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'*�+�'�+  Using well-known results from the theory of uniform distribution modulo 1, three criteria for
rationality of power series based on the shape of their coefficients and their exponents are derived. The results
improve those established earlier by M Newman.
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In 1960, M Newman1 proved the following
remarkable assertions using some equally unexpected
results from the theory of uniform distribution modulo
1:

I. Let á be a real number. Let g be a polynomial of

degree ≥ 1 Define G(z ) = ∑
∞

=�
����

�

���� α  . Then G(z ) is a

rational function of z ⇔ á is rational.
Here and throughout [x] denotes the integral part

of the real number x.

II. Suppose that á > 0. Define F(z ) = ∑
∞

=�

��

�

�� α . Then

F(z ) is a rational function of z  ⇔  á is rational.
Soon after, a number of extensions to Newman’s

theorems were derived, eg Mordell2, using complex
analytic method, showed that if g  (x,y) is a polynomial
in two variables with real coefficients, of degree ≥1 in

x, then  ∑
∞

=�
�����

�

����� αα is a rational function of z ⇔ á is

rational. Schwarz3 proved that if f is a polynomial with
rational coefficients of degree m ≥1, p is a non-constant

polynomial with real coefficients, and ∑
∞

=�
������

�

�����

is a rational function of z , then either p(x) – p(0) has only

rational coefficients or p(x) is of the form p(0) + á

∑
=

�

�

�
� �	

�
,where ám is rational and the a

i
 are rational.

Meijer4 proved that if f is a non-constant polynomial
with complex coefficients, á is a real number, and k ≥ 1,

then     ∑
∞

=�
����

�

�
 ��� α is a rational function of z ⇔ á is

rational. Meijer’s proof made use of divided differences

as well as results from the theory of uniform distribution
of a system of arithmetic functions. Cantor5,6 showed

that if p is a polynomial with real coefficients, then

∑
∞

=�
����

�

���� is a rational function of z  ⇔ all coefficients

of p, except perhaps the constant term, are rational.
Our objective here is, as with Newman, to use results
from the theory of uniform distribution modulo 1 to
derive extensions of the above-mentioned results of
Newman not previously covered. Our three principal
theorems read as follows:

Theorem 1.Theorem 1.Theorem 1.Theorem 1.Theorem 1. Let á and â be real numbers, and let g

be a polynomial over C of positive degree. Define

G(z ) := ∑
∞

=
+

�

����
�

���� βα . Then G(z )  is  a  rat ional

function of  z  ⇔  á  is  rat ional .
Theorem 2. Theorem 2. Theorem 2. Theorem 2. Theorem 2. Let á > 0, â be real numbers, and let

F(z ) = ∑
∞

=

+

1

][

n

nz βα . Then F(z ) is a rational function of

z  ⇔  á is rational.

Theorem 3. Theorem 3. Theorem 3. Theorem 3. Theorem 3.  Let á and â be real numbers, and let
f, g  be polynomials over C of positive degrees. Assuming
that g ([nα + β]) ≠ 0 for each non-negative integer n,

define G(z ) := ∑
∞

=
+






�

����
�

���
�

� βα . If G(z ) is a rational

function of z , then á is rational.

'-� '01,$,'�2� $�33'

We first prove a lemma which constitutes the crux
of the proofs of our three theorems.
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Lemma 1. Lemma 1. Lemma 1. Lemma 1. Lemma 1.  Let á be a real irrational number, â be
a real number, and S be a finite set of non-integral real
numbers. Then there are infinitely many positive
integers m such that

[{má + â} + ç] = [ç] for all ç ∈  S,
and infinitely many positive integers n such that

[{ná + â} + ç] = 1 + [ç] for all ç ∈  S.
Here and throughout {x} denotes the fractional

part of the real number x, so that
x = [x] + {x}.
Proof. Proof. Proof. Proof. Proof. Observe that the two assertions are,

respectively, equivalent to
0 ≤{má + â} + {ç} < 1 for all ç ∈  S,

and
0 ≤ {ná + â} + {ç} – 1 < 1 for all ç ∈  S.
They follow immediately from the fact that the

sequence ( )∞=+ 1}{ nn βα  is everywhere dense in [0,1). By
example 2.1, p. 8 of Kuipers and Niederreiter7, the
sequence  ( )∞

=1nnα  is uniformly distributed modulo 1.
Thus by Lemma 1.1, p. 3 of Kuipers and Niederreiter7,
the sequence ( )∞

=+ 1nn βα  is uniformly distributed
modulo 1 and finally by exercise 1.6, p. 6 of Kuipers and
Niederreiter7, the sequence ( )∞=+ 1}{ nn βα  is everywhere
dense in [0,1) as desired.
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Let α be irrational and assume that G(z ) is a rational
function of z . Then there are polynomials A(z ) and B(z ) of

degrees a ≥ 1, and b, respectively, such that G(z ) =
)z(A

)z(B  .

Without loss of generality, let A(z ) := z a –c
1
z a-1 -…- c

a-1
z – c

a
.

