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ABSTRACT The problem of characterizing permutation polynomials over a finite field is considered.
New classes of permutation polynomials are derived extending earlier works of Lidl-Niederreiter, Small
and Mollin-Small.
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INTRODUCTION

Let Fq be a finite field with q = pn elements, where
p is prime and n is a fixed positive integer.  A
polynomial f(x) ∈ Fq[x] is said to be a permutation
polynomial of Fq if and only if it is a bijection map
from Fq to itself.  The general study of permutation
polynomials started with Hermite1-3 who considered
the case of finite prime fields.  For the case of
arbitrary finite fields, permutation polynomials were
first systematically studied by Dickson.1-3  Very little
is known concerning which polynomials are
permutation polynomials, despite the attention of
numerous authors.  Recently, permutations of finite
fields have become of considerable interest in the
construction of cryptographic systems for the secure
transmission of data (see Lidl and Mullen1).  One of
the open problems mentioned in Lidl and Mullen1, 2

is to find new classes of permutation polynomials of
Fq.  The objective of this paper is to derive some
new classes of permutation polynomials extending
earlier works of Lidl and Niederreiter3, Small4 and
Mollin and Small.5

LEMMAS

The following criterion, proved first by Hermite
for Fp and later by Dickson for Fq, is frequently used
and provides an essential tool in discovering most
permutation polynomials.  Its proof can be found in
Lidl and Niederreiter.3

Hermite-Dickson Criterion.  A polynomial f(x)
∈ Fq[x] is a permutation polynomial of Fq if and only
if the following two conditions hold:

(1) f has exactly one root in Fq ;
(2) for each integer t with 1 ≤ t ≤ q – 2 and t  0

(mod p), the reduction of (f(x))t mod (xq – x)
has degree ≤ q – 2.

We first collect here some other auxiliary results
that will be later used.

Lemma A.  For f, g ∈ Fq[x] we have f(c) = g(c) for all
c ∈ Fq if and only if f(x) ≡ g(x) mod (xq – x).

Proof.  See Lidl and Niederreiter.3

Lemma B.  Let a0, a1, a2, ..., aq–1 be elements of Fq.
Then the following two conditions are equivalent:

(1) a0 , a1 , a2 , ..., aq–1 are distinct;

(2) 
    i
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Proof.  See Lidl and Niederreiter.3

Lemma C.
(1) Every linear polynomial over Fq is a permutation

polynomial of Fq.
(2) The monomial xi is a permutation polynomial

of Fq if and only if gcd (i , q – 1) = 1, where
gcd denotes the greatest common divisor.

Proof.  See Lidl and Niederreiter.3

Lemma D.  Let f(x) ∈ Fq[x] , a ∈ Fq and b ∈ Fq
*.

Then the following conditions are equivalent:
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(1) f permutes Fq ;
(2) f(x) + a permutes Fq ;
(3)bf(x) permutes Fq .

Proof.  See Small.4

Lemma E.  Let 
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i

n

i

m

q
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Σ [ ]x , where mn >

mn – 1 > ...> m1 ≥ 1, 
    i=1
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Π ci ≠ 0 , and let e = gcd (m1, m2,

..., mn).  Then f (x) is a permutation polynomial of Fq

if and only if gcd (e, q – 1) = 1 and 
    i
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m e
c x i
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Σ /  is a

permutation polynomial of Fq .

Proof.  See Mollin and Small.5

Lemma F.  Let r be a positive integer with gcd (r,
q – 1) = 1 and let s be a positive divisor of q – 1.
Assume g ∈ Fq[x] is such that g(xs) has no nonzero
root in Fq.  Then f(x) = xr(g(xs))(q – 1) / s is a permutation
polynomial of Fq.

