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ABSTRACT Important phase space parameters of the synchrotron oscillation and damping times for the
synchrotron and betatron oscillations have been calculated for the storage ring of the Siam Photon
Source.  The work is implemented by the use of the computer programs in Visual Basic.  The validity of
the calculation has been confirmed by the comparison of the numerical data with the corresponding
values obtained by the analytical calculation.  The results obtained present the important basic data of
the Siam Photon Light Source.  The evaluation procedure and the detailed analysis of the results are
described.
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INTRODUCTION

The Siam Photon Laboratory owns an accelerator
complex named the Siam Photon Source consisting
of a 40-MeV linac, a 1-GeV booster synchrotron and
a 1-GeV storage ring.  Some of the important para-
meters of the Siam Photon ring are given in Table 1.

An electron makes circular motion in a bending
magnetic field around the storage ring.  If the kinetic
energy of the electron is E0 and the magnetic field
strength is B0, the radius of the circle ρ0, is determined
by the balance between the Lorentz force and the
centrifugal force.  ρ0 is given as

ρ0 = E0 / e c B0 (1)

where, e is the electron charge, c the speed of light
in vacuum, and ρ0 the radius of curvature of the
electron trajectory in the field of the bending magnet.
In a storage ring, the bending orbit defined by Eq
(1) connects with a linear trajectory in an adjacent
drift space called the straight section.  The trajectory
formed in this way is called the ideal orbit.  Electrons
with different energies move along the different
trajectories that are closed, if the orbit oscillation to
be mentioned later is not taken into account.  The
trajectories are called the closed orbits.  Electrons
moving along the bent orbits with very high speeds
(almost equal to the light velocity) emit synchrotron
radiation towards the direction of electron motion
and lose their energies.  Consequently they are
retarded along the electron orbit.  The storage ring
is equipped with a RF cavity to accelerate the
electrons in the longitudinal direction and to
compensate the lost energies of electrons in motion.
Since the acceleration is made longitudinally
electrons make longitudinal oscillation along the
closed orbits.  The longitudinal oscillation can be
understood from a different viewpoint.  In a storage
ring, an electron with a higher energy moves along
the longer closed orbit.  If the electron energy
oscillates, the electron makes an oscillatory motion
along the electron orbit.  This longitudinal oscillation
is referred to as the synchrotron oscillation.  The

Table 1. Main parameters of the storage ring in the Siam
Photon Source.

Electron energy, E0 1.0 GeV

Circumference, C 81.3 m

Bending radius, ρ 2.78 m

Momentum compaction factor, α 0.0214

Betatron wave numbers; νx, νy 4.758, 2.823

RF frequency, frf 118 MHz

RF voltage, V 100 kV

Harmonic number, h 32
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quadrupole magnets are installed in a storage ring
to focus the divergent electron beam.  They give
restoring force to electrons that deviate from the ideal
orbit.  Because of the restoring force electrons move
along the trajectories oscillating transversely around
the ideal orbit.  This transverse oscillation is referred
to as the betatron oscillation.

 Let the RF field vary as Vrf = V0 sin ωt and the
synchronous electron arrive at the RF cavity at ωt =
Φs.  If an electron with momentum p0 and revolution
time T0 makes the revolution synchronized with RF
phase Φ = Φs, it is called as a synchronous electron.
Synchronous phase Φs is defined as a phase at which
an electron gains the energy exactly equal to average
energy loss per turn U0 (energy loss at E0).  This
leads to no net change of energy per turn.  This is
shown in Fig 1 that the synchronous electron is
neither accelerated nor decelerated virtually during
one revolution.  An electron with momentum p
slightly different from p0 is on a closed orbit different
from the ideal orbit.  Such an orbit is referred to as
the off-momentum closed orbit and the fractional
momentum deviation d is expressed as (p-p0)/p0.

