

Some New Classes of Permutation Polynomials

Suphawan Janphaisaeng^{a, *}, Vichian Laohakosol^b and Ajchara Harnchoowong^c

^a Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.

- ^b Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
- ^c Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330,

Thailand. Corresponding author, E-mail: ??????

Received 24 May 2001 Accepted 19 Mar 2002

Abstract The problem of characterizing permutation polynomials over a finite field is considered. New classes of permutation polynomials are derived extending earlier works of Lidl-Niederreiter, Small and Mollin-Small.

KEYWORDS: permutation polynomials, finite fields.

INTRODUCTION

Let F_q be a finite field with $q = p^n$ elements, where p is prime and n is a fixed positive integer. A polynomial $f(x) \in F_a[x]$ is said to be a **permutation polynomial** of F_a if and only if it is a bijection map from F_a to itself. The general study of permutation polynomials started with Hermite¹⁻³ who considered the case of finite prime fields. For the case of arbitrary finite fields, permutation polynomials were first systematically studied by Dickson.1-3 Very little is known concerning which polynomials are permutation polynomials, despite the attention of numerous authors. Recently, permutations of finite fields have become of considerable interest in the construction of cryptographic systems for the secure transmission of data (see Lidl and Mullen¹). One of the open problems mentioned in Lidl and Mullen^{1, 2} is to find new classes of permutation polynomials of F_{q} . The objective of this paper is to derive some new classes of permutation polynomials extending earlier works of Lidl and Niederreiter³, Small⁴ and Mollin and Small.⁵

LEMMAS

The following criterion, proved first by Hermite for F_p and later by Dickson for F_{q^2} is frequently used and provides an essential tool in discovering most permutation polynomials. Its proof can be found in Lidl and Niederreiter.³

Hermite-Dickson Criterion. A polynomial $f(x) \in F_q[x]$ is a permutation polynomial of F_q if and only if the following two conditions hold:

(1) *f* has exactly one root in F_q ;

(2) for each integer *t* with $1 \le t \le q - 2$ and $t \ne 0$ (mod *p*), the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\le q - 2$.

We first collect here some other auxiliary results that will be later used.

Lemma A. For $f, g \in F_q[x]$ we have f(c) = g(c) for all $c \in F_q$ if and only if $f(x) \equiv g(x) \mod (x^q - x)$.

Proof. See Lidl and Niederreiter.³

Lemma B. Let $a_0, a_1, a_2, ..., a_{q-1}$ be elements of F_q . Then the following two conditions are equivalent:

(1) a_0 , a_1 , a_2 , ..., a_{q-1} are distinct;

(2)
$$\sum_{i=0}^{q-1} a_i^t = \begin{cases} 0 & for \quad t = 0, 1, 2, ..., q-2; \\ -1 & for \quad t = q-1. \end{cases}$$

Proof. See Lidl and Niederreiter.³

Lemma C.

- (1) Every linear polynomial over F_q is a permutation polynomial of F_q .
- (2) The monomial x^i is a permutation polynomial of F_q if and only if gcd (i, q 1) = 1, where gcd denotes the greatest common divisor.

Proof. See Lidl and Niederreiter.³

Lemma D. Let $f(x) \in F_q[x]$, $a \in F_q$ and $b \in F_q^*$. Then the following conditions are equivalent: (1) f permutes F_q ; (2) f(x) + a permutes F_q ; (3) bf(x) permutes F_q .

Proof. See Small.⁴

Lemma E. Let $f(x) = \sum_{i=1}^{n} c_i x^{m_i} \in F_q[x]$, where $m_n > m_{n-1} > ... > m_1 \ge 1$, $\prod_{i=1}^{n} c_i \ne 0$, and let $e = \gcd(m_1, m_2, ..., m_n)$. Then f(x) is a permutation polynomial of F_q if and only if $\gcd(e, q - 1) = 1$ and $\sum_{i=1}^{n} c_i x^{m_i/e}$ is a permutation polynomial of F_q .

Proof. See Mollin and Small.⁵

Lemma F. Let *r* be a positive integer with *gcd* (*r*, q - 1) = 1 and let *s* be a positive divisor of q - 1. Assume $g \in F_q[x]$ is such that $g(x^s)$ has no nonzero root in F_q . Then $f(x) = x^r(g(x^s))^{(q-1)/s}$ is a permutation polynomial of F_q .