Proof.  See Lidl and Niederreiter.3

Lemma G.  Let   f x x axp ps r

( ) = −  where s > r ≥ 0
and a ∈ Fq

*.  Then

(i) f permutes Fq if and only if a is not a (ps – pr)th

power in Fq ;
(ii)If a is a primitive element in Fq (ie, a generator

for the multiplicative group Fq
*), then f

permutes Fq , unless p = 2 and gcd (s – r, n)
= 1 where q = pn.

Proof.  See Small.4

RESULTS

The next two theorems are modifications of
Theorem 7.10 in Lidl and Niederreiter3, derived
through further analyses of the original proof.

Theorem 1.  Let r be a positive integer and s be a
positive divisor of q – 1.  Let h, g ∈ Fq[x] be such
that h(0) = 0, h(xr) and g(xs) have no nonzero root
in Fq.  If for each integer t, 1 ≤ t ≤ q – 2, the degree of
each term in h(xr)t is not divisible by s, then f(x) =
h(xr)(g(xs))(q - 1)/s is a permutation polynomial of Fq.

Proof.  We first show that f has exactly one root in
Fq.  Consider f(x) = 0.Then h(xr) = 0 or (g(xs))(q - 1)/s

= 0.  Since g(xs) and h(xr) has no nonzero root in Fq

, x = 0 is the only root of f.  We next show that for
each integer t, 1 ≤ t ≤ q – 2, the reduction of (f(x))t

mod (xq – x) has degree ≤ q – 2.

Case 1.  s | t , say t = ks with integral k.  Then (f(x))t

= (h(xr))t(g(xs))(q - 1)k.  Let c ∈ Fq
*.

Since cs ≠ 0 and g(xs) has no nonzero root in Fq, then
(g(cs))q-1 = 1.  Thus (f(c))t = ( h( cr ))t.  Also (f(0))t =
0 = ( h(0r ))t.  By Lemma A, (f(x))t  (h(xr))t mod (xq

– x).  By assumption, each term in (h(xr))t is of the

form axru where s  ru and a is a constant.  Since s 
ru and s | (q - 1), then ru = (q – 1)A + β , where A is
integral and 0 < β ≤ q – 2.  Thus xru = x(q - 1)A+β ≡ xβ

mod (xq – x).

Case 2.  s  t.  Each term in (h(xr))t is of the form

axru.  Since s  ru, then (q – 1)  ru.  Thus (f(x))t is a
sum of terms whose exponents are of the form ru

+ sm where m is a nonnegative integer.  Since s 
ru and s | sm, then ru + sm = (q – 1)A + β where A is
integral and 0 < β ≤ q – 2.  Thus xru + sm = x(q - 1)A+β ≡ xβ

mod (xq – x).
In either case, the reduction of (f(x))t mod (xq –

x) has degree ≤ q – 2.  Hence, f(x) is a permutation
polynomial of Fq by Hermite-Dickson criterion.

Theorem 2.  Let r be a positive integer and s be a

positive divisor of q – 1 such that 
    
gcd

( )
,( )

r q

s
s

− =1
1.

Let g ∈ Fq[x] be such that g(xs) has root only at 0 in
Fq.  Assume that for each integer t, 1 ≤ t ≤ q – 2, if
s | t, then the reduction of (g(xs))t mod (xq – x)
has degree ≤ q – 2.  Then f(x) = g(xs)xr(q - 1)/s is a
permutation polynomial of Fq.

Proof.  We first show that f has exactly one root in
Fq.  Since g(xs) has no nonzero root in Fq, then 0 is
the only root of f.  We next show that for each integer
t, 1 ≤ t ≤ q – 2, the reduction of (f(x))t mod (xq – x)
has degree ≤ q – 2.

Case 1.  s | t, say t = ks with integral k.  Then (f(x))t =
(g(xs))t x(q - 1)rk.  Let c ∈ Fq

*.  Then (f(c))t = (g(cs))t

and (f(0))t = 0 = (g(0s))t.  By Lemma A, (f(x))t ≡
(g(xs))t mod (xq – x).
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Case 2.  s  t.  Since each term in (g(xs))t is of the
form axsu, then (f(x))t is a sum of terms whose

exponents are of the form 
    
su

rt q

s
+ −( )1

.  If

    
( )

( )
q su

rt q

s
− + −

1
1

| , then 
    
s

rt q

s
|

( )−1
, a contradiction.

