Molecular Characterization of the Divergence of Rare Species of the Genus Afgekia (Papilionoideae, Tribe Tephrosieae) by RAPD Markers and Nucleotide Sequences Analysis

Preecha Prathephaa,* and Visut Baimaib

^aDepartment of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham 44000 Thailand.

^b Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400 Thailand.

* Corresponding author, E-mail: preecha.p@techno.msu.ac.th

Received 22 Feb 2001 Accepted 7 Oct 2002

ABSTRACT The two taxa of the genus *Afgekia*, namely *Afgekia sericea* and *A. mahidolae* are endemic to Thailand. The former species is widely distributed in northeastern Thailand, while the latter has been found only in western Thailand. We previously reported on morphological and cytological data and proposed that these two taxa resulted from allopatric speciation of an ancestral species in different geographical populations. This work provides further characterization of the relationships between them at the DNA level.

According to RAPD data, *A. sericea* and *A. mahidolae* exhibited a high value of genetic distance (D= 0.55). Furthermore, the nucleotide sequences of the internal transcribed spacer of nuclear ribosomal DNA (nrDNA ITS1 and ITS2) and the chloroplast *rbcL* gene of the two taxa were compared. For the ITS regions, the sequence divergence of these spacers between the taxa was very high. This indicated that these two species are probably not recently diverged. For the partial nucleotide sequence of *rbcL* gene, both the divergence at the nucleotide and amino acid level were higher than expected (5.6% for nucleotide, 5.1% for amino acid). These data are likely to reflect the evolutionary process which led to the present patterns of phenotypic and genetic variation between the two taxa.

KEYWORDS: Afgekia, Leguminosae, molecular evolution, rare plant.

INTRODUCTION

The genus Afgekia was proposed by WG Craib in 1927 when he first discovered Afgekia sericea Craib in northeastern Thailand. Then, in 1972 Burtt and Chermsirivathana found the second species, A. mahidolae in western Thailand¹. Moreover, Adinobotrys *filipes* was revised by Geesink² and he placed it in the genus Afgekia. At present time, the genus Afgekia is still a small genus consisting of these three species. Prathepha and Baimai³ reported that *A. sericea* and *A. mahidolae* are likely to be allied species. In addition, the first two species are morphologically similar while the other species are quite remote from them. These two species are wild, woody climbers with showy inflorescence. A. sericea and A. mahidolae differ in a large number of characters, most of which pertain to differences in floral structures.³ Until now, these two taxa have been reported only in Thailand.

Rabinowitz⁴ recognized that species exhibiting the most vulnerable form of rarity are characterized by a narrow geographic range, high specificity to habitat, and low population densities. The two taxa of interest

of the genus *Afgekia* are species that fit this form of rarity. For *A. mahidolae*, the rarity is indicated by its endemic distribution in western Thailand, its habitat is restricted to limestone soils and its low population densities.³ *A. sericea* is not characterized by specificity to habitat, but it has low population densities due to deforestation in northeastern Thailand. Based on this evidence, this species could be recognized as a rare species.⁵ These two species are diploid (2x=16) with similar chromosome characteristics.^{3,6} Molecular evolution studies of the two taxa have not been reported. Thus, this study is the first preliminary molecular research on this genus.

Molecular markers and molecular sequences contain useful information about evolutionary history.^{7,8} Recently, the use of random amplified polymorphic DNAs (RAPDs) has become popular. The arbitrarily primed polymerase chain reaction (or RAPD) amplifies anonymous fragments of DNA from any genome.^{9,10} The size distribution of amplified fragments varies among species. However, closely related species have similar fragment distribution, while distantly related ones are more divergent.¹¹ Thus, RAPD bands

(fragments) distribution contain considerable phylogenetic information.¹²⁻¹⁵ The internal transcribed spacer (ITS) of nuclear ribosomal DNA (nrDNA) have been widely used to resolve phylogenetic relationships for many plant taxa.¹⁶⁻¹⁸ The ITS has several advantages that make it ideal to sequence for phylogenetic analysis of congeneric species such as its rate of evolution is appropriate for studies at the species levels, and it is phylogenetically interpretable, *ie*, the sequences are relatively easy to align because there tends to be very little length variation at the generic levels in flowering plants. The ITS are also quite variable among closely related species of animals.¹⁹