Proof. See Lidl and Niederreiter.³

Lemma G. Let $f(x) = x^{p^s} - ax^{p^r}$ where $s > r \ge 0$ and $a \in F_a^*$. Then

- (i) f permutes F_q if and only if a is not a $(p^s p^r)^{th}$ power in F_q ;
- (ii) If *a* is a primitive element in F_q (ie, a generator for the multiplicative group F_q^*), then *f* permutes F_q , unless p = 2 and gcd (s - r, n)= 1 where $q = p^n$.

Proof. See Small.⁴

RESULTS

The next two theorems are modifications of Theorem 7.10 in Lidl and Niederreiter³, derived through further analyses of the original proof.

Theorem 1. Let *r* be a positive integer and *s* be a positive divisor of q - 1. Let $h, g \in F_q[x]$ be such that h(0) = 0, $h(x^r)$ and $g(x^s)$ have no nonzero root in F_q . If for each integer $t, 1 \le t \le q - 2$, the degree of each term in $h(x^r)^t$ is not divisible by *s*, then $f(x) = h(x^r)(g(x^s))^{(q-1)/s}$ is a permutation polynomial of F_q .

Proof. We first show that *f* has exactly one root in F_q . Consider f(x) = 0. Then $h(x^r) = 0$ or $(g(x^s))^{(q-1)/s} = 0$. Since $g(x^s)$ and $h(x^r)$ has no nonzero root in F_q , x = 0 is the only root of *f*. We next show that for each integer *t*, $1 \le t \le q-2$, the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\le q - 2$.

Case 1. s | t, say t = ks with integral k. Then $(f(x))^t = (h(x^r))^t (g(x^s))^{(q-1)k}$. Let $c \in F_q^*$.

Since $c^s \neq 0$ and $g(x^s)$ has no nonzero root in F_q , then $(g(c^s))^{q-1} = 1$. Thus $(f(c))^t = (h(c^r))^t$. Also $(f(0))^t = 0 = (h(0^r))^t$. By Lemma A, $(f(x))^t \quad (h(x^r))^t \mod (x^q - x)$. By assumption, each term in $(h(x^r))^t$ is of the form ax^{ru} where $s \nmid ru$ and a is a constant. Since $s \nmid ru$ and $s \mid (q-1)$, then $ru = (q-1)A + \beta$, where A is integral and $0 < \beta \le q - 2$. Thus $x^{ru} = x^{(q-1)A+\beta} \equiv x^\beta \mod (x^q - x)$.

Case 2. $s \nmid t$. Each term in $(h(x^r))^t$ is of the form ax^{ru} . Since $s \nmid ru$, then $(q-1) \nmid ru$. Thus $(f(x))^t$ is a sum of terms whose exponents are of the form ru + sm where *m* is a nonnegative integer. Since $s \nmid ru$ and $s \mid sm$, then $ru + sm = (q-1)A + \beta$ where *A* is integral and $0 < \beta \le q-2$. Thus $x^{ru+sm} = x^{(q-1)A+\beta} \equiv x^{\beta} \mod (x^q - x)$.

In either case, the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\leq q - 2$. Hence, f(x) is a permutation polynomial of F_q by Hermite-Dickson criterion.

Theorem 2. Let *r* be a positive integer and *s* be a positive divisor of q - 1 such that $gcd(\frac{r(q-1)}{s}, s) = 1$. Let $g \in F_q[x]$ be such that $g(x^s)$ has root only at 0 in F_q . Assume that for each integer $t, 1 \le t \le q - 2$, if $s \mid t$, then the reduction of $(g(x^s))^t \mod (x^q - x)$ has degree $\le q - 2$. Then $f(x) = g(x^s)x^{r(q-1)/s}$ is a permutation polynomial of F_q .

Proof. We first show that *f* has exactly one root in F_q . Since $g(x^s)$ has no nonzero root in F_q , then 0 is the only root of *f*. We next show that for each integer t, $1 \le t \le q - 2$, the reduction of $(f(x))^t \mod (x^q - x)$ has degree $\le q - 2$.

