
A Sequential Procedure
for Manufacturing System Design

Navee Chiadamrong
Industrial Engineering Program, Sirindhorn International Institute of Technology, Thammasat
University, Pathumthani, Thailand, 12121.
* Corresponding author, E-mail: navee@siit.tu.ac.th

Received 29 May 2001
 Accepted 30 May 2002

ABSTRACT  Experimental design is a powerful approach to study the impact of potential variables affecting
systems and provides spontaneous insight for continuous improvement possibilities. Most research in system
design has focused on problems with a single characteristic or response. This paper is concerned with the
application of a design method to problems with multiple characteristics. The study sequentially employs
two optimum-seeking methods to design and optimize a manufacturing system.  The integration between
Taguchi method, which uses robust design concept to reduce the output variation, and the Response Surface
Methodology (RSM), which is a combination of mathematical and statistical techniques, is introduced to
optimize systems with multiple process characteristics.
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 INTRODUCTION
Various approaches, such as mathematical

programming, queueing networks, artificial
intelligence, have been proposed for the design and
control of manufacturing systems. The usefulness of
these tools depends on the nature of the problem. With
the complexity of real systems, it is difficult to study the
systems through an analytical approach. Therefore,
simulation is widely used to study the manufacturing
system’s performance.1 Pros and Cons of using
simulation can be found in Law and Kelton.2

Nevertheless, one major drawback of using simulation
is that it does not prescribe the optimal system
parameter setting. In this study, Taguchi method and
Response Surface Methodology (RSM) are used to
uncover the optimal combination of system parameters
that maximize the outputs of manufacturing systems.

Taguchi method has proven to be successful for the
improvement of process performance. Its objective of
parameter design (also known as robust design) is to
determine the best settings of the process parameters,
which make the process functional performance
insensitive to various sources of variation. In order to
accomplish this objective, Taguchi advocates the use of
Statistical Design of Experiments (SDOE).3 Many
successful applications of Taguchi method have been
reported over the last fifteen years.4 Taguchi parameter
design is very useful if the problem involves
uncontrollable factors such as time between machine
failures and it is valuable when the decision variables
are qualitative or discrete. However, when the input
factors are quantitative and continuous, the RSM is
better suited.1 RSM studies the local geography of the

response surface near the optimal value through the
response function. It is also useful for modeling and
analyzing applications where a response of interest is
influenced by several variables.5

However, both methods can be used to supplement
each other. The Taguchi method can be used to optimize
qualitative variables, while RSM fine-tunes the
quantitative results derived from the Taguchi method
and strives for better solution. Shang and Tadikamalla6,7

and Shang1 have employed this approach by combining
the Taguchi and RSM to study the multi-criteria
performances of manufacturing systems. This study
has followed their hybrid approach but also been
modified to use the process costing method (especially
the opportunity cost) as a means for normalization.
This hybrid approach will reveal an interesting outcome,
highlighting the importance of hybrid requirement
towards multiple process characteristic problems.

OPTIMIZATION OF MULTIPLE PROCESS
CHARACTERISTICS

Most Taguchi and RSM experiments are concerned
with the optimization of a single characteristic and little
attention has been given to optimization of multi-
process characteristics in manufacturing systems4.
With such complex multiple process characteristic
problems, the target value is unknown. As a result,
typical goal programming approach and the multi-
attribute value function method, which are normally
used in operations research for multi-objective
optimization, are not applicable.
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Referring to the system under study, we address the
impact of various operational decisions or controllable
factors (ie, set-up time, batch or magazine size and part
inter-arrival time) and system parameters or
uncontrollable factors (ie, mean time between machine
failures and mean time to repair machines) on multiple
system performance measures (ie, mean flow time, part
waiting time in the system and system utilization). The
decision to be made is to determine the impact of
setting these parameters in order to yield maximum
performance. Since the selected performance measures
could be conflicting among one another. For instance,
throughput can be maximized at the expense of high
WIP. In addition, some variation of parameter settings
could cause different effects to each performance
measure. For instance, an increase in magazine size
may result in longer mean flow time and part waiting
time but lower system utilization. As a result, the
importance of each measure needs to be given in order
to combine different responses into a common response
function, which may be used to represent system’s
outputs as a whole.