In addition, analysis of chloroplast DNA (cpDNA) sequence variation represents one of the most powerful tools used by scientists to infer phylogenetic relationships of plants.^{20,21} An effective effort has emerged to produce a detailed phylogeny of flowering plants based on sequences of the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase (*rbcL*).⁷ The sequences of the *rbcL* gene have been used to reconstruct the phylogeny of plants.²² Since the *rbcL* gene exists in a single copy in the chloroplast genome, it is not necessary to be concerned about intragenic recombination and inappropriate comparisons among paralogous loci.²³ Based on the comparative sequence of *rbcL*, Kaess and Wink²⁴ provided interesting information on the relation among the Papilionoideae.

In this study we describe the genetic relationships between of *A. sericea* and *A. mahidolae* by using RAPD data and nucleotide sequence analysis of the internal transcribed spacer regions and *rbcL* gene.

MATERIALS AND METHODS

Plant Materials

The plant materials used in this study were collected from natural habitats. Nine individuals were sampled per species from one population in Chaiyaphum province northeastern Thailand, for *A. sericea* and Kanchanaburi, western Thailand for *A. mahidolae*. Voucher specimens were deposited in a greenhouse of Mahasarakham University.

Total DNA Extraction

DNA was isolated from fresh leaves according to the CTAB method of Doyle and Doyle.²⁵ DNA was isolated from nine individuals plants of each species.

RAPD analysis

The DNA samples were used for random amplification according to Prathepha and Baimai.³ Nine random 10-mer primers (OPAS-03,04,05,06, 07, 09, 10, 12 and 19) shown in Table 1 were used for the experiment. The 18 plants examined of the two taxa

Table 1. Sequences of random primers used in RAPDanalysis of A. sericea and A. mahidolae.

Code	Sequence (5' to 3')
OPAS-03	ACGGTICCAC
OPAS-04	GICIIGGGCA
OPAS-05	GICACCIGCI
OPAS-06	GGCGCGTTAG
OPAS-07	GACGAGCAGG
OPAS-09	TGGAGTCCCC
OPAS-10	CCCGTCTACC
OPAS-12	TGACCAGGCA
OPAS-19	TGACAGCCCC

yielded 83 bands. These scored bands were strong and reproducible.

Analysis of RAPD Data

The presence / absence of bands was recorded in binary (0,1) form. Genetic relationships between the two taxa was determined by using the index of genetic distance (D), (D = 1-S). S values were obtained by using a method based on the theory of Nei and Li.²⁶ This method involved estimating the fraction of (shared fragments (S) between the two taxa, using the formula: $S = 2m_{xy} / (m_x + m_y)$, where m_{xy} is the number of RAPD bands shared by the two taxa and m_x and m_y represent the total number of RAPD bands present in each taxon. S can take any value between 0 and 1, with 0 meaning that no common bands exist, and 1 meaning that all bands are identical between these two taxa. In addition, S value was calculated for each primer and mean S value obtained from the average over all primers.

Amplification of ITS1 and ITS2 Regions

The complete ITS regions was amplified using ITS primers designed by Mummenhoff *et al*²⁷ as shown in Fig 1. Amplifications were performed in a volume of 50 ml containing 10 mM Tris-HCl (pH 9.0), 50 mM KCl and 0.1% Triton[®]x-100, 1.5 mM MgCl₂, 40 mM each of dNTPs, 10 mM of each primer, and approximately 150 ng genomic DNA, and 1 U of *Taq* polymerase (Promega). Amplification was performed in a Hybaid thermal cycler, using the following parameters: 94°C for 3 min, followed by 35 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 2 min.