 The synchronous RF phase Φs must be selected
properly to obtain stable synchrotron oscillations and
it should be in the region π/2 < Φs < π for α > 0.  α is
the momentum compaction factor and the value is
given in Table 1.  Φs is known as the stable fixed
point and represents the motion of synchronous
electron.  The electrons arriving at the RF cavity
around this phase angle can make stable synchrotron
oscillations.  (π - Φs) is known as unstable fixed point
(UFP) and the electrons arriving at the RF cavity at
this phase angle make the unstable motion.  The
torus that passes through UFP is called separatrix,
which separates the longitudinal phase space into

stable and unstable regions.  The stable area inside
the separatrix is known as the RF Bucket area.  The
electrons inside the bucket execute stable phase
oscillations, and gain energy along with the
synchronous electron.  The electrons outside the
bucket will slip into the wrong phase relative to RF
wave and will not be accelerated.  There will be many
RF buckets in a typical storage ring and one such
RF bucket is shown in Fig 1.  The synchrotron
oscillation in phase space with reference to the
energy gain function eV(t) illustrating the Φs, (π -
Φs) and phase stable region is shown in Fig 1.

 In a storage ring, electrons pass through the RF
accelerating field periodically at every T0 seconds
and perform synchrotron oscillations with frequency
fs about the synchronous phase.  In the course of
performing synchrotron oscillations, electrons on the
trajectories reach maximum deviations in the
momentum and the phase.  The maximum momen-
tum deviation and the maximum phase deviation
define the stability limits of the RF bucket.1, 2

 The damping of the synchrotron oscillation is
caused by the fact that the synchrotron radiation
power or the rate of change of energy loss is
dependent on the electron energy.  The total energy
radiated in one revolution can be written as follows.

Urad = CγE2B2/ρ ª CγE4/ρ (2)

where Cγ is the radiation constant, E is the energy
of the electron and ρ is the bending radius.  This
shows the energy loss is proportional to fourth power
of the electron energy.  So the higher energy electrons
lose (radiate) more energy than the lower energy
electrons.  The synchrotron oscillation is damped at
a rate proportional to dUrad/dE.  The average energy
loss is compensated by the longitudinal electric field
of the RF cavity.  The damped synchrotron oscillation
is expressed in terms of angular synchrotron
frequency ωs and damping coefficient αε as given
below.

    τ τ ε εα ω α ωε ε( ) ( )
( ) ( )

t e t e
i t i ts s= =− − − −

0 0
and (3)

where τ and ε are time displacement and energy
deviation with reference to the synchronous particle.
τ0 and ε0 are complex constants determined by the
initial conditions.

The damping of betatron oscillation arises from
the combination of energy loss due to synchrotron
radiation in the direction of particle motion (energy
loss is correlated to the loss in transverse momentum)
and the energy gain through RF accelerating field in

Fig 1. Synchrotron oscillation in the phase space in relation to
the energy gain function eV(t).  The curves illustrated the
synchronous phase angle and the stable region of the
synchrotron oscillation.  Phase space trajectories obtained
at different phase angles with δ = 0 is shown here.
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the longitudinal direction.  The vertical betatron
oscillation is also damped.  When an electron loses
an amount of energy Urad by radiation, the momentum
vector p changes by ∆p such that the change is
parallel and opposite to the direction of momentum
vector p.  During this process, betatron amplitude is
unchanged.  When the energy loss is compensated
by the RF accelerating field in the longitudinal
direction, only the longitudinal component of
momentum is affected.  The RF acceleration does
not change the position y, but the slope y’ is decreased
by the increment of the longitudinal momentum ie,

y’ → (1 - ∆p/p0) y’ (4)

Thus, there is a corresponding change in the
amplitude of betatron oscillation.  Therefore, energy
loss alone does not result in the phase space
damping.

 In case of the horizontal betatron oscillation, we
have to consider the closed orbit changes at an
instant when a photon, which is emitted as the non-
vanishing dispersion function ηx in dipole magnets,
causes this change.  Since we have assumed that the
electrons are moving in the horizontal plane, no
bending occurs in the vertical direction.  Thus ηy is
zero.  This is the reason for ignoring the dispersion
effect in the case of the vertical betatron motion.  The
electron displacement from the ideal orbit is given
by x = xε + xβ where xβ is the betatron displacement
and xε is displacement of off-energy closed orbit.
When the energy of the electron drops by ∆E owing
to the emission of synchrotron radiation, there is a
change in xε by an amount ∆xε = η∆E/E0.  Since the
position of the electron is not changed by finite
change in momentum, the total x does not change,
but there is a compensatory change in xβ (increase
of betatron displacement).  So the average energy
loss due to synchrotron radiation (on the average)
gives rise to some anti-damping, ie, growth in the
horizontal betatron oscillation amplitude.  The effect
of the RF acceleration and its contribution to the
damping of the betatron oscillations is exactly the
same as that of the vertical oscillations as explained
earlier.  The total effect in one revolution can be
obtained by adding the contributions from the
radiation loss and the RF acceleration.