The performance measures used in this study have
normally been used to evaluate system performances
in past researches and they also represent inefficiency
of poorly functional systems. Mean flow time is used to

measure the time that a system can respond to a
customer order (the time that a part spends in the
system). Part waiting time is to measure the amount of
time that parts spent in queues waiting to be processed
(WIP level) and finally the system utilization is to
measure how well the resources are effectively utilized.
Given the presence of the selected system performance
measures, we try to balance the different aspects of the
shop performance and come up with an indicator for
costs that are lost and foregone from the system
inefficiency.

MANUFACTURING SYSTEM CHARACTERISTICS

AND SIMULATION MODELING: A CASE STUDY

A case study of a printed circuit board (PCB)
manufacturing plant was performed to demonstrate
the methodology proposed.  This automated plant has
five processing workstations with one raw material
store and one finished product warehouse. In each
workstation, there are 10-20 machines depending on
the capacity requirement by avoiding a serious
bottlenecked station. The plant configuration is shown
in Fig 1 and the type of circuit board plus their
processing routes and operating time are shown in

Fig 1.Fig 1.Fig 1.Fig 1.Fig 1.  System configuration.

Table 1.  Processing route.

                        Board type                                    Processing route         Mean processing time (minute)*

                                  1                                  Station 1-Station 2-Station 4                                   1 – 3 – 4
                                  2                                   Station 1-Station 3                                                   1 – 0.25
                                  3                                  Station 2-Station 3-Station 5                                 7 – 0.25 – 4
                                  4                        Station 3-Station 4-Station 5                             0.25 – 7 – 3

* Normally distributed with 10% of the mean as its standard deviation.
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Table 1. Between workstations, PCBs need to be stacked
in magazines for transporting by small vehicles (10
vehicles). Each magazine contains one batch of PCB
and its size is varied according to the set parameter. The
speed of the vehicles is set at 55 meters/minute and the
nearest idle vehicle to the calling station is selected
when one is called for service.

Raw materials are allowed to enter the system with
equal probability among each board type. When parts
arrive in the system, they enter workstations in a
sequential order as indicated in Table 1. If all machines
in the workstation are busy, they have to wait in a queue
in front of that workstation until a machine in that
workstation becomes available. When a machine is
available, it can select a part to process according to
one of the rules imposed from the parameter setting.
Then, parts follow each stage till the last workstation.
Machines can also be interrupted by failure. Mean time
between machine failures and mean time to repair are
considered as uncontrollable factors (noise). In
addition, when a different board type is to be processed
on a machine, a machine set-up is required. This set-up
time is also an experimental factor.

Owing to the complexity of this manufacturing
system, simulation is employed as a tool for analysis. All
experimental models for the above manufacturing
environment were developed using SIMAN simulation
language.8 For each experimental condition, the model
is run with 10 independently-seeded replications of
15,000 minutes each. The first 3,000 minutes is
truncated to eliminate initialization bias. Three key
performance measures are then collected to represent
the system performance.

PARAMETER SETTING

There are four operational decisions or controllable
factors, which are machine dispatching rule, set-up
time, batch (magazine) size and part inter-arrival time.
Two system parameters or noise factors include mean
time between machine failures (MTBF) and mean time
to repair (MTTR). Table 2 shows associated levels of
each factor. The dispatching rule is the rule for machines
to select a job when it becomes idle. The SPT (shortest
processing time) gives the priority to the job with the
shortest operating time from the current station. TPT
(total processing time) gives the priority to the job that
has the shortest total operating time (total operating
time of the job from the first to the last process). The
operating time x TPT rule dispatches the job that has
the smallest value of operating time of the current
station multiplied by the total operating time of the job.