Amplification of rbcL Gene

Primers for the *rbcL* gene were used in this study according to Kaess and Wink.²⁴ The primer pairs are: *rbcLN*, 5' ATG TCA CCA CAA ACA GAA ACT AAA GC 3' and *rbcLR*, 5' TAT CCA TTG CTG GGA ATT CAA ATT TG 3'. Primer pairs used for PCR flank the beginning

Fig 1. Schematic diagram of the repeated unit of 18S, 5.8S and 26Snuclear ribosomal DNA showing the internal transcribed spacer (ITS) regions. The positions of primers used for DNA amplification and sequencing of the ITS1 and ITS2 regions are indicated by arrows. Primer sequence are as follows:

18F:	5'	GGA	AGG	AGA	AGT	CGT	AAC	AAG	G	3'
5.8F:	5'	CTT	CTG	GCC	GAG	GGC	ACG	TC		3
5.8R:	5'	GCT	ACG	TTC	TTC	ATC	GAT	GC		3'
25R:	5'	TCC	TCC	GCT	TAT	TGA	TAT	GC		3'

and the end of the *rbcL* gene. The PCR reaction mixture contained approximately 150 ng of total DNA, 20 picomoles primer pairs *rbcL*-N/*rbcL*-R, 1.5mM MgCl₂, 100mM dNTPs, and 2 Units *Taq* polymerase (Promega). PCR cycle parameters were set as follows after an initial denaturation step for 3 min at 94°C: denaturation of template DNA for 1 min at 94°C, primer annealing for 1 min at 45°C, primer extension for 2 min at 72°C. After 35 cycles a final extension step of 5 min at 72°C was added to allow completion of unfinished strands. Ten microliters of PCR products of ITS 1 and 2 regions and *rbcL* gene were checked for successful amplification and quantified by agarose gel electrophoresis at 75 V for 2 h in a 1.4% agarose (FMC) gel using 0.5x TBE as the gel buffer.

Sequencing Protocol

The PCR products were purified prior to sequencing using QIAquick Gel extraction kit (Qiagen). Direct

sequencing was performed in both directions from the double-stranded DNA fragment using the amplification primers. The Taq Dye Terminator Cycle Sequencing kit (Applied Biosystems) was used as recommended by the manufacturer. The PCR products were analyzed on an ABI 737A autosequencer. For each taxon, forward and reverse sequencing reactions were performed for sequence confirmation.

Sequence Analysis

Nucleotide sequences of the PCR products were aligned with each other and sequence from other species for the beginning and the end of ITS1 and 2 and the *rbcL* gene fragment using the Clustal W computer program (Figs 3-4).²⁸ GC or AT content was manually calculated. The *rbcL* genes were translated to amino acid sequence using the plant plastid code and aligned using Clustal W (Figs 5-6).

RESULTS

RAPD analysis

Nine random primers used in this experiment illustrated that the two taxa could be distinguished by RAPD markers. The RAPD markers generated by some primers are shown in Fig 2a-d. These primers generated from 7 to 14 bands, ranging from 0.35 to 3.2 kb in size. Either monomorphic or species-specific bands were found between the two taxa. For example, two species-specific bands, OPAS03-950 bp and OPAS03-1200 bp were produced by the OPAS03 primer providing marker bands for *A. sericea* and *A. mahidolae*, respectively (Fig 2a). Genetic distance (D) between these two species varied from 0.67 to 0.36 operated by OPAS10 and OPAS12, respectively. The average genetic distance of the two species was 0.55.

Fig 2. RAPD band profiles of *A. sericea* (AS) and *A. mahidolae* (AM) generated by primers OPAS03, a; and OPAS04, b; OPAS07, c; OPAS19, d. M = molecular size market (1 kb ladder, Promega).