Thus 
    
su

rt q

s
q+ − = −( )

( ) +
1

1 A β  where A is integral

and 0 < β ≤ q – 2, and so xsu+rt(q - 1)/s = x(q - 1)A+β ≡ xβ mod
(xq – x).

In either case, the reduction of (f(x))t mod (xq -
x) has degree ≤ q – 2.  By Hermite-Dickson criterion,
f(x) is a permutation polynomial of Fq.

The next theorem gives a new class of permutation
polynomials by removing an assumption on the
coefficients in Theorem 2.5 of Mollin and Small.5

Theorem 3.  Let f(x) = axi + bxj + c ∈ Fq[x], a ≠ 0, i >
j ≥ 1.  Assume that – ba-1 is not an (i – j)th power in
Fq.  If i – j = q – 1 and gcd (j, q – 1) = 1, then f(x) is a
permutation polynomial of Fq.

Proof.  By Lemma D we know that f permutes Fq ⇔
xi + ba-1xj = xj(xi–j + ba-1) permutes Fq.  Since gcd (j,
q – 1) = 1, i – j = q – 1 and – ba-1 is not an (i – j)th

power in Fq , by Lemma F, xj(xi – j + ba-1 ) is a
permutation polynomial of Fq, and so is f(x).

Since the hypothesis on – ba-1β -1 in Theorem 2.7
of Mollin and Small5 is difficult to check, simplifying
this condition, we get the following result.

Theorem 4.  Let f(x) = axi + bxj + c ∈ Fq[x], a ≠ 0, i >
j ≥ 1, j | i and gcd (j, q – 1) = 1.

(1) If b = 0, then f permutes Fq ⇔ gcd (i, q – 1)
= 1;

(2) If b ≠ 0, then f(x) is not a permutation
polynomial of Fq provided that x(i/j)–1 + ba-1 has
a nonzero root in Fq.

Proof.
(1)Assume that b = 0.  Then f(x) = axi + c.  By

Lemmas C and D, f permutes Fq ⇔ xi

permutes Fq ⇔ gcd (i, q – 1) = 1.
(2)Assume that b ≠ 0.Then – ba-1 ≠ 0.  By Lemma

E, xi + ba-1xj permutes Fq ⇔ xi / j + ba-1x = x(x(i

/ j) – 1 + ba-1) permutes Fq.  If x
(i / j ) – 1 + ba-1 has a

nonzero root β in Fq, then x(x(i / j) – 1 + ba-1) has
both 0 and β ≠ 0 as roots in Fq, so it is not a
permutation polynomial of Fq.

The following theorem is an extension of
Theorem 2.8 in Mollin and Small.5

Theorem 5.  Let f(x) = axk + bxk – 2 + c ∈ Fq[x] with
k ≥ 2 and a ≠ 0.

(1) For q = 2, f permutes Fq ⇔ b = 0 or k = 2.
(2) Let q = 3.  When b = 0, f permutes Fq ⇔ k is

odd.
When b 0, f permutes Fq ⇔ k is
odd and ba-1 = 1.

(3) Let q > 3.
(3.1) If f permutes Fq, then either b = 0 or

q  ± 1 (mod k).
(3.2) Assume that x2 + ba-1 has a root in Fq.

(i) If b = 0, then f permutes Fq ⇔ gcd
(k, q – 1) = 1.

(ii)If b ≠ 0, then k > 2 implies f (x) is
not a permutation polynomial of
Fq while for k = 2, Fq has
characteristic 2 ⇔ f permutes Fq.

Proof.
(1) Let q = 2.

Then f permutes Fq ⇔ xk - 2 (x2 + ba–1) permutes
         Fq ⇔ either b = 0 or k = 2 .

