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Asstract Using well-known results from the theory of uniform distribution modulo 1, three criteria for
rationality of power series based on the shape of their coefficients and their exponents are derived. The results

improve those established earlier by M Newman.
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INTRODUCTION

In 1960, M Newman! proved the following
remarkable assertions using some equally unexpected
results from the theory of uniform distribution modulo
1:

I. Let &be a real number. Let gbe a polynomial of

degree =1 Define G(z) = ig([nal)Z” .ThenG(z)isa

rational function of - < ais rational.

Here and throughout [x] denotes the integral part
of the real number x.

1. Suppose that 4> 0. Define F(z) = ioz[”’” .Then

F(z) is arational function of - < &isrational.

Soon after, a number of extensions to Newman’s
theorems were derived, eg Mordell?, using complex
analytic method, showed thatif g (X,y) isa polynomial
in two variables with real coefficients, of degree =1 in

X, then ;g([na],na)Z” isarational functionof » < &is
rational. Schwarz® proved that if fisa polynomial with
rational coefficients of degree m=1, pisanon-constant
polynomial with real coefficients, and %f([p(n)])Z"

isarational function of ~, then either p(x)—p(0) has only
rational coefficients or p(x) is of the form p(0) + &
Zlafxf ,where &" is rational and the a, are rational.

Meijer* proved that if f is a non-constant polynomial
with complex coefficients, aisarealnumber,and k=1,

then if([ank])Z” isarational functionof - = &is

rational. Meijer's proof made use of divided differences

aswell asresults from the theory of uniform distribution
of a system of arithmetic functions. Cantor®® showed
that if p is a polynomial with real coefficients, then
ni[ﬁ(ﬂ)]Z” isarational functionof - - all coefficients

of p, except perhaps the constant term, are rational.
Our objective here is, as with Newman, to use results
from the theory of uniform distribution modulo 1 to
derive extensions of the above-mentioned results of
Newman not previously covered. Our three principal
theorems read as follows:

Theorem 1. Let &and abe real numbers, and let g

be a polynomial over C of positive degree. Define
G(z) := iog([na +B)z"  Then G(-) is a rational

function of - < ais rational.
Theorem 2. Let 4> 0, & be real numbers, and let

3

F(z) = Zz[””*‘” . Then F(z) is a rational function of

z < aisrational.
Theorem 3. Let &and & be real numbers, and let

f, g be polynomials over C of positive degrees. Assuming

that g ([na + A]) # 0 for each non-negative integer n,
o [Of " . .

define G(z) := %%E[ﬂa +BDz" If G(z) is a rational

function of ~, then ais rational.

AN AUXILIARY LEMMA

We first prove a lemma which constitutes the crux
of the proofs of our three theorems.
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Lemma 1. Let &be areal irrational number, & be
areal number, and S be afinite set of non-integral real
numbers. Then there are infinitely many positive
integers m such that

[{ma+a} +¢] =[c] forall ¢S,
and infinitely many positive integers n such that

[{na+a} +¢] =1+][c] forall ¢ OS.

Here and throughout {x} denotes the fractional
part of the real number x, so that

x=[x] +{x}.

Proof. Observe that the two assertions are,
respectively, equivalent to

O<{ma+a} +{c} <1
and

0<{na+a} +{c}-1<1 forall¢OS.

They follow immediately from the fact that the
sequence ((na + B} )=, iseverywhere densein [0,1). By
example 2.1, p. 8 of Kuipers and Niederreiter?, the
sequence (na)-, is uniformly distributed modulo 1.
Thus by Lemmal 1, p. 3of Kuipersand Niederreiter’,
the sequence (na+B)::l is uniformly distributed
modulo 1andfinally by exercise 1.6, p. 6 of Kuipersand
Niederreiter”, the sequence (na + B} )7, iseverywhere
dense in [0,1) as desired.

forall¢OS,

Proor ofF THEOREM 1

Let a be irrational and assume that G(~) is a rational
function of ~. Then there are polynomials A(z ) and B(z ) of

degrees a =1, and b, respectively, such that G(-) =% .
z
Withoutloss of generality, let A(z ) := 22—,z **-...-C,,z—C,.
From A(z)G(z) = B(z), equating the corresponding
coefficients of 2™, we geat
(1)  g(na+pD= 3 g(na+prral),
for n= max(0,b-a+1).
Since g is a polynomial of degree (say) p= 1, then
im 9o +p+m]) _ .
nee  g(lna+pl)  n-w
so that (3.1) implies
(82 ¢ +c, .t =1
Thereforeg (3.1) and (3.2) together give
33) Z (g([na+B+ra]) —g([na+B]))c, =0.

