outcomes that are either i) the
solution is improved, f(x

t+1
) < f(x

t
), or ii) the solution is

not improved, f(x
t
) ≥ f(x

t+1
). In the ATS method, given

that the neighborhood, Nρ(xt
), of the current solution

x
t
 is created and has a total of N members, the sub-space

Ψ
t+1

 ⊂ Nρ(xt
) is then randomly generated with m finite

members where m < N, and m is constant. This process
is based on the assumption that not all members in the
neighborhood give better cost than x

t
 does, but only u

members of Nρ(xt
) satisfy where x∈Ψ

t+1
. The probability

to improve the solution P=(f(x)  <  f(x
t
)) is given as

follows.
Case 1: (m > N – u)
P = 1, in this case, at least one of m satisfies the

condition.
Case 2: (m ≤ N – u)

In this case, there are !

( )! !

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

N N

m N m m  of the possible

combination for randomly selecting m members out of

N. In addition, 
( )!

( )! !

−⎛ ⎞ −
=⎜ ⎟ − −⎝ ⎠

N u N u

m N u m m  is a total of ways that the

solution is not improved. Thus, the probability of the
sampling, which cannot improve the current solution,
is shown as follows.

( )!( )!

!( )!

− −
=

− −
N u N m

P
N N u m          (1)

When m and N are both fixed, Eq. (1) depends on
u only. u is large when the current solution is close to
the local minimum. This search process updates the
current solution with the best member in each iteration.
Therefore, the solution will move towards the local
minimum when the time increases. That is ( ) 0

→∞
=

t
lim u t .

From Eq. (1), the probability of the event that the
solution cannot be improved anymore (local minimum
found) is expressed below.

( )
( )

( ) !( )!
( ) 1

! ( ) !→∞ →∞

− −
= =

− −t t

N u t N m
lim P t lim

N N u t m          (2)

As can be seen, when the process is repeatedly
performed with a considerable amount of time, the
probability of finding the local minimum is close to
unity.

TheorTheorTheorTheorTheorem C:em C:em C:em C:em C:     The BT mechanism leads the search process

to obtain multiple local minima. Among them, one is the
global minimum.

Proof:     During the search process, in many situations,
the algorithm sometimes fails to improve the current
solution x

0
.
 
The process will then use x

0 
as the initial

solution for the next search round. This may lead an
endless loop to produce an entrapment of solutions.
However, based on a random process, the next search
round may offer a new search direction that leads the
movement relatively close to the boundary of Λ(x

0
) and

a region nearby. Because Nρ(x0
) is defined around x

0

with a certain radius ρ, it may overlay with more than
one region. That is Nρ(x0

)-Λ(x
0
)⊄Λ(x

0
). This property

makes the search process able to escape, effectively,
from the entrapment of the already visited local
minimum.

As previously mentioned, the random search
process might fail to escape from a trap due to
ineffectiveness of the algorithms. The use of some
solution stored in the TL as an initial solution for the
next search round enables various search directions
that increase the possibility to run away from the already
visited local minimum. This noticeably makes a sequence
of solutions found jump from one region to another.

Given n
re
 be a counter for a solution cycling. Note

that “solution cycling” means the searching process
cannot escape the entrapment of the just visited local
minimum, so the movement of solutions will return to
the just visited local minimum at the end of the next
search round. The counter is increased every time a
new final solution of any search round being equal to
the one previously visited and already stored in the list.
Then, let n

re_Max 
be the maximum number allowance of

the solution cycling. Therefore, the BT mechanism is
activated by the following condition. If n

re
< n

re_Max
, then

continue the searching whether it can eventually escape
from the solution lock or not. Otherwise (n

re 
> n

re_Max
),

performing the BT process. Once n
re 

> n
re_Max

, one of the
solutions recorded in the TL is selected to be a new
initial solution for creating the next sub-space Ψ. This
condition, n

re 
> n

re_Max
, is a kind of Aspiration Criteria.