The purpose of this work is to study the motion
of an electron making the synchrotron oscillation
and the betatron oscillation with damping.  The
practical calculation is made in the longitudinal and
transverse phase space by developing the Visual Basic
computer programs.  Accurate results are obtained

in calculating the different parameters as mentioned
below.  This led us to a better understanding of the
results.  In addition to this, the dependence of the
maximum momentum deviation and the maximum
phase deviation on the synchronous phase angle as
well as the variation of synchrotron oscillation
frequency with the maximum momentum deviation
are investigated.

The following parameters have been calculated
for the 1-GeV storage ring of the Siam Photon Source.

1. Synchrotron oscillation frequency (fs)
2. Maximum momentum deviation (δmax)
3. Maximum phase deviation
4. Damping time for the synchrotron oscillation

(τε)
5. Damping time for the vertical betatron

oscillation (τy)
6. Damping time for the horizontal betatron

oscillation (τx)

COMPUTATIONAL METHOD

Longitudinal equations of motion are used to
calculate the parameters like the synchrotron
oscillation frequency, the maximum momentum
deviation and the phase deviation.  The synchrotron
oscillation in phase space is more realistically
described by the following mapping equations3,
which are derived from the synchrotron equations
of motion.

    δ δ βn n n seV E+ = + −
1

2

0
( / )(sin sin )Φ Φ (5)

Φ Φn n nh+ += +
1 1

2π α δ (6)

where δn is the deviation of the electron momentum
from that of the synchronous electron at nth

revolution, e the charge of electron, V the peak RF
voltage, β the velocity of the electron relative to speed
of light, E0 the energy of synchronous electron, Φn

the phase angle of the RF wave seen by the off-
momentum electron at nth revolution, Φs the phase
angle of the RF wave seen by the synchronous
electron, h the harmonic number and α the
momentum compaction factor.

The energy lost by the synchronous electron, U0,
is found by using Eq (2) with E = E0.  The energy
gained by the synchronous electron is eVsinΦs, where
Φs is determined by equating U0 = eVsinΦs and Φs =
161.4370 in the present case.

 An accelerating RF bucket with Φs = 161.4370 is
shown in Fig 1.  The phase space trajectories
around this point are ellipses.  The motion in the
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neighborhood of this point has small amplitude.  The
point corresponding to the set of initial values (Φ0,
δ0) as (161.437, 0) is known as the stable fixed point
(SFP), and represents the motion of the synchronous
electron.  Fig 1 shows the different phase space
trajectories obtained for the initial values (Φ0, δ0)
corresponding to (18.563, 0), (80, 0), (120, 0) and
(161.437, 0).

(18.563, 0) is the unstable fixed point (UFP) and
the phase space trajectories near UFP depart from
elliptical shapes and the electron motion is less linear.
This is a large amplitude motion.

The synchrotron oscillation frequency, an im-
portant characteristic parameter of the synchrotron
oscillation, is determined by the number of revolutions,
n, taken by the electron to complete one period of
synchrotron oscillation.  If the time taken by the
electron to complete one revolution is T0, 1/(nT0)
gives the frequency of synchrotron oscillation.

The maximum momentum deviation and the
maximum phase deviation are characteristic
parameters of the separatrix, and the stability limits
of the RF bucket are defined by these parameters.
The phase space trajectory of the electron, (Φ, δ),
depends on the point (Φ0, δ0) at which it starts.  The
maximum momentum deviation of the electron, δmax,
is obtained by comparing the maximum values of δ
for different trajectories near the separatrix (large
amplitude oscillations occur near separatrix).  The
maximum phase deviation is calculated in the same
way.  This is also known as bucket length.