Sequence Analysis of ITS Regions

Aligned ITS1 and ITS2 sequences of the two taxa are shown in Figs 3-4. Sequences from adjacent coding regions including the 5.8S rDNA were also obtained from this study (data not shown). The complete ITS sequences of A. sericea and A. mahidolae were nearly the same length, 311 to 319 bp in ITS1 and 213 to 224 bp in ITS2, respectively. The length of ITS1 of the two taxa were larger than the species of the subfamily Papilionoideae that were reported by Kaess and Wink.²⁴ However, the length observed for ITS2 sequences of A. mahidolae falls well within the range reported for other species of Papilionoideae (219-224 bp),²⁴ while the length of ITS2 of *A. sericea* is shorter than the given range. The nucleotide sequences data reported in this study have been deposited with the GenBank Data Library with accession number AF 378104-378107.

Nucleotide composition of the ITS1 was 50.8% G+C, for *A. sericea* and 54.4% for *A. mahidolae*. The two sequences had 54.3% identity. Meanwhile, little nucleotide variation was found within each taxon. A report on legumes by Kaess and Wink²⁴ indicated that the ITS regions of legumes showed little nucleotide variation. Aligned ITS1 sequences between the two taxa resulted in 128 variable characters including 120 nucleotide substitutions and 8 insertions and/or deletions (Fig 3). The transition/transversion ratio was 0.63.

The ITS2 sequence showed less variation between the two taxa than ITS1. For nucleotide data of ITS2, the sequence identity between the two taxa was 71.9%. Nucleotide composition was 47% G+C for *A. sericea*, and 50% G+C for *A. mahidolae*. The pairwise alignment of ITS2 region resulted in 49 variable characters (38 nucleotide substitutions and 11 insertions and/or deletions) (Fig 4). The transition/transversion ratio was 1.4. Based on this study, ITS1 sequences are more variable. Generally, the ITS1 sequences were difficult to resolve unambiguously. These regions were highly G+C rich, resulting in compression and multiple bases at each position.²⁹

rbcL Gene – Sequence Divergence and Nucleotide Site Variation

The *rbcL* gene of the two taxa was about 1.4 kb in size, but only 834 nucleotides were read for *A. sericea* and *A. mahidolae* (Fig 5). The sequence divergence between the two taxa was 5.6%. Alignment of all 834 bp of *rbcL* sequence resulted in 6 classes of nucleotide substitution and required gaps for 2 nucleotides. Most transitions were T to A (or a reciprocal change). Nucleotide substitution includes 11 transitions (TS) and 36 transversions (TV). Thus, the transition/ transversion ratio was 0.31. Sequence divergence of the two taxa was compared to that of two legumes,

Millettia japonica and *Tephrosia grandiflora*. The sequence divergence was 7.9% and 11.6%, respectively, for *A. sericea*, and 9.2% and 11.6%, respectively, for *A. mahidolae*. Sequence variation was very little within the nine examined plants of each taxon.

When the nucleotide sequences of the *rbcl* genes of the two taxa were translated to amino acid sequence by inferring from the typical *rbcL* protein of the two legumes and an outgroup species, Tectona grandis, the first codon of the two nucleotide sequences was GTT, which encodes valine (V). Consequently, the nucleotide sequence obtained from this study gave a protein containing 278 amino acids (Fig 6). Since nucleotide substitution occurred in the *rbcL* gene of the two taxa, this can lead to either different amino acids or same amino acids (silent mutation). The two *rbcL* proteins of the two taxa shared most amino acid sequence (s) (264 out of 278 or 95%). In addition, amino acid sequence divergence was also observed in comparing the proteins among species used as a reference in this study. The partial sequences of the *rbcL* genes of the two taxa has been deposited in GenBank with accession numbers AF 378793 and AF 378794.

DISCUSSION

We previously reported that the rare Thai plant species *Afgekia sericea* and *A. mahidolae* were closely related species. In our previous studies, geographical, morphological and cytological evidence suggest that *A. sericea* and *A. mahidolae* arose as a result of allelic changes and/or chromosomal rearrangements in allopatric populations of the ancestral species.³ Hence, the results obtained from this study will have contributed to of our understanding of speciation and evolutionary relationships in these two species.