(2) Let q = 3.  We have f permutes Fq ⇔ xk - 2(x2 +
ba–1) permutes Fq.

Case 2.1 b = 0.
Then f permutes Fq ⇔ xk permutes Fq

⇔ gcd (k, 2) = 1 (by Lemma
     C), ie k is odd.

Case 2.2 b ≠ 0.  If ba –1 = 2, then h(x) = xk - 2 (x 2 + 2) is
not a permutation polynomial of Fq as h(1) = 0 =
h(0), which implies that f is not a permutation
polynomial of Fq.  Assume that ba–1 = 1.  If k = 2, then
f(x) = ax2 + b + c and f(x) is not a permutation
polynomial of Fq since gcd (2, 3 – 1) 1.  Consider k >
2.  Let g(x) = xk - 2(x 2 + 2) ∈ Fq[x].  Then g(0) = 0,
g(1) = 2, g(2) = 2k - 1, so g(x) is a permutation
polynomial of Fq if and only if 2k - 1 ≡ 1(mod 3), ie k
is odd.  Hence f permutes Fq if and only if k is odd.

(3) Let q > 3.

(3.1) By Lemma D, f permutes Fq ⇔
permutes Fq where α = –ba-1.  Assume
that f permutes Fq.  Suppose that q ≡ ±
1 (mod k) and b ≠ 0.Then α ≠ 0.  Let

    
n

q

k
= ±1

.  Then n ≠ q – 1.  By Lemma
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B and the fact that f is a permutation
polynomial of Fq, we have
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By Lemma B, if kn – 2i ≠ q – 1, then

    w F

kn i

q

w
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− =Σ 2 0 .  Assume that kn – 2i =

q – 1.  Either kn = q – 1 which implies
i = 0, or kn = q + 1 which implies i =
1.Then either kn = q – 1, which yields
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a contradiction, or kn = q + 1, which
yields
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0

2 1=
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so 
    

0
1=

∈

−

w F

q

q

wΣ , a contradiction.  Hence

either q  ± 1 (mod k) or b = 0.

(3.2) Assume that x2 + ba-1 has a root in Fq.
We have that f permutes Fq ⇔ xk - 2(x2

+ ba-1) permutes Fq.  By Lemma C, (i)
is trivial.  To show that (ii) holds,
assume b ≠ 0.  Then ba-1 ≠ 0, so the
root of x2 + ba-1 is not zero.

If k > 2, then xk - 2(x2 + ba-1) has at least two distinct
roots, so xk - 2(x2 + ba-1) is not a permutation
polynomials of Fq and neither is f.

If k = 2, then f permutes
Fq ⇔ x2 + ba-1 permutes Fq

⇔ gcd (2, q – 1) = 1
⇔ q is even
⇔ Fq has characteristic 2.

Our next theorem gives an analysis of some
classes larger than those in Proposition 6 of Small.4

Theorem 6.  Let f(x) = xi – axj, i > j ≥ 1, a, and put k
= i – j.

(1)For i < q – 1 and k ≥ 2, if i | (q – 1 + k) but p 

    

q k

i

− +1
, then f(x) is not a permutation

polynomial of Fq.

(2)Assume that (q – 1) | k and (q – 1) does not
divide i, i – k, 2i, 2i – k, 2i – 2k, ..., (q – 2)i,
(q – 2)i – k, (q – 2)i – 2k, ..., (q – 2)i – (q – 2)k.
Then f (x) is a permutation polynomial of Fq

if and only if a ≠ 1.
(3) If (q – 1) does not divide (q – 1)i – k, (q – 1)i

– 2k, (q – 1)i – 3k, ..., (q – 1)i – (q – 2)k, then
f (x) is not a permutation polynomial of Fq.