Case 1. *s* | *t*, say *t* = *ks* with integral *k*. Then $(f(x))^t = (g(x^s))^t x^{(q-1)rk}$. Let $c \in F_q^*$. Then $(f(c))^t = (g(c^s))^t$ and $(f(0))^t = 0 = (g(0^s))^t$. By Lemma A, $(f(x))^t \equiv (g(x^s))^t \mod (x^q - x)$.

Case 2. $s \nmid t$. Since each term in $(g(x^s))^t$ is of the form ax^{su} , then $(f(x))^t$ is a sum of terms whose

exponents are of the form
$$su + \frac{rt(q-1)}{s}$$
. If

$$(q-1)/su + \frac{rt(q-1)}{s}$$
, then $s/\frac{rt(q-1)}{s}$, a contradiction.

Thus $su + \frac{rt(q-1)}{s} = (q-1)A + \beta$ where *A* is integral and $0 < \beta \le q-2$, and so $x^{su+rt(q-1)/s} = x^{(q-1)A+\beta} \equiv x^{\beta} \mod (x^q - x)$.

In either case, the reduction of $(f(x))^i \mod (x^q - x)$ has degree $\le q - 2$. By Hermite-Dickson criterion, f(x) is a permutation polynomial of F_q .

The next theorem gives a new class of permutation polynomials by removing an assumption on the coefficients in Theorem 2.5 of Mollin and Small.⁵

Theorem 3. Let $f(x) = ax^i + bx^j + c \in F_q[x], a \neq 0, i > j \ge 1$. Assume that $-ba^{-1}$ is not an $(i - j)^{th}$ power in F_q . If i - j = q - 1 and gcd(j, q - 1) = 1, then f(x) is a permutation polynomial of F_q .

Proof. By Lemma D we know that *f* permutes $F_q \Leftrightarrow x^i + ba^{-1}x^j = x^j(x^{i-j} + ba^{-1})$ permutes F_q . Since gcd (*j*, q - 1) = 1, i - j = q - 1 and $-ba^{-1}$ is not an $(i - j)^{ih}$ power in F_q , by Lemma F, $x^j(x^{i-j} + ba^{-1})$ is a permutation polynomial of F_q , and so is f(x).

Since the hypothesis on $-\dot{b}a^{-1}\beta^{-1}$ in Theorem 2.7 of Mollin and Small⁵ is difficult to check, simplifying this condition, we get the following result.

Theorem 4. Let $f(x) = ax^{i} + bx^{j} + c \in F_{q}[x], a \neq 0, i > j \ge 1, j \mid i \text{ and } gcd(j, q - 1) = 1.$

- (1) If b = 0, then f permutes $F_q \Leftrightarrow gcd (i, q 1) = 1$;
- (2) If $b \neq 0$, then f(x) is not a permutation polynomial of F_q provided that $x^{(ij)-1} + ba^{-1}$ has a nonzero root in F_q .

Proof.

- (1) Assume that b = 0. Then $f(x) = ax^i + c$. By Lemmas C and D, f permutes $F_q \Leftrightarrow x^i$ permutes $F_q \Leftrightarrow gcd (i, q - 1) = 1$.
- (2) Assume that $b \neq 0$. Then $-ba^{-1} \neq 0$. By Lemma E, $x^i + ba^{-1}x^j$ permutes $F_q \Leftrightarrow x^{i/j} + ba^{-1}x = x(x^{(i/j)-1} + ba^{-1})$ permutes F_q . If $x^{(i/j)-1} + ba^{-1}$ has a nonzero root β in F_q , then $x(x^{(i/j)-1} + ba^{-1})$ has both 0 and $\beta \neq 0$ as roots in F_q , so it is not a permutation polynomial of F_q .

The following theorem is an extension of Theorem 2.8 in Mollin and Small.⁵

Theorem 5. Let $f(x) = ax^k + bx^{k-2} + c \in F_q[x]$ with $k \ge 2$ and $a \ne 0$.

(1) For q = 2, f permutes $F_q \Leftrightarrow b = 0$ or k = 2.

odd and $ba^{-1} = 1$.

- (2) Let q = 3. When b = 0, f permutes $F_q \Leftrightarrow k$ is odd. When b 0, f permutes $F_q \Leftrightarrow k$ is
- (3) Let q > 3.
 - (3.1) If f permutes F_q , then either b = 0 or $q \neq \pm 1 \pmod{k}$.
 - (3.2) Assume that $x^2 + ba^{-1}$ has a root in F_q . (i) If b = 0, then f permutes $F_q \Leftrightarrow gcd$ (k, q - 1) = 1.
 - (ii) If $b \neq 0$, then k > 2 implies f(x) is not a permutation polynomial of F_q while for k = 2, F_q has characteristic $2 \Leftrightarrow f$ permutes F_q .