In the present study, RAPD fragments that are polymorphic between these two species could be used as RAPD markers to distinguish the two species. The markers can be used as genetic markers for species identification. The sizes of ITS1 and ITS2 regions of *A. sericea* and *A. mahidolae* reported here are complete ITS sequences (with combined length of 524 bp for *A. sericea* and 543 bp for *A. mahidolae*). The ITS sequence of the genus *Afgekia* was longer than other species of the Papilionoideae which were reported by Kaess and Wink (ca. 460 bp).²⁴

Although the internal transcribed spacers are thought to be important in post-transcriptional processing.²⁹ In this study, this region has been shown to be very useful for resolving phylogenetic relationships within plant genera. The percentage of sequence divergence in the internal transcribed spacers 1 and 2 (ITS 1 and 2) between the two taxa was very high, while the nucleotide sequences also showed little variation

A. sericea A. mahidolae	1 15 TCGATGCCTTACGAG TCGATGCCTTACGAG	16 30 CAG-TTCAACC AAGGTCCAAC) 31 CGTG AA CCTGG AA	4 TCTATTTG/ CCTGTTTA	5 46 AGCGT TG(GGGCC TG(60 CTCATGACT CT-ATGACG	AGCT G	L GAGGTGT7 AAGGGGA(75 7. Tag-ca 7. Ccgaaca 7	76 GCACCTCO IGACCTTO	90 CACCACCC 3CCCTC	91 100 TTAGGTTGGG TCAGGCGACC	AGGGG TCCGG
A. sericea A. mahidolae	106 120 GA-CTGTTTAGCACA AAACCTTGTCGCGGA	121 135 TTCCCCTATTG ATGCCTTAATG	G-TC AA	3 1 ACTCAACA AATTAAAA	50 196 ACCCT CA ITCGT CA	acatggaat Agggggaad	0 21 FGTGT T/ CGCCA C	LI AAGGAACT TACGAACT	225 AAACTA / AACGGT /	226 AAATTT-A1 AGCTTCTA	240 FTTGGGG ATTCCGCG	241 25 cAcccccgto gTccccgggt	5 GACTT GCGCC
A. sericea A. mahidolae	256 270 AAAGACAATGTTTGT GTAGATAATCTCTTT	271 285 GCAGGGAGGG TAATAACTGAA	5 286 SCTTTG GG ITTA TAI	3 3 {GG-TGAA(FGCTTTTG(00 301 GCGT AA7 CATTA AA7	I 31 TGAATCTT TGAACAACO	5 31 TGC Av GTCCC Ar	l6 322 A-CAAA TCAATA					
Fig 3. Aligned	ITS1 sequences of A. seric	ea and A. mahidol	lae. Gaps are	indicated by	y a "-".								