The above are rules that are generally related with
the processing time and well-known in the part
scheduling research9. All times stated in Table 2 are in
minutes and they are exponentially distributed with
the means shown in the table. Each of the controllable
factors is to be tested over three levels. The noise
factors are uncontrollable during normal operations,
and they are varied over two levels. Due to four noise
combinations and 81 controllable factorial
combinations, 324 experimental conditions result.

THE HYBRID SEQUENTIAL APPROACH

The sequential integration between the Taguchi
method and RSM is introduced to compensate for any

Table 2.  Factors and their associated levels.

               Controllable factors                                                                 Level

                                                                          1                                      2                              3

                  Dispatching rule                           TPT*      Operating time x TPT+             SPT#

                      Set-up time                                           45                                     60                              75
               Magazine size (units)                           15                                      25                              35
               Part inter-arrival time                          180                      200                             220

             Uncontrollable factors                                        Level

                                                                         1                                       2

        Mean time between failures                              500                      700
               Mean time to repair                           30                                      50

* Give higher priority to the part that has the shortest total processing time.
+ Give higher priority to the part that has the smallest multiplication value of the current workstation
  operating time and total operating time of the part.
# Give higher priority to the part that has the shortest processing time at the current workstation. All times
  are in minutes and exponentially distributed with the mean stated in the table.
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drawback that may exist in each method alone.  The
Taguchi method has advantages of reducing time and
cost necessary for experiments and incorporating
robustness into the process while RSM is brought in to
locate the optimum.

TTTTTaguchi Methodaguchi Methodaguchi Methodaguchi Methodaguchi Method
Apart from identifying controllable and

uncontrollable factors, there are four more steps in
performing Taguchi method.

Step 1. Normalization
Since each performance measure has different

measuring units (ie, minutes and machine utilization in
percentage), all measures need to be normalized to the
same cost unit for uniformity purposes. In this study,
the conversion process is carried out by converting
existing units to opportunity costs. These costs are
considered as potential economic benefits that are lost
or sacrificed when the choice of action requires the
giving up of an alternative course of action.10 For
example, if a system was only 80% utilized rather than
fully 100% utilized, it would mean 20% of the system
time, which could have been used to produce more
products, was lost. This opportunity cost does not
represent actual money and cannot be registered in the
accounting system but it plays a significant role in the
improvement of system performance and waste
elimination.

a. Conversion of mean flow time into the opportunity
cost due to having the flow time (if the flow time is zero,
products can be shipped to the customer immediately
and there will be no loss incurred)

Flow time’s opportunity cost = Mean flow time x
Number of finished jobs x Part unit cost x Cost of
capital per unit time

b. Conversion of waiting time into the opportunity
cost due to holding WIP (if there is no inventory, no
waiting time will occur and hence there is no holding
cost)

Waiting time’s opportunity cost = Part waiting time
in the system x Holding cost per unit time

c. Conversion of system utilization into the
opportunity cost due to having machine idle time (if
machines are fully utilized, there will be no loss from
under utilizing machines)

System utilization’s opportunity cost = System idle
time x Efficiency x Depreciation cost x Cost of capital
per unit time

It should be noted that the cost of capital is the
expected cost incurred from time loss through pursuing
one activity and giving up the others. It depends on
each situation when charged. If there is demand, the
cost may be considered as lost profit since opportunities
of making and selling more products are foregone.

However, if no demand, the loss may only be considered
as a capital tied up since finished products are just
being kept inside and no profit is generated. For
normalizing processes in this study, the following cost
structure is assumed.

