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ABSTRACT: Steady two-dimensional flows due to an applied pressure distribution in water of finite depth are
considered. Gravity is included in the free surface condition. A unified asymptotic approach is employed to
derive the forced Korteweg-de Vries equation. Existence theorems for symmetric and nonsymmetric solutions
are given and proven. Numerical solutions are also provided to supplement these findings.
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INTRODUCTION

The flow past an applied pressure distribution over
the free surface of a horizontal stream subject to
gravitational force is of considerable importance in
ship hydrodynamics.The linearized case when the fluid
depth is infinite was discussed in detail by Lamb1. In
the last three decades there has been progress in the
understanding of the nonlinear aspects of this
problem. A fully nonlinear problem was considered
and reformulated as an integral equation by
Schwartz2. He showed that, for certain values of the
Froude number, nonlinear theory anticipates drag-free
solution, while linear theory does not. Vanden-Broeck
and Tuck3 found various families of free-surface
pressure distributions that do not generate waves. In
the case of finite depth, Von-Kerczek and Salvesen4

found numerically nonlinear solutions of the problem
by using finite difference methods. Recently,
Asavanant, et. al.5 reconsidered the fully nonlinear
problem and solved it by using the boundary integral
technique. Related studies on transient behavior and
surface tension effects for the two-dimensional model
can be found in Vanden-Broeck6, 7 and Okita, et. al.8.
The problem of this type can serve as a model of a
moving vehicle, such as hovercraft in a canal. It may
also be viewed as an inverse method of solution to the
classical ship-wave problem.

The purpose of this study is to find weakly
nonlinear solutions of flows past an applied pressure
distribution in a fluid domain of finite depth. The third
order Korteweg-de Vries equation with a forcing term
is derived. It is shown that symmetric solutions exist
in the supercritical flow regime whereas periodic
solutions exist in the subcritical flow regime. Existence

theorems are given and proven. Numerical solutions
are provided as the confirmation to weakly nonlinear
theory.

PROBLEM FORMULATION

Let the motion be two-dimensional, steady, and
irrotational, and the fluid be inviscid with constant
density. The flow domain is bounded below by a rigid
bottom and above by a free surface as shown in Fig 1.

We choose Cartesian coordinates with the X-axis
along the undisturbed free surface at infinity and the
Y-axis directed vertically upwards through the
symmetry line (or the midpoint) of the applied pressure
distribution. Gravity is acting in the negative Y-
direction. As −∞→*x , the flow is assumed to
approach a uniform stream with constant velocity U*

and constant depth H. The governing equations and
boundary conditions are given by the following Euler
equations :

 

U*

Free surface

H
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Y

Pressure distribution 

Fig 1. Typical free surface.
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where u* and v* are horizontal and vertical velocities,
p* is pressure, g is the gravitational acceleration, ρ  is
the density of the fluid and all the subscripts denote
derivatives with respect to the corresponding
variables. We define the following non-dimensional
variables :
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where H and L are horizontal and vertical length scales.
In terms of this new set of variables, the governing
equations and boundary conditions become
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ε

u
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                 p = 2ε b(x) with compact support

where b(x) has a compact support and 
gH

UF
*

=
represents the upstream Froude number.

Let us assume that u, v, p and η  possess asymptotic
expansions of the form

0 += εφφφ

and put F = ελ+1 . After substituting the asymptotic
forms of u, v, p and  into the dimensionless governing
equations and boundary conditions, the formal
perturbation procedure is used to collect terms of like
powers of ε . Without using the free surface kinematic
condition, we can express approximations of u and v
in terms of  

η

 and its derivatives. The final relation is
obtained by imposing the condition  at y=

εη

. Here, we

expand u and v using Taylor’s approximations about
y=0. This gives
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 Collecting terms of order 2ε , we obtain

0)(
3
123 =++− xbxxxxxx ηληηη          (1)

This is known as the forced Korteweg-de Vries
equation. In order to compare with previous work, we
chose the distribution of pressure to be in the form of
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where ∈ is a constant. Here b (x) is a smooth function
with compact support.

Based on the flow characteristics, we consider two
separate cases: 

0>λ

 (supercritical) and 

0<λ
(subcritical). Numerical solutions for both cases are
obtained by using the shooting method and the Runge-
Kutta method. In the case of supercritical flow (

0>λ
),

our numerical results show that the flow is always
symmetric with respect to the symmetry line of the
pressure distribution without the presence of waves.
There are two different families of solutions when

0∈>

. One family is a perturbed solution of uniform
stream, whereas the other is a perturbation of a solitary
wave. When 

0∈<

, there exists only one family of
solutions for all values of 

λ

 up to zero. In the case of
subcritical flow (

0<λ

), a train of nonlinear waves is
generated behind the applied pressure distribution
while the flow upstream satisfies the radiation
condition. As 

λ

 decreases, there are critical values of

λ

 at which the wave amplitude vanishes.

Symmetric Solutions : The case of Symmetric Solutions : The case of Symmetric Solutions : The case of Symmetric Solutions : The case of Symmetric Solutions : The case of 

0>λ

We look for a solution 

)(xη

 of (1) such that
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, j = 0, 1, 2 and 0>λ . Integrating (1)
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 to x, we find

6
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It can easily be shown that the above equation is
equivalent to an integral equation:



ScienceAsia ScienceAsia ScienceAsia ScienceAsia ScienceAsia 29 (2003)29 (2003)29 (2003)29 (2003)29 (2003) 3 9 5

ξξξηξη dbxKx ∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ += )(3)(

2
9),()( 2

.