A. sericeaA. mahidolaeA. sericeaA. mahidolaeA. mahidolaeA. sericeaA. mahidolae	1 15 CTTCTTT-ACTACC CTTCTTTGAACCTCC 76 90 AAGCTGGAGTTTAG7 GAACCCGAGTTTAG7 151 162 AGT ACTACAGACAGT	16 3 -GTGGCCCC GGTGGCCCC 91 10 91 10 AGGGCAGG A AAGGCAGG-C 163 1 163 1 cTCACTTTTT	0 ACCTA- 0 35GTCTAA 0 35 ATGTGA 1 35 ATACGA 1 1 77 1 2AACAG 0 2AACAA 0 2AACAA 0	st CCTAGGTr CCTAGGTr CCT-GAAGT CCT-GAGTCTCC 106 CCAGTCTCC CCATGG GCCCGG/A	45 45 CTATCG TV CTAACG TV CTAACG TV 120 120 120 3AGCATC CV 192 192 192 192 192 192 192 192 192 192	6 6 6 6 6 6 6 6 6 7 6 7 7 7 7 7 7 7 8 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7	0 6CAGAT 5CAGAT 3CAGAT 13 135 11 ACATGG 7CTTGC 7CTTGC 207 20 6GGAG 6GGAG	61 67 67 67 67 67 67 67 67 67 67 67 67 67	75 GGTTACA GGTTACA GGTTATA 150 TTACTAC CTACTCC 222 TTCACCC TTCACCC TTCACCC	223 22 AGCACC AGCACA	31 GGA CGA		
Fig 4. Aligned	ITS2 sequences of A. seric	ea and A. mahidol	lae. Gaps are	indicated b	y a "-".								
 Afgekia sericea Afgekia mahidu Afgekia mahidu Millettia japoni Tephrosia granutis Tectona granutis 	1 15 GTTGGGTTCA blae GTTGGGTTCA ica GTTGGGTTCC diflora GTTGGGTTCCA	AAGAT 16 AGGCT GGTC AGGCT GGTC AGGCT GGTC AGGCT GGTC AGGCT GGTC	30 2TTAAAGAT 2TGGAAGAT 2TTAAAGAT 2TTAAAGAT	IAT 31 TAT AAA TAT CAA IAT AAA IAT AAA TAT AAA	45 45 TTAACTTATTA TTAACTTATTA TTGAATTATTA TTGAATTATTA TTGACTTATTA TTGACTTATTA	т 46 T ACTO T ACTO T ACTO T ACTO T ACTO	60 CTGAGTAT CTGAGTAT CTGAGTCT CTGACTAT CTGACTAT CTGAATAO	GAA AC GAA AC GAA AC GAA AC GAA AC GAA AC GAA AC	75 CAAAGATAC CAAAGATAC CAAAGATAC CAAAGATAC CAAAGATAC CAAAGATAC	rgat a rgat a rgat a rgat a rgat a	6 TCTTGGCAGG TCTTGGCAGG TCTTGGCAGG TCTTGGCAGG TCTTGGCAGG	DATTIC DATTIC DATTIC DATTIC DATTIC	
 Afgekia sericea Afgekia mahidi Afgekia mahidi Millettia japoni Tephrosia grandis Tectona grandis 	91 105 CGAGTAACTCO olae CGAGTAACTCO tica CGAGTAACTCO diffora CGAGTAACTCO	106 27CAA CCTG 27CAA CCTG 77CAA CCTG 77CAA CCTG 77CAA CCTG 77CAA CCTG	120 120 124GTTCCC 12AGTTCCC 13AGTTCCG 13AGTTCCG 13AGTTCCG	CCT GAA CCT GAA CCT GAA CCT GAA CCT GAA	135 NGAAGCAGGT NGAAGCAGGT NGAAGCAGGT NGAAGCAGGT NGAAGCAGGG	136 136 137 136 137 136 136 136 136 136 136 136 136 136 136	150 TAGCAGCO TAGCAGCO TAGCAGCO TAGCAGCO TAGCAGCO TAGCAGCO	CCGAA TCC CCGAA TCC CCGAA TCC CCGAA TCC CCGAA TCC CCGAA TCC	165 ITCTACTGGG ITCTACTGGG ITCCACTGGG ITCCACTGGG ITCTACTGGG	GACA T GACA T GACA T GACA T CACA T CACA T CACA T	66 180 GGACAACCG GGACAACCG GGACAACCG GGACAACTG GGACAACTG GGACAACTG	16766 176766 16766 16766 16766 16766 16766	

