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GeneralGeneralGeneralGeneralGeneral
For a numerical simulation of a system involving

temperature, input parameters are required to be
determined in a controlled environment. Mechanical
properties such as Young’s modulus of elasticity and
compressive strength, are determined from established
laboratory experiments. However, direct measure-
ments are not always possible. In such cases, a suitable
parameter for which standard laboratory procedure is
available, is measured. A functional relationship
between this measured property and the required
parameter is established for back analysis.

Parameter estimation can be visualized as an inverse
problem of optimization that deals with the
determination of the mechanical system with unknown
material properties, geometry sources or boundary
conditions, from the knowledge of response to given
excitations on its boundary. There are many methods
available to solve the parameter estimation problems
such as general minimization procedure, weighted least
square method, Bayesian decision-theoretic approach
and Kalman filtering techniques. This research employs
extended Kalman filtering techniques for the inverse
estimation.

The heat transfer coefficient (HTC) describes the
rate at which heat flows from the source to the
surrounding mass and is one of the most important
input parameters for a number of scientific and
engineering applications including nuclear waste
repository and reservoir engineering.1,2 Therefore,
determination of accurate values of the heat boundary
condition is essential to improve the quality of a

simulation process involving temperature.
Some literature is available on heat and mass transfer

in porous media.3,4 Many researchers consider soil
being directly impregnated from the heat  radiating
from a single source.5 Buried transmission cables, for
example, are covered with backfill. Thermal instability
of soil affects the ability of such backfill to dissipate
heat.6 In sanitary landfill, clay liners separate the soil
system from the landfill waste. Heat generated from the
microbial activity (decomposition of carbohydrate)
affects the ground water regime.7 While temperature
can be measured in the field, the heat transfer
coefficient is difficult to measure once the site is sealed.

The simplification that there exists no boundary
between heat source and the medium to which heat is
being transferred, may lead to an easy analytical solution
but it is an over-simplification of the real situation.
Determination of boundary condition thus becomes
indispensable.

Neaupane et al. used a constant value of HTC,
independent of source temperature, to simulate a low
temperature problem. The dependency of source
temperature on the boundary condition was largely
ignored.8 This research aims at estimating thermal
boundary condition from the temperature measure-
ments and explores in detail the dependency of HTC on
source temperature.

The Kalman Filtering TThe Kalman Filtering TThe Kalman Filtering TThe Kalman Filtering TThe Kalman Filtering Techniqueechniqueechniqueechniqueechnique
The behavior of a dynamic system is described by

state variables. Such variables may not be determined
from direct measurements, but are functions of other
measurable state variables. These measurements are
generally corrupted by random noises and disturbances.
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�+��
��  It is necessary to estimate thermal boundary condition in a number of scientific and engineering
applications. The research in this paper uses extended Kalman filter coupled with the finite element method
to formulate an inverse problem and estimate the thermal boundary known as heat transfer coefficient
(HTC). A simple non-linear formulation based on steady-state heat conduction has been incorporated in the
Kalman filter loop. From the laboratory experiment, steady state temperatures were measured at predefined
locations. The heat transfer coefficient (HTC) was estimated inversely from these measurements.

KEYWORDS: Kalman Filter, heat transfer coefficient, finite element method.
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The state variables are to be estimated from these noisy
observations.

The Kalman filter is a set of mathematical equations
that provides an efficient computational (recursive)
solution of the least-squares method. The Kalman
filtering technique has been chosen extensively as a
tool to solve the parameter estimation problem. The
technique is simple and efficient, takes explicit
measurement uncertainty incrementally (recursively),
and can also take into account a priori  information, if
any.9,10

The Kalman filter estimates a process by using a
form of feedback control. To be precise, it estimates the
process state at some time and then obtains feedback
in the form of noisy measurements. As such, the
equations for the Kalman filter fall into two categories:
time update and measurement update equations. The
time update equations project forward (in time) the
current state and error covariance estimates to obtain
the a priori estimates for the next time step. The
measurement update equations are responsible for
the feedback by incorporating a new measurement
into the a priori estimate to obtain an improved a
posteriori estimate. The time update equations are thus
predictor equations while the measurement update
equations are corrector equations.