Proof.  (1) Let i < q – 1 and k ≥ 2.  Since 2 ≤ k < i <
q – 1, then q > 3.  Assume that i | (q – 1 + k) and p 

    

q k

i

− +1
, say ir = q – 1 + k.  If r = 1, then i = q – 1 +

k ≥ q – 1 which contradicts i < q – 1.Thus r > 1.
Now r ≤ k(r – 1) = kr – k > ir – k = q – 1.  Suppose
that f(x) is a permutation polynomial of Fq.  By
Lemma B,
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Since i(r – t) + jt = ir – kt = q – 1 + (1 – t)k, the w-
exponents in the sum, for t = 0, 1, ......, r, are q – 1 +
k, q – 1, q – 1 – k, q – 1 – 2k, ..., q – 1 – (r – 1)k.  Thus
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( ) = ra, so p | r, a contradiction.

(2)Assume that (q – 1)  k and (q – 1) does not
divide i, i – k, 2i, 2i – k, 2i – 2k, ..., (q – 2)i, (q – 2)i
– k, (q – 2)i – 2k, ..., (q – 2)i – (q – 2)k.  By Lemma
B we have that f permutes
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Analyzing each separate case, we have
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If a = 1, then 
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0 , implying that

f(x) is not a permutation polynomial of Fq.  If a ≠ 1,

then 
    w F

i j

q

w aw
∈

− = −Σ ( )
q-1

1, so f(x) is a permutation

polynomial of Fq.

(3)Assume that (q – 1) does not divide (q – 1)i –
k, (q – 1)i – 2k, (q – 1)i – 3k, ..., (q – 1)i – (q – 2)k.

From the proof of (2), 
    w F

i j

q

w aw
∈

− =Σ ( )
q-1  (-1)+

(-a)q-1(-1) ≠ 1, so f (x) is not a permutation poly-
nomial of Fq.

Our last theorem is an extension of Proposition
8(b) in Small.4

Theorem 7.  Let a be a primitive element in Fq, q =

pn and     f x x axp ps r

( ) = − , where s > r ≥ 0.  Then f

permutes Fq ⇔ one of the following conditions holds :

(1)p > 2 ;
(2)p = 2 and gcd (s – r, n) > 1.

Proof.  From Lemma G(i), f permutes Fq ⇔ a is not
a (ps – pr)th power in Fq.  We claim that a is not a kth

power in Fq ⇔ gcd (k, q – 1) = d > 1.  Assume d = 1.
Then uk + v(q – 1) = 1 for some integers u, v.  Thus a
= auk + (q – 1)v = auk.  Since a is a primitive element, au =
w for some w ∈ Fq, yielding a = wk, a kth power.
Assume that a = wk for some w ∈ Fq.  Since a( ≠ 0) is
a primitive element, w = au for some integer u, 1 ≤ u
≤ q – 1.  Then auk – 1 = 1.  Thus uk – 1 = (q – 1)v for
some integer v.  Since d | k and d | (q – 1), then d = 1,
and the claim is proved.  From this claim we deduce
that

f permutes Fq ⇔ gcd (ps – pr, q – 1) > 1.

Case 1.  p = 2.  Then
gcd (ps – pr, q – 1) = gcd (2r (2s - r – 1), 2n – 1) = gcd

(2s - r – 1, 2n – 1) = 2gcd (s – r , n) – 1.
Thus gcd (ps – pr, q – 1) = 1 ⇔ gcd (s – r, n) = 1.

Case 2.  p ≠ 2.  Then
gcd (ps – pr, q – 1) = gcd (pr(ps - r – 1), pn – 1) = gcd

(ps – r – 1, pn – 1).
Since p ≠ 2, then gcd (ps – pr , q – 1) ≥ 2 > 1, and

the result follows.

CONCLUSION

Seven classes of permutation polynomials are
derived.  The first two classes, which are products
of two polynomials, are modifications of those due
to Lidl and Niederreiter in 1983.  The next three
classes, which are polynomials with three terms, are
extensions of those due to Mollin and Small in 1987.
The last two classes, which are polynomials with two
terms, are extensions of those due to Small in 1990.
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