The energy radiated or the energy loss depends
on the energy of the electron that changes for each
revolution, and the energy gained through the RF
acceleration depends on the phase angle of the RF
wave seen by the electron.  Using the longitudinal
mapping equations (refer to Eqs (5) and (6)) with
the calculation principle described above, the
radiation damping in longitudinal phase space has
been studied.  The following assumptions are made
in damping time calculations:

1. As U0 is typically smaller than the electron
energy by a factor 103 or more, we consider
only the effects that occur over many
revolutions by neglecting the changes in
electron energy during one revolution.

2. The energy, Urad, radiated in one revolution
can be obtained by integrating the
instantaneous power radiated by a relativistic
electron with respect to time.  The instantaneous
power is proportional to the square of the
energy and the magnetic field strength, so Urad

is proportional to E2B2.

The damping time te is the time during which
the electron energy is reduced to 1/e of its maximum
initial energy.  The number of revolutions, n, taken
by the electron to damp down its oscillation energy
to 1/e of its maximum is found by the program and
the damping time is calculated as given below.

    A t A e A em

t

m

t nT( ) / /= =− −τ
ε 0 (7)

Where T0 is the revolution period, A(t) the amplitude
as a function of time, and Am the maximum
amplitude.  For the betatron oscillation, the phase
space coordinates at nth revolution are obtained by
multiplying the transfer matrix for one complete
revolution with the phase space coordinates at
(n-1)th revolution.  Transfer matrix M(s + C/s)
corresponding to one revolution, with s as azimuthal
coordinate and C as circumference, can be expressed
as follows.

 
    

cos 2 2 2

2 2 2

πν α πν β πν
γ πν πν α πν

y y y y

y y y y

+

−−
sin sin

sin cos sin
  (8)

The phase space ellipse that represents the
betatron oscillation is obtained by plotting the
variation of y or x (displacement) and y’ or x’ (slope)
for n revolutions using the transfer matrix
corresponding to one revolution.  Damping times
for the betatron oscillation are calculated by
considering the damping of longitudinal oscillation
and also by using the Eq (4).  Computer programs
developed in Visual Basic are used for the calculation
of different parameters.

RESULTS

Synchrotron oscillation frequency
Let us consider the small amplitude oscillation,

in which the phase does not deviate much from Φs

and the fractional momentum deviation, δ, is very
small.  The small amplitude oscillation frequency is
calculated by finding the number of revolutions in
one period of synchrotron oscillation.  The value
obtained by the program is 11.827 kHz.  The small
amplitude oscillation frequency is given analytically3

in Eq (9).

 fs = f0 ( h e V |_ cos _s| / 2 p b2E0 )
1/2 (9)

Using the parameters of the Siam Photon ring (fo =
3.6875 MHz, β = 1, Φs = 161.4370) in Eq (9), the
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value is 7.157E-3 for the initial values of (Φ0, δ0) as
(18.563, 0).  The δmax that occurs near the separatrix
is also known as the bucket height.  The above results
of the computer simulation can be compared with
the values obtained by the analytical expressions3 in
Eqs (10) and (11).  Using the parameters of the Siam
Photon storage ring and Φs = 161.4370, the obtained
value for momentum acceptance δmax is 7.157E-3,
it is observed that

    δ π β αmax

/( / ) ( )= 2
2 1 2e V E h y sΦ (10)

    
where, ( ) cos ( ) / sin

/

y s s s sΦ Φ Φ Φ= − −π 2 2
1 2

(11)

Momentum acceptance is a function of synchronous
phase angle, Φs.  The maximum momentum
deviation or the momentum acceptance increases as
the synchronous phase angle Φs increases.  The
relationship between the maximum momentum
deviation and the synchronous phase angle is shown
in Fig 4.

Maximum phase deviation
The maximum phase deviation has been

calculated by the computer simulation and the result
is 231.6240 or 4.0426 radians for the initial values
of (Φ0, δ0) as (18.5630, 0).  The result is also shown
in Fig 3.  This parameter shows the boundary of the
RF bucket in terms of Φ, ie, the maximum phase
seen by the off-momentum electron with reference
to that of the longitudinal electric field.  It is
compared with the analytical calculation using the
expressions3 given in Eqs (12) and (13).  The
maximum phase deviation is expressed as

synchrotron oscillation frequency is obtained as
11.84 kHz.  In case of the large amplitude oscillation,
the electron takes higher values of δ and moves
through longer path.  So the number of revolutions,
n, taken by the electron to complete one period of
synchrotron oscillation is greater than that of the
small amplitudes.  This is shown in Fig 2 by plotting
the variation of synchrotron oscillation frequency,
fs, with the amplitude or height of the RF bucket,
δmax.  The data exhibits two characteristic features:

1. The synchrotron oscillation frequency of the
small amplitude oscillation is higher than that
of the large amplitude oscillation.