From A(z )G(z ) = B(z ), equating the corresponding
coefficients of z n+a, we get

(3.1) g ([nα+β]) = ∑
=

�

�	
g ([nα+β+rα])c

r

for n ≥ max(0, b-a+1).

Since g  is a polynomial of degree (say) p ≥ 1, then

       
����

����

��

βα
αβα

+
++

∞→ ��

���

�
=

�

�

� �

��

��

��

��

βα
αβα

+
++

∞→
= 1,

so that (3.1) implies
(3.2) c

1
 + c

2
 + … + c

a
 = 1.

Therefore, (3.1) and (3.2) together give

(3.3) ∑
=

a

r 1
(g ([nα+β+rα]) – g ([nα+β]))c

r
 = 0.

Using [nα+β+rα] = [{nα+β}+rα] + [nα+β], we have

g ([nα+β+rα]–g ([nα+β]) = ∑
=

+�










��

�

��



���� βα
[{nα+β}+rα]k.

Multiplying both sides of this equation by c
r
,

summing over r, and using (3.3), we get, for large n,

(3.4)

  ∑
=

a

r 1
[{nα+β}+rα]c

r
 + ∑ ∑

= = +
+	

�

�







��


��

� �

��

�����

����

βα
βα

 [{nα+β}+rα]kc
r
 =  0.

For p = 1, the last sum on the left hand side of (3.4)

is empty, while for p ≥ 2, we have

�����

����

��

��

βα
βα

+
+

∞→ ��

�� 


�
[{nα+β}+rα]k = 0,

when 2 ≤ k ≤ p, 1 ≤ r ≤ a. Thus

(3.5) ∑
=∞→

	

�� �


�� [{nα+β}  + rα]c
r
 = 0.

The numbers rα  in (3.5) are not integers. By Lemma

1, we can find integers m and n such that the expressions

∑ =

a

r 1
[{mα+β}+rα]c

r
 = ∑ =

a

r 1
[rα]c

r

and

∑ =

a

r 1
[{nα+β}+rα]c

r
 = ∑ =

a

r 1
(1+[rα])c

r

can be made arbitrarily small, which contradicts (3.2).

Now assume that α is rational. Set α = 
d

c
, where c

and d are relatively prime integers with d > 0. Applying

the division algorithm, we get n = md + r, with 0 ≤ r ≤
d-1, and so nα + β = n

d

c
+ β = (md+r)

d

c
+ β = mc +

�

��
+ β,

so that [nα+β] = mc+[
�

��
+β]. Thus

 G(z ) = ∑
∞

=��
g ([nα+β])z n = ∑ ∑

−

=

∞

=

�

� �

�

� 
g (mc + [

�

��
+β])z md+r

= ∑ ∑ ∑
−

=

∞

= =











 +

�

� � �

��



�

� 

�










�

��
� β

 (mc)kz md+r

= ∑ ∑
−

= =











 +

�

� �

��



�

�

�










�

��
� β

ckz r ∑
∞

=��
mkz md.

From ∑
∞

=0m
mkz m = 

k

dz

d
z 





 








− z1

1
 is rational, it

follows that G(z ) is a rational function of z .

��..��.��+)�.��3�5

Since α is a positive real number, then there is a
positive integer t

0
 such that tα + β ≥ 0 for all positive

integers t ≥ t
0
. Thus

     F(z ) = ∑
−

=

1

1

0t

t
z [tα+β] + ∑

∞

= 0tt
z [tα+β].

Now F(z ) is rational ⇔ ∑
∞

= 0tt
z [tα+β] is rational.

Without loss of generality, we may assume that tα +

β ≥ 0 for all positive integers t.
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Suppose that α is irrational. Let X(n) denote the number of solutions of n = [tα+β] in positive integers t. Then

F(z ) = ∑
∞

=0n
X(n)z n.

Case 1 : for each positive integer t, tα+β is not integral.
Let N be a non-negative integer ≥ β. Then for n ≥ N, X(n) is the number of integers t satisfying

n - β ≤ tα < n + 1 - β, and since for each positive integer t, tα + β is not integral, and X(n) = [(n + 1- β)/α] – [(n - β)/α],

then

F(z ) = ∑
−

=

�

�

�

�
X(n)z n + ∑

∞

=










 −−



 −+

��

��

α
β

α
β�

z n.

Case 2: there is a positive integer k with kα+ β =��, where � is a non-negative integer.
We have β = �- kα. Thus for each positive integer t not equal to k, we have tα + β = tα + � - kα = (t – k)α + �

being non-integral. This implies that k is the only positive integer such that kα + β is integral. Now let M be a positive
integer for which M > max (β, kα + β). Thus for n ≥ M, X(n) is the number of integers t satisfying n - β < tα < n +
1 - β. From X(n) = [(n+1-β)/α] – [(n-β)/α], we get

F(z ) = ∑
−

=

�

�

�

�

X(n)z n  + ∑
∞

=










 −−



 −+

��

��

α
β

α
β�

z n .