'
�,#'
���
-��
+�+

Finite Element FormulationFinite Element FormulationFinite Element FormulationFinite Element FormulationFinite Element Formulation
The case presented here is a simple steady state

problem of heat conduction. The governing equation
is a two dimensional linear heat flow equation, described
by:

(1)

where φ is the temperature distribution. The
conductance matrix [K] is given by:

(2)

where k and α
c
 are conductivity and coefficient of heat

transfer, respectively; V and S are volume and surface
integrals, respectively, and N is the shape function. The
matrix [F] is given by:

(3)

where Q represents the total heat generation and q
o
 is

the rate of heat conduction  (heat flux) in the domain.11

Once the temperature distribution in the domain is
known, the remaining problem is to find boundary
conditions from the known values of φ.
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Extended Kalman FilterExtended Kalman FilterExtended Kalman FilterExtended Kalman FilterExtended Kalman Filter
The standard Kalman filter addresses the general

problem of trying to estimate ℜ∈x of a dynamic
system governed by a linear stochastic difference
equation. The non-linear relationships between the
process to be estimated and the measurement is
addressed by what is known as an extended Kalman filter.
In this filtering technique, the estimation around the
current estimate is linearized using the partial derivative
of the process and measurement functions. The state
vector nx ℜ∈  is governed by a non-linear stochastic
equation

       (4)

with a measurement mz ℜ∈  that is

(5)

where the non-linear function f relates the state at time
i to the step i+1. It includes as parameters any driving
function u

i
 and the zero-mean process noise w

i
. The

non-linear function h in the measurement equation
relates the state x

i
 to the measurement z

i
. Since individual

values of the noise w
i
 and v

i
 are not known for each time

step, the state and measurement vectors are
approximated without them as in

(6)
and

(7)

where ix̂ is the a posteriori estimate of the state, 1
~

+ix
and iz~ are the approximate state and measurement
vectors, respectively.

Details on the extended Kalman Filter (EKF) equation
can be found elsewhere but the end results are
presented here for completeness.12

• Time update equations -Time update equations -Time update equations -Time update equations -Time update equations - The time update
equations project the state and covariance estimates
from time step i to time step i+1

(8)

(9)

where A
i
 and W

i
 are the process Jacobians at step i, and

Q
i
 is the process noise covariance at step i.

• Measurement update  equat ions -Measurement update  equat ions -Measurement update  equat ions -Measurement update  equat ions -Measurement update  equat ions - The
measurement update equations correct the state and
covariance estimates with the measurement z

i
.

(10)
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Coupling FEM and EKFCoupling FEM and EKFCoupling FEM and EKFCoupling FEM and EKFCoupling FEM and EKF
The boundary value problem described in this paper

requires that the heat boundary be estimated from the
temperature measurement. Fig 1 illustrates how finite
element formulation is coupled with the Kalman filter
loop to achieve this goal. First, it is necessary to assume
an a priori (guess) value of the heat transfer coefficient
(α

c
). The temperature distribution over the entire

domain can now be estimated using finite element
formulation (equation 1). The result from the finite
element code is then compared with that from the
experiment. This comparison is done for the locations
at which the measurements are already known. The
Kalman filter is used to obtain a new set of posteriori
estimates of heat transfer coefficients using error
minimization process. The assumed value of heat
boundary is then updated until the desired error goal
is met. The Kalman filter thus acts as an error
minimization filter in the loop and finite element
formulation acts as a estimator tool.
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MaterialMaterialMaterialMaterialMaterial
The material used for the experiment is Shirahama

sandstone from the Shirahama district in Japan. The
Shirahama sandstone is a fine-grained sandstone.
Samples devoid of any visible cracks were taken for
freezing experiments. The experiments were performed
on fully saturated specimens.

Experimental ProcedureExperimental ProcedureExperimental ProcedureExperimental ProcedureExperimental Procedure
The experimental set up for the freezing tests

consists essentially of a number of temperature sensors
placed along pre-defined directions at specified
distances from the center of the heat source. A prismatic
specimen (30 cm x 45 cm x 15 cm in dimension)was
prepared with a hole of 4.6 cm at its center. Then the
temperature sensors were fixed on the smooth surface
of the specimen at pre-defined distances and directions
and covered with waterproof resin before it was
submerged into water for 3 days to fully saturate it. The
complete experimental layout is shown in Fig 2, and the
position and orientation of the temperature sensors
are shown in Fig 3. The experiments were designed to
cover room temperature as well.