Here the kernel 
λ

ξ
ξλ

62
),(

||6 −−

=
xexK  is the Green’s

function satisfying
6 ∞<<−∞−=− ξξδξξλ ,),(),(),( xxxKxK xx .

We now define

.)(3)(
2
9),()( 2 ξξξηξη dbxKT ∫

∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ +=

   |)(|sup xuuu
x ℜ∈

∞
==

   });(|{ ||6 ∞<ℜ∈= ueCuuH xλ .

Clearly, HHHHH is a metric space and is complete. We give
another definition
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Since the radiation condition must be satisfied in
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exponentially decaying behavior for |x| large. We are
now ready to state the existence theorem for
symmetric solutions of (2).
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where )(),(),(6 ξδξξλ −=− xxKxK xx . Hence )(2 ℜ∈Cη
and it follows from the right hand side of the above

equation that )(3 ℜ∈Cη .
In the next section, we consider the other case, i.e.,
0<λ . It is expected that the solutions in this case

possess periodic behavior far downstream with an
upstream radiation condition.

Unsymmetric (Periodic) Solutions : The case ofUnsymmetric (Periodic) Solutions : The case ofUnsymmetric (Periodic) Solutions : The case ofUnsymmetric (Periodic) Solutions : The case ofUnsymmetric (Periodic) Solutions : The case of

0<λ

Here we consider,
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2
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since 0<λ , we put 

λλ −=0

 with 00 >λ . Equation (3)
becomes
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We look for a periodic solution to equation (4)
which dies out at the far upstream and oscillates
without changing its amplitude at the far downstream.
That is to say, η  must satisfy the followings:
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Using integration techniques and orthogonality
conditions, we are led to conclude that,
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Here we calculate numerically the solutions in both
the supercritical flow regime ( 0>λ ) and subcritical
flow regime (

0<λ

). Our numerical procedure
concerns the use of the shooting method for
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⎝

⎛
= xx

2
3sech2)( 2 λλη , ∞<<∞− x .

When 

0∈>

, the solutions are characterized by W>0.
Here W measures the ratio of maximum (or minimum)
elevation on the free surface profile upon which the
pressure distribution is applied to the undisturbed level
of the free surface. Typical free surface profiles are
shown in Fig 2.

In Fig 3, we present numerical values of 

λ

 versus
W for various values of 

∈

. Solutions of this type can
be viewed as perturbations of the branch of solutions
with 

0∈=

 that bifurcates from 

0=λ

. On these
branches of solutions, we find critical value of λ  such

that, for each 

∈

, there are no solutions where 

~
λλ <

,

and two solutions when λλ <
~

. This is depicted in Fig

3: the critical value 
~
λ  is the turning point of each curve.

Fig 3. Relationship between W and λ  for various values of 

0∈>

.
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Fig 2 shows a comparison of flow profiles at the same
value of 

λ

, on both the lower and upper portions of
the curves in Fig 3, for 

1.0∈=

.
When 

0∈<

 the solutions are characterized by

0<W

. These solutions can be viewed as perturbations
of a uniform flow (i.e. they approach the uniform
stream as 0∈→  for a fixed value of 

λ

). From the
numerical calculations, it is found that solutions in this
case exist for all 

),0( ∞∈λ

 (see Fig 4).

(ii) Subcritical Solutions
For subcritical solutions, we expect a train of

waves to be generated behind the applied pressure
distribution. We first discuss the case when 

0∈>

. Fig
5 shows that the amplitude A of the waves, defined as
the difference between the levels of the successive
crest and trough, decreases as 

λ

 decreases.
The wave amplitude ultimately diminishes when

the critical value 

1*λ

 of λ  is reached. If we decrease λ
further, the wave amplitude increases to its maximum
value and then decreases monotonically to zero again
at 

2*λλ =

. Table 1 shows some computed values of i*λ .
In addition, the free surface, upon which the pressure
distribution is applied, deforms into two humps when

2*λλ →  as depicted in Fig 6.
This phenomenon occurs again as λ  reaches the

next critical value and so on. In our approximation,

the lower bound of λ  should be 

ε
1

−

 in order for the

Froude number F to be greater than zero. We

conjecture that there are finitely many critical i*λ  such
that drag-free solutions exist. We would like to add here
that there are n humps on the free surface for solutions

with 1** −<< nn λλλ . Similar behavior can be found for
the steepness (S) of the wave, defined as the difference
of heights between a crest and a trough divided by the
wavelength as shown in Fig 7.

Free surface profiles for the case where 0∈<  are found
to be similar to those of 

0∈>

. Except for the reverse
signs of the wave amplitude A, overall behaviors of the
solutions are qualitatively similar to the case where

0∈>

.

Table 1. Some computed values of 

i*λ

.
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CONCLUSSIONS

In this paper, we have investigated the weakly
nonlinear solutions of free-surface flows due to
pressure distributions. Existence theorems are given
and proved for different flow regimes. Numerical
solutions are presented as evidence to support the
theorems. It should be noted that our results are found
to be qualitatively in good ageement with the fully
nonlinear solutions (Asavanant, et al5). At this
preliminary stage of our investigation, we may
therefore conclude that, whenever the effect of surface
tension is neglected, results from the weakly nonlinear
theory are very well accepted and accurate up to

)( 2εO when ε  is the square of scale ratio. However,
when surface tension term is included in the Bernoulli
equation, interactions between forces due to
gravitational acceleration, surface tension and
pressure distribution tend to create strange
phenomena. Fully nonlinear solutions of the problem
are completely different from those reported in this
paper and the work is still in progress.
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