From both cases, we conclude that

F(z ) = ∑
−

=

�

�

�

�
X(n)z n  + ∑

∞

=










 −−



 −+

��

��

α
β

α
β�

z n

for some integer K. Now note that

∑
∞

=










 −−



 −+

��

��

α
β

α
β�

z n  =  
z

z−1 ∑
∞

+=








−







�

�

��

�
α
β

α z n - 



 −

α
β�

z K,

and so

F(z ) = ∑
−

=

�

�

�

�
X(n)z n + 

z

z−1










 −−



 − ∑∑

=

∞

=

�

�

��

�

�
�

�
�

�� α
β

α
β

α - 



 −

α
β�

z K.

According to Theorem 1, �

�

�
�∑

∞

=




 −

� α
β

α  is not a rational function of z, and so F(z) is not a rational function of z

Now suppose that α =
d

c
 is rational with relatively prime positive integers c and d. Using t = md + r, 0 ≤ r ≤ d - 1,

we have

z [β] + F(z ) = ��

�

βα +
∞

=
∑ �

�

�  = 
���

� �

β++−

=

∞

=
∑ ∑ �

��
��

� 

� = 
���

� �

β++−

=

∞

=
∑ ∑ �

��
��

� 

�

=
���

�

β+−

=
∑ �

���

�

�
�



� ��
�

∑
∞

=
= �

�

���

� �
�

−

+−

=
∑

�

����

�

β

so that F(z ) is a rational function of z .

��..��.��+)�.��3�6

Suppose that α is irrational but G(z ) is a rational function of z . Then there are polynomials A(z ) and B(z ) of

degrees a ≥ 1, and b, respectively, such that G(z ) = )z(A

)z(B
. Without loss of generality, let A(z ) = z a – c

1
z a-1 - … -

c
a-1
z  – c

a
. From A(z )G(z ) = B(z ), it follows by equating the corresponding coefficients of z n+a, when n > a + b, that







�

�
([nα + β]) = ∑

=





	

� �

�

�
([nα + β + rα])c

r
.
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Since f and g are polynomials of positive degrees, then

(5.1)
����

����

��

βα
αβα

+
++

∞→ ��

���

�
 = 

����

����

��

αβα
βα
���

��

� ++
+

∞→
 = 1.

Thus

����

����


��

βα

αβα

+






++






∞→
�

�

�

��
�

�

�
 = 

��������

��������

��

αβαβα
βααβα
�����

�����

� +++
+++

∞→
= 1

for each r = 1,…,a. Thus (5.1) yields

(5.2) c
1
 + c

2 
+ … + c

a
 = 1

and so

(5.3) ∑
=







+





−++




	

�

�
�

�
��

�

�

�

�������� βααβα c
r
 = 0.

Since [nα + β + rα] = [{nα + β} + rα] + [nα + β], then by Taylor’s theorem, for each large positive integer n, there
is a real number c

n,r
 lying between [nα + β] and [nα + β + rα] such that







�

�
([nα + β + rα]) - 





�

�
([nα + β]) = 

�

����

�

αβα ��
�

� ++






[{nα + β} + rα]+ 
�

�� ����
�

�
″







[{nα + β} + rα]2.

Multiplying both sides of this last equation by c
r
, summing over r, and using (5.3), we get, for large n,

(5.4) ∑
=

�

�	
[{nα+β}+rα]c

r
 + ∑

=
+

′








″







	

�

��

�
�

�

�
�

�

�

�

�����

��

βα

[{nα + β} + rα]2 c
r
 = 0.

For each r = 1,…,a, since c
n,r

 lies between [nα + β] and [nα + β + rα] which yields [nα + β + rα] – [nα + β] =

[{nα + β} + rα] and 
( )
( ) ���

���

���

���

′

″
is of the form )z(q

)z(p
 where deg p(z ) ≤ 4j + � - 1, deg q(z ) = 4j + �, deg g(z ) = j, deg

(den ��� ′�� ) = �, where den denotes denominator, then 
( )

( ) �����

���

��

�

βα +′

″

∞→ ���

��� ��

�
 = 0. Thus for r = 1, 2…,a, we have

( )
( ) ������

���

��

�

βα +′

″

∞→ ���

��� ��

�
[{nα + β} + rα]2 c

r
 = 0, and so by (5.4)

(5.5) ∑
=∞→

	

�� �


�� [{nα + β} + rα] c
r
 = 0.

The numbers rα in (5.5) are not integers. Since the sequence (nα + β) ∞
=1n  is uniformly distributed modulo 1,

by Lemma 1 we can find integers m and n such that the expressions ∑ =
	

� � [{mα + β} + rα])c
r
 = ∑ =

	

� �
[rα]c

r
 and

∑
=

++
a

r

rn
1

]}[{ αβα c
r
 = ∑

=

+
a

r

r
1

])[1( α c
r
 can be made arbitrarily small, and this contradicts (5.2), which ends the proof.

Contrary to Theorems 1 and 2, the converse of Theorem 3 fails in general as witnessed from the following

example. Take 
�

�
��

+
=
�

�
�

�
, α = 1, β = 0. Then ( )

�

�

�

�
��

�

�
�

�

�

� ��
���

�
��

��

−−=
+

=+ ∑∑ ≥≥ βα  , which is certainly not

a rational power series.
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