Using [na+B+ra]= [{na+B}+ror] +[na+B], we have

([/70r B1)

[na +B+ral” _
[na + B1°

g(na+Btral-g(na+fB))= kZ [na+Bral.

Multiplying both sides of this equation by c,
summing over r, and using (3.3), we get, for large n,
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(3.4)

£ g™ ([na + pl)
Z [na+Bralc + Z/Zz £10([na + gy EnaBralc=0.

Forp=1, the last sum on the left hand side of (3.4)

is empty, while for p> 2, we have

g% ([na + B)
im o + gy Lna+Aral=0

when2£k<p 1<r<a.Thus
(3.5) lim Z [{na+B} +ra]c =0.
The numbers ra in (3.5) are notintegers. By Lemma
1, we canfind integersmand nsuch that the expressions
S Hma+B}+rale = 57 [ralc,
and

Zal [{na+B}+ralc = Zal (1+[ral)c,
can be made arbitrarily small, which contradicts (3.2).
Now assume that « is rational. Set a = % , Where ¢
and d arerelatively prime integers withd>0. Applying
the division algorithm, we getn=md +r, with0 <r <
d-1,andso na+/3=n§+,8=(md+r)§+[3= mc+§+ﬁ,
sothat[na+g] = mc+[§ +f]. Thus

d-1 o

G(z)= 3 o(lna+f)z"= 3 3 g(me+[ 5 +4)="

gWE B
— 2 mz:(] i% %(mC)kZ md+r

L
TXh T a CE
From mkzm = Ez HBfE is rational, it

b= 0 dzg -
follows that G(z) isa ratlonal functlon of .

mk md

ProoF oF THEOREM 2

Since a is a positive real number, then there is a
positive integer t, such that ta + 8> 0 for all positive
integerst>t,. Thus

ty-1

= [ta+B] [ta+].
F(z) Z z + zzto z
Now F(z) is rational - Z zlte*Alis rational.
=t
Without loss of generality, we may assume that ta +

=0 for all positive integers t.
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Suppose that aisirrational. Let X(n) denote the number of solutions of n = [ta+ 3] in positive integers t. Then

F(z)= Z X(n)z".
Case 1 : for each positive integer t, ta+is not integral.
Let N be a non-negative integer = 8. Then for n = N, X(n) is the number of integers t satisfying

n-B<ta<n+1- [ andsince for each positive integer t, ta + Bis not integral, and X(n) = [(n + 1- B)/a] - [(n- B)/a],

F(2)= Nz; X(n)2"+ ZN%”;—‘BE— S’ﬁ;p%z

Case 2: there is a positive integer k with ka+ = ¢, where / is a non-negative integer.

We have 3= /- ka. Thus for each positive integer t not equal to k, we haveta+ f=ta+ /-ka=(t-k)a+ /¢
being non-integral. Thisimpliesthatk is the only positive integer such thatka + Bis integral. Now let M be a positive
integer for which M > max (B, ka + f). Thus for n = M, X(n) is the number of integers t satisfyingn - <ta<n+
1- B.From X(n) =[(n+1-B)/a]-[(n-B)/a], we get

then

Fe)=3, X)em+ 3 BEEP0p

From both cases, we conclude that
+1-80 -p
F(z)= nzo X(n)z" + z HHa B¢

for some integer K. Now note that
@ +1- /35 n-B 1-z ¢ OmiQ o K -B0
Z(% HHa %2 e +1%7§5§_0E2n' a S

and so
k-1 m-B0.,5 K-B0

Fe)= 5, Xyers 22 R B0 - S HoBinly B PR

According to Theorem 1, i% —g%” is not a rational function of z, and so F(>) is not a rational function of »

Now suppose that a=is rational with relatively prime positive integerscand d. Usingt=md+r,0<r<d-1,
we have

o d-1 »  [mc+C+p] d-1 o meCap
- [w+p] _ - d
Z[ﬁ] * F(Z) - t=l ‘ - r*OmZOz - rZOmZOZ
d-1 gy a1 <,
- z[d Bl Z (z5)" - [d Bl 1
=) m=0 7= 1-z¢

so that F(~) is a rational function of -.