2. A steep edge occurs near δmax = 0.007

The low amplitude oscillation takes place when the
RF acceleration is made only by the linear part of
the RF voltage.  The large amplitude oscillation
occurs when the acceleration is made even by the
non-linear part of the RF voltage.  The plot in Fig 2
shows that the synchrotron oscillation frequency
becomes very low when the maximum momentum
deviation reaches its higher limit.  The region of
maximum momentum deviation, in which the
synchrotron oscillation frequency drops rapidly with
δmax, is considered the unstable oscillation region.

Maximum momentum deviation
Fig 3 shows the separatrix plotted as the

momentum deviation δ versus the phase angle of
the RF field.  The separatrix illustrated in the phase
space of ε as energy deviation from the synchronous
electron versus τ as difference of arrival time from
that of synchronous electron has a shape similar
to the curve shown in Fig 3.  The maximum
momentum deviation δmax has been calculated
according to the method given in Sec 2.  The obtained

Fig 2. The variation of synchrotron oscillation frequency with
the maximum momentum deviation δmax.
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  |( ) |π − −Φ Φs u (12)

where Φu can be obtained by solving the equation

  cos sin cos ( ) sinΦ Φ Φ Φ Φ Φu u s s s s+ = + −π (13)

For Φs = 161.4370 or 2.8176 radians, Φu equals to
250.1860 or 4.366 radians and the maximum phase
deviation is 231.6230 or 4.04259 radians.  If an
electron is injected into a storage ring with the
momentum and phase deviations below the limits
given by their maximum values, it circulates on a
curved trajectory within the bunch.  If it is injected
outside the separatrix (outside the RF bucket) it is
lost.  The relationship between the maximum phase
deviation and the synchronous phase angle is shown
in Fig 5.  It is observed in Fig 5 that the maximum
phase deviation increases with the synchronous
phase angle.

Radiation damping of the synchrotron oscillation
The radiation damping time is calculated and the

obtained value is 8.19 ms.  The result is also shown
in Fig 6.  Since dUrad/dE > 0, the electron loses energy
in the upper part of its path in phase space relative
to the synchronous electron while it gains energy
in the lower part of its path.  The analysis shows
that the synchrotron oscillation keeps damping
continuously.  Thus with damping, the size of the
ellipse decreases and phase space trajectory is an
inward spiral shown in Fig 6.  The center of the spiral
motion represents the synchronous electron or the
center of the bucket.  In practice, the emission of
photons can excite the oscillation.  Thus equilibrium
is attained in a certain time.  The result is compared
with the analytical calculation using the expressions4

given in Eqs (14) and (15).

    α τ αε ε ε= + =( / )( ); /U E T Do o o2 2 1 (14)

 where, D = R  α / ρ (15)

Here, αε is the damping coefficient.  In Eqs (14) and
(15), (2 + D) denotes the damping partition number
in case of isomagnetic separated function lattice, R
is the effective radius of the ring ie, C/2π.  By
considering the parameters of the Siam Photon
storage ring, the obtained value of U0 is 31.8345 keV/
turn with Cγ = 8.85E-5 m/(GeV)3.  With these
parameters the damping coefficient αε is obtained
as 123.45 s-1 with T0 = 0.271 µs and the damping
time as τε = 8.1msec.

Damping of the vertical betatron oscillation
The damped betatron motion is obtained by using

the principle explained in Sec 1.  The damping is
caused by the RF acceleration.  Through the coupling
with the longitudinal mode, the radiation damping
of the betatron oscillation occurs.  With this concept,

Fig 4. The variation of the maximum momentum deviation, δmax,
with the synchronous phase angle.

Fig 6. Radiation damping of the synchrotron oscillation for the
small and large amplitude oscillation.