The tests were performed on fully saturated
specimens, which were confined within a thermostat
box so as to closely simulate the adiabatic condition. A
circulation type low-temperature thermostat bath

(TRL-N30L) was used for source temperature variation
from -20°C to 20°C through brine circulation through
the center of the circular hole of the specimen. A thin
cylinder of copper covered with aluminum foil
separated the brine solution from the rock specimen
boundary.

Three sets of experiments were performed for
each of three different source temperatures. The
temperature of the thermo-static bath was maintained
at -20°C, -10°C and -5°C, and the specimen was
subjected to freezing for 12 hours to achieve as low and
stable a temperature as possible. In each case, the
temperature of the thermostatic bath was held constant
and the specimen was subjected to freezing until a
stable temperature was achieved. Once a steady state
condition was achieved, temperatures were recorded.
An automatic data logger was used for data recording,
and measurements were taken every minute.
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Measurements from the experiment consisted of
temperatures at specified radial distances 1, 2, 4 and
8 cm from the heat source. Temperature profile at the
radial distance of 1 cm from the heat source shows the
steep temperature gradients that gradually approach
the steady state condition (Fig 4). After 24 hours of
freezing, a steady state condition can be achieved. A
summary of these steady state temperatures at three
different source inputs is presented in Fig 5.

Results from the experiments were applied to the
structured Fortran code. An arbitrary value of α

c
 =

Fig 1.Fig 1.Fig 1.Fig 1.Fig 1. Program flowchart
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Fig 6.Fig 6.Fig 6.Fig 6.Fig 6. Result from iterative code

10-10 W/cm°C was chosen. The numerical code
estimates the temperature at different nodes. Nodes
specified by numerals 1, 2, 3 and 4 (Fig 3) for which
experimental measurements were already known were
chosen and compared with the temperatures obtained
from the finite element code. The extended Kalman
filter was used to update α

c
 by error minimization

process until the desired goal was achieved.
Fig 5 displays experimental results in the form of

steady state temperature for various source
temperature inputs. When the source temperature was
-20°C, it took 6 iterations to stabilize and reach a
steady state value of heat transfer coefficient (Fig 6).
For the source input of -10°C, the convergence required
5 iterations. However, in the case of a -5°C source
temperature, a steady state condition was obtained in
only 2 iterative processes.

The results show that HTC is a function of source
temperatures (Fig 7). As the source temperature
increases (in a negative direction), the value of HTC
increases remarkably. An increase in the source

Fig 2.Fig 2.Fig 2.Fig 2.Fig 2. Layout of experimental procedure.

Fig 3.Fig 3.Fig 3.Fig 3.Fig 3. Plan view of specimen showing positions of sensors.

Fig 5.Fig 5.Fig 5.Fig 5.Fig 5. Steady state temperature at predefined locations.

  

Fig 4.Fig 4.Fig 4.Fig 4.Fig 4. Temperature transfer at a point 1 cm from the heat source.
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Fig 7.Fig 7.Fig 7.Fig 7.Fig 7. Summary of results showing HTC as a function of source
temperature

temperature from -5°C to -10°C leads to an 10 fold
increase in the value of HTC, while going from -10°C
to -20°C only doubles the HTC value.

Based on these results, we found that it is not suitable
to use heat boundary condition independent of source
temperature as the value for HTC varies greatly
depending on the source input. This variation, however,
tends to narrow as the source temperature decreases.

����-�+���

The primary objective of the work presented in this
paper was to estimate HTC. This was achieved by means
of inverse calculation. The work was centered on one
material, the Shirahama sandstone. The Kalman filtering
technique was used effectively to estimate HTC from
temperature measurements. It is concluded that HTC
is a function of source temperature and therefore it is
not appropriate to use a single value of HTC irrespective
of the degree of heating.

Heat boundary condition is a matter of concern in
many engineering and scientific applications.
Estimation of the coefficient as described in this paper
will improve the accuracy of any simulation related to
heat transfer including those in geo-environmental
fields such as nuclear waste repository, sanitary landfill
and problem of heat transfer from buried high-tension
cables.
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