Proof.

(1) Let q = 2. Then f permutes $F_q \Leftrightarrow x^{k-2}(x^2 + ba^{-1})$ permutes $F_q \Leftrightarrow$ either b = 0 or k = 2.

(2) Let q = 3. We have f permutes $F_q \Leftrightarrow x^{k-2}(x^2 + ba^{-1})$ permutes F_q .

Case 2.1 b = 0. Then f permutes $F_q \Leftrightarrow x^k$ permutes F_q $\Leftrightarrow gcd(k, 2) = 1$ (by Lemma C), ie k is odd.

Case 2.2 $b \neq 0$. If $ba^{-1} = 2$, then $h(x) = x^{k-2}(x^2 + 2)$ is not a permutation polynomial of F_q as h(1) = 0 =h(0), which implies that f is not a permutation polynomial of F_q . Assume that $ba^{-1} = 1$. If k = 2, then $f(x) = ax^2 + b + c$ and f(x) is not a permutation polynomial of F_q since gcd(2, 3 - 1) 1. Consider k >2. Let $g(x) = x^{k-2}(x^2 + 2) \in F_q[x]$. Then g(0) = 0, g(1) = 2, $g(2) = 2^{k-1}$, so g(x) is a permutation polynomial of F_q if and only if $2^{k-1} \equiv 1 \pmod{3}$, ie kis odd. Hence f permutes F_q if and only if k is odd.

- (3) Let q > 3.
 - (3.1) By Lemma D, f permutes $F_q \Leftrightarrow$ permutes F_q where $\alpha = -ba^{-1}$. Assume that f permutes F_q . Suppose that $q \equiv \pm$ 1 (mod k) and $b \neq 0$. Then $\alpha \neq 0$. Let

$$n = \frac{q \pm 1}{k}$$
. Then $n \neq q - 1$. By Lemma

B and the fact that f is a permutation polynomial of F_{q} , we have

$$0 = \sum_{\substack{w \in F_q \\ i = 0}} (w^k - \alpha w^{k-2})^n =$$
$$\sum_{\substack{i=0 \\ i = 0}}^n \binom{n}{i} (-\alpha)^i \sum_{\substack{w \in F_q \\ w \in F_q}} w^{kn-2i}.$$

By Lemma B, if $kn - 2i \neq q - 1$, then $\sum_{w \in F_q} w^{kn-2i} = 0.$ Assume that kn - 2i = 0

q-1. Either kn = q-1 which implies i = 0, or kn = q+1 which implies i = 1. Then either kn = q-1, which yields

$$0 = \sum_{i=0}^{n} \binom{n}{i} (-\alpha)^{i} \sum_{w \in F_{q}} w^{kn-2i} = \sum_{w \in F_{q}} w^{g-1} = -1,$$

a contradiction, or $kn = a + 1$, which

a contradiction, or n = q + 1, which yields

$$0 = \sum_{i=0}^{n} \binom{n}{i} (-\alpha)^{i} \sum_{u \in F_{q}} w^{in-2i} = n(-\alpha) \sum_{u \in F_{q}} w^{q-1},$$

so $0 = \sum_{w \in F_q} w^{g-1}$, a contradiction. Hence

either $q \neq \pm 1 \pmod{k}$ or b = 0.

(3.2) Assume that $x^2 + ba^{-1}$ has a root in F_q . We have that f permutes $F_q \Leftrightarrow x^{k-2}(x^2 + ba^{-1})$ permutes F_q . By Lemma C, (i) is trivial. To show that (ii) holds, assume $b \neq 0$. Then $ba^{-1} \neq 0$, so the root of $x^2 + ba^{-1}$ is not zero.

If k > 2, then $x^{k-2}(x^2 + ba^{-1})$ has at least two distinct roots, so $x^{k-2}(x^2 + ba^{-1})$ is not a permutation polynomials of F_a and neither is f.

If k = 2, then f permutes $F_q \iff x^2 + ba^{-1}$ permutes F_q $\iff gcd(2, q - 1) = 1$ $\iff q$ is even $\iff F_q$ has characteristic 2.