- Part unit cost = 1,500 Baht
- Machine depreciation rate = 10% of machine

        investment cost per year
- Machine cost = 100,000 Baht per machine
- Machine efficiency = 80%
- Cost of capital » 2% per each replication length
- Holding cost » 10% per each replication length

Step 2. Evaluating performance statistic. (average loss)
 In the Taguchi method, average loss is used to

identify the optimal parameter setting in which the loss
is minimum at the optimal point. Since, a robust design
requires the reduction of variability, the loss function
due to variability is defined as L(y) = c(y-T)2. In this case,
it is desirable to have the lowest loss and thus the ideal
target (T) value is 0. Since characteristics of minimizing
the opportunity cost belongs to this category, the loss
function for this case is L(y) = cy2.  In the case that the
largest value is preferred, such as profit maximization,
the loss function would be L(y) = c(1/y2). In the equation,
we can ignore c, since it is a constant and has no effect
on the optimization procedure. The average loss on
performance measure k due to controllable factor
setting i is defined as:

                                                                               (1)

where:
L

ik
 = average loss on the performance k at

controllable factor i
Y  = performance measure
i   = controllable factor (1= dispatching rule,

2= set-up time, 3= magazine size,
4= part inter-arrival time)

j   = noise factor
kth = kth criterion (1= mean flow time,

2 = part waiting time, 3= system utilization)
lth  = (1st to 10th) replication
n(=4) = total number of outer array (noise

   combination)
p(=10) = total number of replications under
                  each experimental condition, (i,j)

For example, L
13

 is the summation of squares of
system utilization at factor 1 (dispatching rule) of every
noise combination from replication 1 to 10 and divided
by n x p (=40).

Step 3.  Performance measures’ weight assignment.
In multi-criteria optimization, one may see the
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Y
L

n

j
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ik ×
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importance of each performance measure differently.
One company may give more importance to the
throughput than their machine utilization while others
may prefer to keep their inventory low by sacrificing
lower production throughput. Thus, the importance
needs to be given to each criterion according to that
circumstance. The importance in terms of subjective
weights is then established for prioritizing key
performance measures that are in line with the
circumstance and the company plan.

Weighting determination is not a small issue. There
are a number of past researches trying to develop
methods for this weighting decision. Saaty11 developed
the Analytic Hierarchy Process (AHP), which employs
the pairwise comparison method as a ranking tool.
Liang and Wang12 employed a fuzzy multiple criteria
decision-making method to select the best facility site.
Larichev et al.13 introduced ZAPROS, which is a method
to support rank ordering task using ordinal input from
decision makers.

Weighting assignment can have a significant effect
to the final results. Thus, accuracy in weighting
assignment is very important and plays a major role in
obtaining the good system design. However, as this
case study is intended to demonstrate the developed
methodology, an equal weight to each performance
measure is assumed. In more complex cases, the above-
mentioned methods can easily be applied to assist in

this decision process.
Having assigned proper weights to each of the three

performance measures, the weighted performance
measure (total loss), WPM

i
, for controllable factor

setting i, may be defined as:

              WPM
i
 =                                                    (2)

where w
k
 is the weight for performance measure k and

the WPM
i
 is used as the response variable in the RSM.

Thus, the weighted performance measure may be
expressed as:

Weighted performance measure (WPM) or the total loss
of controllable factor setting       i =  0.33L

i1
 + 0.33L

i2
 + 0.33L

i3

                        (3)

Step 4. Computation and plotting of total loss versus
controllable setting level.

Since the Taguchi method emphasizes minimizing
the total loss, Fig 2 leads us to choose the factor of
dispatching rule at level 2 (Operating time x TPT), set-
up time at level 1 (45 minutes), magazine size at level
1 (15 units) and part inter-arrival time at level 3 (220
minutes).  However, it should be noted that there is no
guarantee that choosing these points will lead to
minimizing total loss since it may be at a saddle point.