cated by a "-".	
ies. Gaps are indi	
fgekia and other spec	
cies of the genus A	
ces of the two spec	
rbcL gene sequenc	
:ontinued) Aligned	
Fig 5. (c	

 Afgekia sericea Afgekia mahidolae Afilettia japonica Tephrosia grandiflora Fectona grandis 	721 735 GATGAAAGGGCTTT GATGAAAGGGCTTT GCTAAAAGGGGCTGT GATAAAAGGGGCTGT GATGAAAAGGGGCTGT	736 750 TITITTCCCAAAAAT TITITTCCCCAAAAATT ATTTGCCAGAGAATT ATTTGCCAGAGAATT ATTTGCCAGAGAATT ATTTGCTAGAGAATT	751 765 AGGCGTTCCTTTIGGT TGGCGTTCCTTTTTT AGGAGTTCCTATCGT GGGCGTTCCTATCGT GGGAGTTCCTATCGT	766 780 AATGCATGACTCCTT TATGCCTGACTCCTT AATGCATGACTACTTT AATGCATGATTACTT AATGCATGATTACTT AATGCATGATTACTT	781 795 75 AACAGGGGGGGGGGTTCAC AACAGGGGGGGGTTCAC AACAGGGGGGGTTCAC AACAGGGGGGGTTCAC AACAGGGGGGGTTCAC AACAGGGGGGATTCAC	6 810 GGCAAAAACTAACTT TGCAAAAAACAACTT TGCAAAAAACAACTT TGCAAATACTACTT TGCAAATACTAGCTT TGCAAATACTAGCTT
 Afgekia sericea Afgekia mahidolae Millettia japonica Tephrosia grandiflora Fectona grandis 	811 825 AGCTCACTATTGCCG ACCCCCCTATTGCCG GGCTCACTATTGCCG AGCTCATTATTGCCG AGCTCATTATTGCCA	826 840 GGATAATGGG GGATAATGGG GGATAATGGG GAATAATGGT GAATAATGGT AGATAATGGT				

Fig 5. (continued) Aligned rbcL gene sequences of the two species of the genus Afgekia and other species. Caps are indicated by a "-".

Fig 6. Comparison of deduced amino acid sequences of rbcL proteins of the two species of the genus Afgekia and three other species.

among examined plants of each taxon. This suggested that A. sericea and A. mahidolae have not recently diverged or they have mutated very rapidly. Sequence variation of these spacers between the two taxa occurred not only by base substitution but also by a few insertion and deletion events. The base substitution appeared to be congruent based on the aligned data. Since nucleotide sequence divergence was high, the ITS sequences divergence of the two taxa may reflect the evolutionary forces (such as mutation and natural selection) that generated divergence in the process of plant speciation from their common ancestor.

The entire *rbcL* sequence of plant in this subfamily is 1420 bp in length. The length of nucleotide sequences of rbcL gene reported here were 834 bp, with a divergence of 5.6% (all changes) between the two species. In addition, amino acid sequence divergence is about 5.1%. Kaess and Wink²⁴ reported that all plants of Papilionoideae studied have no changes (deletions and/or insertions, or inversions of nucleotides) on *rbcL* sequence. The results from this study contradict that previous study. However, divergence of *rbcL* sequence in chloroplast DNA has been reported within plants in the genus Fagopyrum.²³

The additional molecular data obtained from this study will provide a foundation for future studies on genome evolution within the genus Afgekia.

ACKNOWLEDGEMENTS

The authors would like to thank two anonymous readers for the valuable comments on the draft manuscript. This work was partly supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training grant BRT 142008.

REFERENCES

- 1. Burtt BL and Chermsirivathana C (1971) A second species of Afgekia (Leguminosae) BL Burtt and C Chermsirivathana. Reprint from the Royal Botanic Garden Edinburgh **30**, 131-3.
- 2. Geesink R (1984) Šcala millettiearum : A survey of the genera of Millettieae (Leguminosae-Papilionoideae) with methodological considerations. EJ Brill Leiden University Press, Leiden.
- Prathepha P and Baimai V (1999a) Cytological and morphological characteristics of two closely related species of the genus Afgekia Craib (Leguminosae) from Thailand. Mahidol Journal 6, 23-6.
- 4. Rabinowitz D (1981) Seven forms of rarity, In: The biological aspects of rare plant conservation (Edited by Sunge H), pp 205-17. John Wiley & Sons, Chichester, UK
- 5. Prathepha P and Baimai V (1999b) Genetic differentiation in Thai populations of the rare species Afgekia serica Craib (Leguminosae) revealed by RAPD-PCR assays. Genetica 105, 193-202.
- 6. Prathepha P (1994) Chromosome number of the genus Afgekia Craib (Leguminosae) Cytologia 59, 437-8.
- 7. Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Natl Acad Sci USA 90, 363-7.
- 8. Haymer DS (1994) Random amplified polymorphic DNAs

and microsatellites: What are they, and can they tell us anything we don't already know? Ann Entomol Soc Am 87, 717-22.