Our next theorem gives an analysis of some classes larger than those in Proposition 6 of Small.⁴

Theorem 6. Let $f(x) = x^i - ax^j$, $i > j \ge 1$, *a*, and put k = i - j. (1) For i < q - 1 and $k \ge 2$, if $i \mid (q - 1 + k)$ but $p \nmid \frac{q - 1 + k}{i}$, then f(x) is not a permutation polynomial of F_q .

- (2) Assume that (q 1) | k and (q 1) does not divide i, i - k, 2i, 2i - k, 2i - 2k, ..., (q - 2)i,(q-2)i - k, (q-2)i - 2k, ..., (q-2)i - (q-2)k.Then f(x) is a permutation polynomial of F_q if and only if $a \neq 1$.
- (3) If (q-1) does not divide (q-1)i k, (q-1)i 2k, (q-1)i 3k, ..., (q-1)i (q-2)k, then f(x) is not a permutation polynomial of F_q .

Proof. (1) Let i < q - 1 and $k \ge 2$. Since $2 \le k < i < q - 1$, then q > 3. Assume that $i \mid (q - 1 + k)$ and $p \nmid \frac{q - 1 + k}{i}$, say ir = q - 1 + k. If r = 1, then $i = q - 1 + k \ge q - 1$ which contradicts i < q - 1. Thus r > 1. Now $r \le k(r - 1) = kr - k > ir - k = q - 1$. Suppose that f(x) is a permutation polynomial of F_q . By

$$0 = \sum_{w \in F_q} (w^j - aw^j)^r = \sum_{t=0}^r \binom{r}{t} (-a)^t \sum_{w \in F_q} w^{j(r-t)+jt}.$$

Since i(r - t) + jt = ir - kt = q - 1 + (1 - t)k, the wexponents in the sum, for t = 0, 1, ..., r, are q - 1 + k, q - 1, q - 1 - k, q - 1 - 2k, ..., q - 1 - (r - 1)k. Thus $0 = \sum_{r=0}^{r} \binom{r}{t} (-a)^{t} \sum_{\mu \in F_{q}} w^{j(r-t)+jt} = ra, \text{ so } p \mid r, \text{ a contradiction.}$

(2) Assume that (q - 1) | k and (q - 1) does not divide *i*, *i* - *k*, 2*i*, 2*i* - *k*, 2*i* - 2*k*, ..., (q - 2)i, (q - 2)i- *k*, (q - 2)i - 2k, ..., (q - 2)i - (q - 2)k. By Lemma B we have that *f* permutes

$$F_q \Leftrightarrow \sum_{w \in F_q} (w^j - aw^j)^t = \begin{cases} 0 & for \quad t = 0, 1, ..., q - 2, \\ -1 & for \quad t = q - 1. \end{cases}$$

Analyzing each separate case, we have

$$t = 0: \sum_{w \in F_q} (w^i - aw^i)^i = \sum_{w \in F_q} 1 = 0$$

$$t = 1: \quad \sum_{w \in F_q} (w^{j} - aw^{j})^{t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \sum_{w \in F_q} w^{j} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} (a) \sum_{w \in F_q} w^{j-k} = 0.$$

÷

Lemma B,

$$t = q - 2: \quad \sum_{w \in F_q} (w^{i} - aw^{i})^{t} = \begin{pmatrix} q - 2 \\ 0 \end{pmatrix} \sum_{w \in F_q} w^{(q-2)i} + d^{(q-2)i} + d^{(q-2$$

$$\begin{pmatrix} q-2\\1 \end{pmatrix} (-a) \sum_{w \in F_q} w^{(q-2)i\cdot k} + \dots \\ + \begin{pmatrix} q-2\\q-2 \end{pmatrix} (-a)^{q-2} \sum_{w \in F_q} w^{(q-2)i\cdot (q-2)k} = 0 \, . \\ t = q-1 \colon \sum_{w \in F_q} (w^i - aw^i)^t = \begin{pmatrix} q-1\\0 \end{pmatrix} \sum_{w \in F_q} w^{(q-1)i} + \\ \cdot \begin{pmatrix} q-1\\1 \end{pmatrix} (-a) \sum_{w \in F_q} w^{(q-1)i\cdot k} + \dots \\ + \begin{pmatrix} q-1\\q-1 \end{pmatrix} (-a)^{q-1} \sum_{w \in F_q} w^{(q-1)i\cdot (q-1)k} = (-1)(1-a)^{q-1} \, .$$

If a = 1, then $\sum_{w \in F_q} (w^j - aw^j)^{q-1} = 0$, implying that f(x) is not a permutation polynomial of F_q . If $a \neq 1$, then $\sum_{w \in F_q} (w^j - aw^j)^{q-1} = -1$, so f(x) is a permutation polynomial of F_q .