∑ ×
k

ikk Lw

Fig 2.Fig 2.Fig 2.Fig 2.Fig 2.  Total loss versus controllable factors.
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Response Surface Methodology (RSM)Response Surface Methodology (RSM)Response Surface Methodology (RSM)Response Surface Methodology (RSM)Response Surface Methodology (RSM)
Factor levels recommended by the Taguchi method

are used in this section as the initial setting. Since RSM
cannot accommodate qualitative factors, the
dispatching rule will not be included as a decision
variable. Based on the weighted performance measure,
the best rule, Operating time x TPT, is then used in the
following experiments. Four sequential phases of RSM
may be performed as:

Phase I: First-orPhase I: First-orPhase I: First-orPhase I: First-orPhase I: First-order Analysisder Analysisder Analysisder Analysisder Analysis
The first-order analysis is used to estimate a true

functional relationship between the dependent variable
and the set of independent variables.

Step 1.  Range Determination of  Each Factor
The optimum point suggested from the Taguchi

method is used as a center of the range. The region of
exploration for fitting the model is: set-up time of (40,50)
minutes, magazine size of (10,20) units and part inter-
arrival time of (215,225) minutes

Step 2.  Code independent Variables in a (-1,1) Interval
This is done to simplify the calculations. The levels

of the coded variables are defined as:

X
i
 = (the ith factor’s natural value – present value) / half

the range of the variable                                               (4)

The coded values are X
1
 = (set-up time – 45) / 5, X

2
 =

(magazine size – 15) / 5, X
3
 = (part inter-arrival time – 220)

/ 5 where X
1
, X

2
, X

3
 are coded variables of set-up time,

magazine size and part inter-arrival time respectively.

Step 3. Data Collection
2k (k=3) full factorial design is used and augmented

by four central points. Repeat observations at the center
are used to estimate the experimental error and to
allow for checking the adequacy of the first-order
model. Since each design is simulated and averaged
under four different noise settings, there are 48
experimental conditions in all. Under each experimental
condition, we make further 10 replications with the
length of 15,000 minutes each.

Step 4.  First-order Model Fitting
By using the least square method, we obtain the

following model in the coded variables:

Y = 15,700,300 + 267,835.72 X
1
 + 6,330,771.60 X

2
 –

220,744.66 X
3

                                        (5)

The response, Y, is the total loss while X
1
, X

2
 and X

3

are coded variables, representing set-up time, magazine
size and part inter-arrival time respectively.

Step 5.  First-order Model’s Adequacy Check
The first-order equation gives F-value of 25.422.

Under 95% confidence level, the analysis of variance
(ANOVA) indicates the fitted model is adequate (F

0.05,3,44

= 2.8) and it sufficiently shows a good estimation of
functional relationship between the total loss and the
set of independent coded variables.

Step 6. Method of Steepest Descent
Since we are to minimize the objective function (the

total loss), the steepest descent procedure is chosen
otherwise the steepest ascent is used for the
maximization problems. The path of steepest descent
is the direction in which the response decreases most
rapidly. Therefore, the variable that has the largest
absolute regression coefficient in the model, ie X

2

(magazine size) with β
2
 = 6,330,771.6, is chosen. We

allow a step size of 0.2 in coded units for X
2
, and

calculate the coded step size for other variables as (∆X
i

= β
i
/β

2
) for i=1,2,3. The coded ∆X

i
 is then converted to

the natural variable, DS
i
. This is done by multiplying ∆X

i

with the actual step size (S
i
). The actual step sizes are

selected based on the experimenter’s knowledge of the
process. In this study, we choose S

1
, S

2
, S

3
 equal to 0.2.

Therefore, the steps along the steepest descent path
for ∆X

1
 = (267,835.72/6,330,771.6) x 0.2 = 0.00846

and for ∆X
3
 = (-220,744.66/6,330,771.6) x 0.2 = -

0.00697. Thereafter, we determine the values of each
point along the path of the steepest decent and observe
the yields at these points until an increase in response
is noticed. In Table 3 and Fig 3, the response has
decreased through the tenth step and all steps beyond
this point result in an increase in the total loss. In
addition, we have tried to fit the first-order model at
around the lowest total loss point. However, the first-
order model does not fit. A second-order design is
therefore in place.