- 9. Williams JGK Kubelik AR Livak KJ Rafalski JA and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers
- are useful as genetic markers Nucleic Acids Res 18, 6531-5.
 10. Welsh J and McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18, 7213-8.

- using PCR with arbitrary primers. Nucleic Acids Res 18, 7213-8.
 11. Wilkie SE Isaak PG and Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor App Genet 56, 497-504.
 12. Campos LP Raelson JV and Grant WF (1994) Genome relationship among Lotus species based on random amplified polymorphic DNA (RAPD) Theor Appl Genet 88, 417-22.
 13. Gehrig HH Rosicke H and Kluge M (1997) Detection of DNA polymorphisms in the genus Kalanchoe by RAPD PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of position and ecophysiological photosynthetic behaviour of the species. *Plant Science* **125**, 41-51.
- Noli E Salvi S and Tuberosa R (1997) Comparative analysis of genetic relationships in barley based on RFLP and RAPD markers. Genome 40, 607-16.
- Charmet G Ravel C and Balfourier F (1997) Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94, 1038-46.
- Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants : an example from the compositae. Mol Phylo Evol 1, 3-16.
- 17. Baldwin BG Sanderson MJ Porter JM Wojciechowski MF Baldwin BG Sanderson MJ Porter JM Wolchechowski MF Campbell CS and Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann Miss Bot Gard 82, 247-77.
 Bayer RJ Soltis DE and Soltis PS (1996) Phylogenetic infer-ences in Antennaria (Asteraceae : Gnaphalieae : Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed encours (ITS) Am J Ret 82, 516-57.
- transcribed spacers (ITS). Am J Bot **83**, 516-27 19. Appels R and Honeycutt RL (1986) rDNA: evolution over a
- billion years. In: *DNA systematics*, vol. *II Plants* (Edited by S.K. Dutta SK), pp. 81-135. CRC Press, Boca Raton, Florida. 20. Palmer JD Jansen RK Michaels HJ Chase MW and Manhart,
- Ianici Valleville, and Valleville II of the Market Network (1988) Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard 75, 1180-206.
 Clegg MT Learn GH and Golenberg EM (1991) Molecular evolution of chloroplast DNA. In: Evolution at the molecular level (Edited by Selander RK, Clark AG and Whittam TS), pp. 135-49. Sinauer, Sunderland, MA.
- 22. Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130, s6s26.
- 23. Yasui Y and Ohnishi O (1996) Comparative study of rbcl gene in Fagopyrum and related taxa. *Genes Genet Syst* **71**, 219-24.
- 24. Kaess E and Wink M (1997) Phylogenetic relationships in the Papilionoideae (Family Leguminosae) based on nucle-otide sequences of cpDNA (rbcL) and ncDNA (ITS1 and 2). Mol Phylogen Evol 8, 65-88.
- Doyle JJ and Doyle JL (1987) A rapid DNA isolation proce-dure for small quantities of fresh leaf tissue. *Phytochemical* Bull 19: 11-5.
- 26. Nei M and Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76, 5269-73.
- Mummenhoff K Pranzke A and Koch M (1997) Molecular phylogenetics of Thlaspi S.L. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. Can J Bot 75, 469-82.
- Smith R F Wiese BA Wojzynski MK Davison DB and Worley KC (1996) BCM Search Launcher: An Integrated Interface to Molecular Biology Data Base Search and Analysis Services Available on the World Wide Web. *Genome Res* **6**, 454-62. 29. Downie SR Ramanath S Katz-Downie DS and Llanas E (1998)
- Molecular systematics of Apiaceae subfamily Apioideae: phylogenetic analysis of nuclear ribosomal DNA internal tran-scribed spacer and plastid rpoC1 intron sequences. *Am J Bot* 85, 563-91.
- 30. Moller M and Cronk QCB (1997) Origin and relationships of Saintpaulia(Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am J Bot 84, 956-65.