In the ATS method, the BT mechanism will select a

solution x
h
⊂TL in such a way that ∈

= −
i

h i o
x TL

x max x x  and it

notes that the condition f(x
0
)  >  f(x

h
) must hold. After

selecting an appropriate solution in the TL, set x
0 
= x

h

as a new initial solution for the next search round.
Therefore,

i) If the local minimum is obtained already and the
length of TL is sizeable, there exists at least one solution
that is relatively close to the boundary of Λ(x

0
).

Therefore,

length(TL) 1>> → ∃ ∈x  TL ∧ − < γBx x

where is a boundary point and is the maximum
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allowance
ii) During the search process if a current x

0 
is

relatively close to boundary of Λ(x
0
) as stated in (i),

together with a certain radius ρ that is relatively large
enough to be able to reach some solutions outside
Λ(x

0
), the best solution of a current Ψ can be located

outside Λ(x
0
) with high probability.

( ) ( )0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )ρΨ −Λ ⊂ −Λ ⊄ Λ → ∃ ∉Λx x N x x x x x

iii) With proceeding a new search from a solution
found outside Λ(x

0
) according to (ii), this restarts a new

descent process to reach another local minimum of a
new region nearby. By repeating the procedures and
with all different local minima being found within finite

searching time 
1

( ) ( )
=

× × < ×∑
n

i
i

p m Time x w Time x , one of them

is the global minimum.

 APPLICATIONS

This section presents two applications in the
domains of function minimization and identification.
The proposed ATS method has been applied to achieve
the satisfactory solutions of the problems. During the
searching process, sequences of solutions and errors
are monitored numerically. The two problems are stated
as follows.
Minimization of the Bohachevsky’Minimization of the Bohachevsky’Minimization of the Bohachevsky’Minimization of the Bohachevsky’Minimization of the Bohachevsky’s Surs Surs Surs Surs Surfacefacefacefaceface

Eq. (3) describes the Bohachevsky’s function13

having multiple local minima as depicted in Fig 1. This
function possesses the global minimum being on x=0,
y=0 making f(0,0)=0(1×10-5 approximating zero used
as the termination criterion). According to the definition
2 and the proof of theorem A, the sub regions of the
Bohachevsky’s surface satisfy a convex property (see
the appendix).

[ ]

2 2( , ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7 ,

1.0 , 1.0

= + − π − π +

= ∈ −

f x y x y x y

x y     (3)

The ATS was run on a Pentium 4, 1.6 GHz, 256
Mbytes RAM, 40 Gbytes HD, with MATLABTM codes.
The tests were conducted with 10,000 trials and each
of which started with a random solution. Each trial
stopped when either of the following stop criteria was
met: i) the maximum search round of 10,000, or ii) the
cost value < 1×10-5. The appropriate values of the ATS’
search parameters were set as follows: ρ = 0.2 (ρ = 0.2,
µ = 1.0), 10% of search space, m = 30, = 5, kth = -5 (the
kth is a backward solution selected by the BT
mechanism), and µ

new
 = 0.2µ

old
 in the AR mechanism

employing the following statements: if [ε
1
 ≤ 1.0×10-1 ],

then [ρ = 0.04], if [ε
2
 ≤ 1.0×10-2], then [ρ = 8.0≤10-3],

and if [ε
3
 ≤ 1.0×10-3], then [ρ = 1.6×10-3], where ε

i
 are

the cost values.
The ATS could track down the true minimum for all

trials before the maximum search round was hit. It
consumed 0.11 seconds of average search time, 26.48
average search rounds, and provided the average
solution of 4.25×10-6.
IdentificationIdentificationIdentificationIdentificationIdentification of a Non-linear Pendulum Model of a Non-linear Pendulum Model of a Non-linear Pendulum Model of a Non-linear Pendulum Model of a Non-linear Pendulum Model