Phase II: Second-orPhase II: Second-orPhase II: Second-orPhase II: Second-orPhase II: Second-order analysisder analysisder analysisder analysisder analysis
This procedure is similar to the procedure of the

first-order model fitting. Central composite design is
used for the second-order polynomial approximation.
The optimum point recommended from the first-order
model is used as the starting point. The design is
composed of 2k (k=3) factorial runs augmented with
one center point and 6 axial runs (2k); (±α,0,0), (0,±α,0),
(0,0,±α). The value of α is defined as (number of
treatments)1/4, which is (23)1/4= 1.6818. Each design is
also simulated under four different noise settings so
there are 60 experimental conditions in all. The least
square method is also used to fit the second-order
model. It is found that the model may be expressed in
the following coded variables:
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Response
X1 X2 X3 NT1 (minutes) NT2 (units) NT3 (minutes) Y (Baht)

Origin 0 0 0 45 15 220
Step number 0.00846 0.2 -0.00697 0.0423 1 -0.0349

1 Origin-1 -0.00846 -0.2 0.00697 44.9577 14 220.0349 20,165,034.85
2 Origin-2 -0.01692 -0.4 0.01394 44.9154 13 220.0698 19,684,116.46
3 Origin-3 -0.02538 -0.6 0.02091 44.8731 12 220.1047 16,011,254.75
4 Origin-4 -0.03384 -0.8 0.02788 44.8308 11 220.1396 17,274,306.47
5 Origin-5 -0.0423 -1 0.03485 44.7885 10 220.1745 12,451,712.80
6 Origin-6 -0.05076 -1.2 0.04182 44.7462 9 220.2094 13,091,168.95
7 Origin-7 -0.05922 -1.4 0.04879 44.7039 8 220.2443 13,446,944.76
8 Origin-8 -0.06768 -1.6 0.05576 44.6616 7 220.2792 12,369,454.84
9 Origin-9 -0.07614 -1.8 0.06273 44.6193 6 220.3141 10,276,376.50
10 Origin-10 -0.0846 -2 0.0697 44.577 5 220.349 8,539,343.57
11 Origin-11 -0.09306 -2.2 0.07667 44.5347 4 220.3839 10,280,337.99
12 Origin-12 -0.10152 -2.4 0.08364 44.4924 3 220.4188 11,852,967.87
13 Origin-13 -0.10998 -2.6 0.09061 44.4501 2 220.4537 12,087,544.79
14 Origin-14 -0.11844 -2.8 0.09758 44.4078 1 220.4886 14,565,412.19
15 Origin-15 -0.1269 -3 0.10455 44.3655 1 220.5235 15,018,428.24
16 Origin-16 -0.13536 -3.2 0.11152 44.3232 1 220.5584 16,248,718.17

Coded Variables Natural Variables
Steps

Table 3.  Steepest descent experiment.

Fig 3.Fig 3.Fig 3.Fig 3.Fig 3. Steepest descent experiment on the total loss.
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Y = 8,619,683.3 + 107,807.95X1 + 255,752.23X2 +
7,749.9X3 + 301,103.204X2

1 + 577,471.395X2
2 +

284,833.47X2
3

          (6)

Then, the analysis of variance is carried out for
model adequacy checking. It finds the model is
significant and fits appropriately in which the fitted
model gives F-value of 1,278.11 higher than F

0.05,7,53

which yields the F-value of 2.17. That is the second-
order model adequately approximates the true surface.

Phase III:Phase III:Phase III:Phase III:Phase III: Optimum Solution of the WOptimum Solution of the WOptimum Solution of the WOptimum Solution of the WOptimum Solution of the Weightedeightedeightedeightedeighted
PerPerPerPerPerforforforforformance Measurmance Measurmance Measurmance Measurmance Measureeeee

To find the optimum value that minimizes response,
partial derivation of all variables is carried out and the
outcomes are set to 0.