(3) Assume that (q-1) does not divide (q-1)i - k, (q-1)i - 2k, (q-1)i - 3k, ..., (q-1)i - (q-2)k. From the proof of (2), $\sum_{w \in F_q} (w^j - aw^j)^{q-1} = (-1) + (-a)^{q-1}(-1) \neq 1$, so f(x) is not a permutation polynomial of F_q .

Our last theorem is an extension of Proposition 8(b) in Small.⁴

Theorem 7. Let *a* be a primitive element in F_q , $q = p^n$ and $f(x) = x^{p^s} - ax^{p^r}$, where $s > r \ge 0$. Then *f* permutes $F_q \Leftrightarrow$ one of the following conditions holds :

(1)
$$p > 2$$
;
(2) $p = 2$ and $gcd(s - r, n) > 1$.

Proof. From Lemma G(i), *f* permutes $F_q \Leftrightarrow a$ is not a $(p^s - p^r)^{th}$ power in F_q . We claim that *a* is not a k^{th} power in $F_q \Leftrightarrow gcd(k, q-1) = d > 1$. Assume d = 1. Then uk + v(q-1) = 1 for some integers *u*, *v*. Thus $a = a^{uk+(q-1)v} = a^{uk}$. Since *a* is a primitive element, $a^u = w$ for some $w \in F_q$, yielding $a = w^k$, a k^{th} power. Assume that $a = w^k$ for some $w \in F_q$. Since $a(\neq 0)$ is a primitive element, $w = a^u$ for some integer *u*, $1 \le u \le q-1$. Then $a^{uk-1} = 1$. Thus uk - 1 = (q-1)v for some integer *v*. Since $d \mid k$ and $d \mid (q-1)$, then d = 1, and the claim is proved. From this claim we deduce that

f permutes $F_q \Leftrightarrow gcd (p^s - p^r, q - 1) > 1$.

Case 1.
$$p = 2$$
. Then
 $gcd (p^{s} - p^{r}, q - 1) = gcd (2^{r} (2^{s-r} - 1), 2^{n} - 1) = gcd$
 $(2^{s-r} - 1, 2^{n} - 1) = 2^{gcd (s-r, n)} - 1$.
Thus $gcd (p^{s} - p^{r}, q - 1) = 1 \Leftrightarrow gcd (s - r, n) = 1$.

Case 2. *p* ≠ 2. Then $gcd (p^{s}-p^{r}, q-1) = gcd (p^{r}(p^{s-r}-1), p^{n}-1) = gcd$ $(p^{s-r}-1, p^{n}-1)$. Since *p* ≠ 2, then $gcd (p^{s}-p^{r}, q-1) \ge 2 > 1$, and the result follows.

CONCLUSION

Seven classes of permutation polynomials are derived. The first two classes, which are products of two polynomials, are modifications of those due to Lidl and Niederreiter in 1983. The next three classes, which are polynomials with three terms, are extensions of those due to Mollin and Small in 1987. The last two classes, which are polynomials with two terms, are extensions of those due to Small in 1990.

REFERENCES

- Lidl R and Mullen GL (1988) When does a polynomial over a finite field permute the elements of the field?. *Amer Math Monthly* 95, 243-6.
- Lidl R and Mullen GL (1993) When does a polynomial over a finite field permute the elements of the field?, II Amer Math Monthly 100, 71-4.
- 3. Lidl R and Niederreiter H (1993) *Finite Fields*, pp 347-393. Addison-Wesley, Reading, MA.
- 4. Small C (1990) Permutation binomials. *Internat J Math and Math Sci* 13, 337-42.
- 5. Mollin RA and Small C (1987) On permutation polynomials over finite fields. *Internat J Math and Math Sci* 10, 535-44.