Proor oF THEOREM 3

Suppose that o is irrational but G(~) isarational fL(mgtion of z. Then there are polynomials A(z) and B(z) of
B(z
degreesa =1, and b, respectively, such that G(z) = Az)" Without loss of generality, let A(z) = z*~c¢ z*'- ... -

¢,z —C,.FromA(2)G(z) =B(z), it follows by equating the corresponding coefficients of ™2, whenn>a+b, that

Eg%(["“ +A)= i%é([nm B+ra])c.
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Since f and g are polynomials of positive degrees, then

Fa+prr]) o gna+pD)
(5.1) T FQra B A g(na+ B T

Thus

%@[mwwl) _ i £ 4 B ) g+ BY) _ g

im—Mm = lim

e %E[m”ﬂ) n-e f([na + B1) g([na + B + ra])

foreachr=1,...,a. Thus (5.1) yields
(5.2) c,te, ... +c =1

and so

(5.3) 3 A o + 5o~ 4 =0,

Since[na+ B+ra]=[{na+ S} +ra]+[na+ B], then by Taylor's theorem, for each large positive integer n, there
isareal numberc_ lying between [na+ f] and [na + B+ ra] such that

' "

F F _ d ([na + B + ra]) / (€n,r) )
 Ana+ Bral)- & K[na+ f) = o : {na+ B+ral+ 5 7 tina+ By +raff

2!
Multiplying both sides of this last equation by ¢, summing over r, and using (5.3), we get, for large n,

ESE"(C"")

(5.4) i [{na+B}+ralc + 2,7[{na+[3}+ra]2(;r:o_
= "2l Han + 1

Foreachr=1,...,a sincec liesbetween [na+pf]and [na+ B+ra]whichyields [na+B+ra]-[na+f] =

(Fl9) (2

4
19) ) is of the form% where deg p(z) <4j+¢-1,degq(z)=4j+/¢,degg(z) =], deg

[{na+ B} +ra] and

_ (F19) cn)
(den(r/ g)) = ¢, where den denotes denominator, then lim ¢19) =0.Thusforr=1, 2...,a, we have

== (£ | g) (Lna + B1)

i F19) o)

————[{na+ B} +ra]?c =0,and so by (5.4
TP frry L A y (4

(5.5) ""[nwi [{na+ B +ra]c =0.

The numbersrain (5.5) are notintegers. Since the sequence (na + B) ., is uniformly distributed modulo 1,
by Lemma 1 we can find integers m and n such that the expressions 37_, [{ma+ B} +ra])c = S7_, [ra]c and
i[{na *+P}+rale = i(l’f[mf])cr can be made arbitrarily small, and this contradicts (5.2), which ends the proof.

Contrary to Theorems 1 and 2, the converse of Theorem 3 fails in general as witnessed from the following

1

f n § log(1 -
+1,a:1,B:O.Then 2"203([na+5])z =ano Z :_y

n+1

, Which is certainly not

example. Take 2(2) =

a rational power series.



ScienceAsia 29 (2003) 179

REFERENCES

1. Newman M (1960) Irrational power series. Proc Amer Math
Soc 12, 699-702.

2. Mordell LJ (1961) Irrational power series. Proc Amer Math
Soc 12, 522-6.

3. Schwarz W (1962) Irrationale potenzreihen. Arch Math 13,
228-40.

4. Meijer HG (1963) Irrational power series. Proc Kon Ned
Akad v Weten 66, 682-90.

5. Cantor DG (1962) On sets of algebraic integers whose
remaining conjugates lie in the unit circle. Trans Amer Math
Soc 105, 391-406.

6. Cantor DG (1965) Irrational power series. Proc Kon Ned
Akad v Weten 68, 777-86.

7. Kuipers L and Niederreiter H (1964) Uniform Distribution of
Sequences. John Wiley & Sons, New York.