Fig 5. The variation of the maximum phase deviation with the
synchronous phase angle Φs.
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a program has been developed to study the radiation
damping of the vertical betatron oscillation in the
phase space.  The damped betatron oscillation in
the phase space makes the inward spiral as shown
in Fig 7.  In the present case, damping time calculation
is done for the ideal situation by neglecting the
magnet imperfections.  Another important parameter
is that the oscillation amplitude corresponds to the
Courant-Snyder integral.

The damping time is taken as the time at which
the amplitude of the oscillation is reduced to 1/e from
its maximum value.  It has been found that the
damping time varies with the starting position of
the electron motion ie, y0 and y0’.  The calculated
damping time is 17.02 msec(maximum).  The value
is confirmed to be correct by comparing the value
obtained with the analytical expression5 given in
Eq (16).

    
α τ αy y yU E To o o= =/ ; /2 1 (16)

Using the parameters of the Siam Photon Source with
U0 equals to 31.8345 keV/turn, T0 = 0.271 µs, the
damping coefficient is obtained as αy =58.7353 s-1

and the damping time as τy = 17.02 msec.

Damping of the horizontal betatron oscillation
The damping time for the horizontal betatron

motion has been calculated in the same way as
explained in the case of vertical betatron oscillation.
Fig 8 shows the damping of horizontal betatron
oscillation and the damping time is found as 17.038
msec(maximum).  Damping time is taken as the time
at which the amplitude of the oscillation is reduced
to 1/e from its maximum value.  It has been observed
that variation of damping time is very much
dependent on the initial values of the particle

position ie, x0 and x0’.  In this calculation dispersion
is set to zero which is not true in case of horizontal
betatron oscillation.  The variation in the energy loss
during one cycle is assumed as constant in this
calculation.  Considering the damping due to the
RF acceleration and anti-damping due to non-zero
dispersion function caused by synchrotron radiation,
the damping coefficient6 is given as

    α τ αx x xD U E To o o= − =( ) / ; /1 2 1 (17)

where D is given by Eq (15).  Using the parameters
of Siam Photon Source, the damping coefficient is
obtained as αx = 52.8846s-1(with D = 0.09961) and
τx = 18.9msec.

SUMMARY AND DISCUSSION

Based on the calculations performed in the
present work, some parameters of the Siam Photon
Storage Ring are evaluated and the obtained values
are listed in Table 2.

Fig 8. Damping of the horizontal betatron oscillation.

Fig 7. Damping of the vertical betatron oscillation.

Table 2. Results of the different parameters obtained
by the computer simulation.

Small amplitude synchrotron 11.83 KHz
oscillation frequency

Momentum acceptance of the 0.007158
RF system

Maximum phase deviation 4.0426
radians

Damping time for synchrotron 8.19 msec
oscillation

Damping time for vertical betatron 17.05 msec
oscillation

Damping time for Horizontal betatron 17.038 msec
oscillation
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The results are in agreement with the values
calculated analytically.  It has been observed that the
synchrotron oscillation frequency varies inversely
with the δmax (maximum momentum deviation), and
the maximum phase deviation increases linearly
with the synchronous phase angle.  These are in
agreement with the theory.  The damping time for
the betatron oscillation is calculated with the
assumption that energy loss during one revolution
is constant.  In case of the horizontal betatron
oscillation the effect of dispersion is not taken into
account.  These are the factors that could have caused
error in the calculation of the damping time.  For
the horizontal betatron oscillation, the area of the
phase space ellipse after damping equals to the
natural emittance.

In a storage ring, the emission of photons occurs
in a stochastic way.  This leads to the fluctuation of
the photon emision and then the energy deviation,
which causes the excitation of the oscillation.  In
the case of vertical betatron oscillation, the excitation
of the oscillation by the emission of photons is
brought about only by the second order effect which
is the momentum recoil to electrons by the photon
momentum.  Thus the resulting oscillation energy
spread is very small as compared with the case of
the horizontal oscillation.  Practically the energy
spread of the vertical oscillation occurs due to the
coupling between the vertical and horizontal
betatron oscillations.  All these practical situations
have been ignored in the present work.  However,
the data obtained here will be used in the calculation
of practical parameters.  The phase space ellipse and
the separatrix obtained here are also important basic
data.  They are used in finding the appropriate
RF acceleration bucket, that is necessary for the
commissioning of the machine.
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