∂Y/∂X1 = 107,807.95 + 602,206.408 X1 = 0           (7)

∂Y/∂X2 = 255,752.23 + 1,154,942.79 X2 = 0           (8)

∂Y/∂X3 = 7,749.9 + 569,666.94 X3 = 0           (9)

After conversion of these stationary points to their
natural values, the levels of input variables that generate
the near optimal solution are at set-up time = 44.2188
minutes, magazine size = 5 units and part inter-arrival
time = 220.3218 minutes. In addition, the total loss of
8,505,600.97 Baht is found by substituting the values
of the stationary points to the second-order model.

Phase IVPhase IVPhase IVPhase IVPhase IV:   Result V:   Result V:   Result V:   Result V:   Result Verificationerificationerificationerificationerification
To ensure that the result is not arbitrary, we verify

it again by running another set of 30 independently

seeded replications at the suggested point. This set of
data shows the total loss of 8,505,264.65 Baht with the
standard deviation of 419,523. As a result, our previous
estimation of the total loss (8,505,600.97 Baht) is very
close and well within a 95% confidence interval in
relation to the result obtained from the verified
simulation runs.

COMPARISON BETWEEN SINGLE AND MULTIPLE

CRITERIA PERFORMANCE OPTIMIZATION

This hybrid sequential approach has also been put
to a test under a single criteria problem and its results
have been compared with the results obtained from
the multiple criteria optimization approach. Mean flow
time, part waiting time in the system and system
utilization are individually selected as a sole
performance measure. The results presented in Table
4 suggest different levels of the controllable factors
from each individual criterion selected. Results from
the multi-criteria approach clearly shows the lowest
loss when compared to other single criterion
approaches. This strongly indicates benefits from
performing multi-criteria optimizing approach in
relation to a single criterion optimizing approach where
other criteria may consequently get worse as a result
of optimizing one interested criterion in particular. It
should also be noted that the amount of improvement
is highly dependent on each set of data and each
situation. However, the multi-criteria approach is
proven to be suitable for the case where companies
with multiple characteristics are interested to have an
optimal result of their overall interested performances,
rather than a piece by piece information.

Table 4.  Comparison of parameter settings between single and multi-criteria optimization.

                                     Single criteria optimization
      Multicriteria

      Controllable             Minimizing mean          Minimizing part          Minimizing  system            optimization:
          factors                    flow time’s loss         waiting time’s loss            utilization’s loss         Minimizing total loss

    Dispatching rule        Operating time x         Operating time x      Operating time x    Operating time x
                                                     TPT                                TPT                     TPT                                TPT

        Set-up time                         58.4                            24.153                     82.198               44.219
             (min.)

      Magazine size                         9                               14                          5                                  5
             (units)

     Part inter-arrival                  179.5415            227.27                     170.815            220.3218
         time (min.)

           Total loss                    14,772,466.2       19,118,021.2                  14,089,615.3          8,505,264.65
              (Baht)
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CONCLUSION

A methodology has been proposed in this study to
improve manufacturing system design. We extended
the approach considered in Shang and Tadikamalla7 to
include the opportunity costs. These are opportunity
losses in efficiency, information and unnecessary
expenses during production. The estimates of loss
measures determine the optimal factor settings from
the fitted response model. The methodology
sequentially employed two methods, ie  Taguchi method
and Response Surface Methodology. Results obtained
from the proposed hybrid sequential approach have
shown a significant improvement from the results,
which consider each criterian separately.

However, there are some drawbacks in the
approach that need to be remarked. As poor inputs
lead to poor results, weighting decision to each
performance measure and accuracy of the applied
cost structure will play a major role in obtaining good
results. Future work will look into the impact of different
relative weightings of each loss on the multiple
performance measures. Although the approach
attempts to optimize manufacturing system design and
determine a region of the factor space in which
operating specifications are satisfied, the generated
outcome may fall into a local optimum only. However,
if the experiment is well planned and the factor space
is well defined, the true optimum can be achieved.
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