The diagram in Fig 2 represents a pendulum on a
cart system. The pendulum swings freely when the cart
moves according to the applied force, f. This force is
transmitted from the motor through the belt. The angle
f indicates the oscillation of the pendulum. For some
large angles of oscillation, the equations of motion
describing the pendulum and the cart dynamics can be
expressed by Eqs. (4) and (5)14. Note that, in Eqs. (4) and
(5), y = cart position, M = cart mass (unknown), m =
pendulum mass = 0.251 kg., l = length of pendulum rod
= 0.4 m, and g = acceleration due to the gravity = 9.81
m/sec2. The rod is assumed to be weightless. The term
f in both equations represents an external force applied
to the cart. The force is transmitted from the motor axle
through a flexible belt. Therefore, f is non-uniform. In
order to model the system accurately, a seventh order
polynomial representation of the force f in terms of the
motor input u is assumed.

2

2

cos( ) 0.5 sin(2 )( ) ( ) sin( )

cos ( ) ( )

φ + φ φ + + φ
φ =

⎡ ⎤φ − +⎣ ⎦

��� f ml M m g

l m M m          (4)

 
2

2

0.5 sin(2 ) sin( )( )

( ) cos ( )

+ φ + φ φ
=

⎡ ⎤+ − φ⎣ ⎦

�
�� f mg ml
y

M m m          (5)

To obtain coefficients of the force expression and
the mass M, the ATS method is employed. The stop
criteria for the search are the cost J ≤ 1.32, where J is
the sum-squared error of the estimated data compared
to the measured data, and the maximum search round
of 10,000 rounds. The sum-squared error satisfies a
convex property (see the appendix).

The ATS was run on a Pentium 4, 1.6 GHz, 256
Mbytes RAM, 40 Gbytes HD, with C codes. The tests
were conducted with 10,000 trials with random initialFig1. Selected Bohachevsky’s function.
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solutions. The method provided the solutions with
average J = 1.3188, average search rounds of 841.55,
and consumed 83.72 seconds of average search time.
The obtained coefficients of the force expression and
the mass, M, are shown in Eq. (6) and (7), respectively.

7 6 5 4 3

2

4.1152 6.7594 1.8981 5.3380 4.9895

2.3534 2.4902 0.1385

= + − − −

− + −

f u u u u u

u u (6)

M = 0.9005 kg          (7)

Fig 3 illustrates the plots of the measured data and
the calculated data based on the model. The results
show that the model provides a satisfactory
approximation of the pendulum’s oscillation.

CONCLUSIONS

We have illustrated the proof of a finite convergence
property of the ATS algorithms. The back-tracking and
adaptive radius mechanisms significantly enhance the
global optimum finding, and the fast convergence of
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the search. The effectiveness of the ATS method has
been well demonstrated by two examples: (i) minimum
finding on the Bohachevsky’s surface, and (ii)
identification of the nonlinear pendulum model.
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NOMENCLATURE

AC Aspiration criteria

AR Adaptive search radius mechanism

ATS Adaptive Tabu search

BT Back-tracking mechanism

Count Search round

f Function, force (N)

g Gravity (m/sec2)

g
i

Error of the objective function

Iteration Iteration

J Preset cost used to be one of the TCs

k Finite number of the local minima

kth Backward solution selected by BT

l length of pendulum rod (m)

m Finite number of solutions in Ψ, pendulum mass

(kg)

M Cart mass (kg), any positive integer

ren Number of repetition of the solution

_re Maxn Allowable number of repetition of the solution

N Total number of ( ' )ρ iN x  members

Nρ(x0
) Neighborhood of x

0
 with radius ρ

Nρ(x′
i
) Neighborhood of x′

i 
with radius ρ

p Number of collection of solution movements to

reach the global minimum

P Probability

r Common radius

S{x
0,i

} Finite sequence, consequence of the movement of

Fig 2..... The pendulum on a cart system.

Fig 3. The model plotted against the measured angle.
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x
0

TC Termination criteria

Time(x) Time that any solution x was visited

TL Tabu list

TS Conventional Tabu search

u Some members of neighborhood , motor input

(volt)

w Total number of members in each sub region

x Any solution

x
0

Current or initial solution

x
0,Count

Current or initial solution of the Count

x
0,i+1

Solution used for creating Ψ
i+1

x
B

Boundary point

x
h

Solutions recorded in the TL

x* Current (near) global optimum solution

�x Any random solution

x̂ Local minimum

x′ Solution with minimum cost in current Ψ
y Cart position (m)

Greek symbolsGreek symbolsGreek symbolsGreek symbolsGreek symbols
Λ Sub region

Λ(x
0
) Sub region consisting of x

0

µ Decreasing factor

ξ
i

Distance between  and

∅ Empty set

ρ Search radius

Ω Finite search space

Ψ Sub search space in W

Ψ
Count

Sub search space created in the Count

γ Maximum allowance

δ Tolerant distance between the solution found and the

local minimum

ε Tolerant error of the objective function

φ Oscillation angle (radian)

θ Sequence of collection of sub-spaces
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APPENDIX

Convex properties of the Bohachevsky’s function
and the sum-squared error (J) are proved in this section.
The definition of convex function15 is as follows: A
function  f : nℜ →ℜ  is said to be convex if its domain D(f)
is a convex set and for all u, v ∈ D(f),
( )(1 ) ( ) (1 ) ( )f u v f u f vλ + −λ ≤ λ + −λ , where 0 ≤ l ≤ 1.

The definition of convex set16 is as follows: a set Q
Ì nℜ  is convex if for all u, v ∈ Q, the line segment
between u and v is in Q. Note that Q is convex if and only
if (1 )u vα + −α ∈Θ  for all u, v ∈ Q and a ∈ (0, 1). Examples of
well-known convex set include: the empty set, a set
consisting of a single point, a line or line segment, a
subspace, a hyperplane, a half-space, and .

Convex PrConvex PrConvex PrConvex PrConvex Properoperoperoperoperty of the Bohachevsky’ty of the Bohachevsky’ty of the Bohachevsky’ty of the Bohachevsky’ty of the Bohachevsky’s Functions Functions Functions Functions Function
From Eq. (3), the Bohachevsky’s function can be

decomposed into three parts, i.e. 1) f
1
(x) =, 2) f

2
(y) =, and

3) f
3
() = 0.7, where x = y ∈[-1.0, 1.0].
f
1
(x) consists of two parts, i.e.  which is exactly

convex, and –0.3cos(3px) which needs to be proved.
Expression ,  = –0.3cos(3px), is convex if and only if ≤
0. This means that  is convex when: . From the convex
properties16, the intersection of any collection of convex
sets is convex. So, we can conclude that some regions
of f

1
(x) are convex.
Like f

1
(x), f

2
(y) consists of two parts, i.e.  which is

exactly convex, and –0.4cos(4py) which needs to be
proved as well. Expression ,  = –0.4cos(4py), is convex
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if and only if ≤  0. This means that  is convex when: . We
can conclude that some spaces of f

2
(y) are convex. f

3
(),

a line segment, is also convex.
From the intersection property of the convex set,

we can conclude that some regions or spaces of the
Bohachevsky’s function satisfy convex property.

Convex Property of the Sum-Squared ErrorConvex Property of the Sum-Squared ErrorConvex Property of the Sum-Squared ErrorConvex Property of the Sum-Squared ErrorConvex Property of the Sum-Squared Error
The sum-squared error (SSE), J, used in our

applications is the SSE of the estimated data compared
to the measured data. J can be expressed by , where  is
the estimated data, and  is the measured ones.  is obtained
from of the models having nine unknown parameters
(see Eq. (4)-(7)). Because of the complexity of the
models, verification of J in the context of convex
property may not be proved in strictly mathematical
style. However, we can consider the behavior of the
search process. During the search process, the
intersections of convex regions of nine unknown
parameters occur. This corresponds to the cost value
J being minimized gradually. From this behavior, we can
intuitively conclude that the SSE satisfies convex
property in some ranges of parameters.


