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ABSTRACT Ruffini nerve endings in the periodontal ligament (PDL) of aged mouse maxillary incisors
were investigated by means of immunohistochemistry for protein gene product 9.5 (PGP 9.5) at light
and electron microscopic levels.  C3H/HeSlc mice were sacrificed by perfusion fixation.  Frozen sagittal
cryostat sections of decalcified maxillary incisors were prepared and stained by anti-PGP 9.5 antibody,
followed by biotinylated anti-IgG, to reveal neural elements in the PDL.  Apart from the typical Ruffini
endings distributed throughout the lingual PDL, club-shaped nerve terminations with few, if any, micro-
projections were found among lingual alveolar bone, but not in the lingual PDL of aged mouse incisors.
Ultrastructurally, their nerve terminals contained a marked reduction in the number of mitochondria
and other cytoplasmic organelles, compared with those in the younger stage.  These results illustrated
that Ruffini endings in a distinctive area between alveolar bone may be in the hypofunctional stage,
causing their structures to undergo a regressive change with aging.
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INTRODUCTION

Periodontal ligament (PDL) is a soft, specialized
connective tissue situated between the cementum
covering the root of the tooth and the alveolar bone
forming the socket wall.  In relation to its principal
function, PDL undergoes a complex mechanism of
development1 and is composed of collagenous fibers,
which have been reported to be the most frequently
found structural element in PDL.2  Periodontal
fibroblasts are relatively more active and possess a
remarkably higher turnover rate than the fibroblasts
in other organs.3

Despite its relatively low proportion in PDL,
periodontal nerves and endings are spatially arranged
to determine the response characteristics of the PDL.
Four types of nerve endings, including free endings,
Ruffini endings, coiled endings, and encapsulated
endings, are found in human PDL.4  However, only
free endings and Ruffini endings are found in rodent
PDL, and their histological structures have already
been confirmed.5

Periodontal mechanoreceptors are involved in
the induction of various oral reflexes, which make
regular and smooth mastication possible.6-7  Ruffini
endings, as well as free endings, are believed to
function as mechanoreceptors1, and both are found
in the PDL of all mammals.5  Nevertheless, recent

physiological studies have shown that there is only
one type of periodontal mechanoreceptor.8-10

Protein gene product 9.5 (PGP 9.5) is a cytosolic
protein and belongs to a family of ubiquitin carboxyl-
terminal hydrolases.11  These hydrolases have
modifying effects on the function of T-lymphocyte
homing receptors12, platelet-derived growth factor
receptors13, growth hormone receptors.14  PGP 9.5
is involved in a variety of cellular biological func-
tions.15-16  Recent immunohistochemical research has
shown that PGP 9.5 is a general marker for nerve
and neuroendocrine cells17-20, and is detected as a
cytoplasmic protein contained in central and
peripheral neurons.21  Anti-PGP 9.5 antibody is
reported to be useful for demonstrating nerve
elements in post-natal developing dental structures22,
and particularly Ruffini endings in the PDL.23-24

Rodent incisors continuously erupt and are worn
at the incisal edge by attrition throughout life, which
makes them useful for studies of dental
histogenesis.25-26  Rodent Ruffini endings represent
an appropriate morphology of periodontal
mechanoreceptors and are found only in the lingual
PDL, which is always in the state of tension.27

Though recent reports on configurations of these
endings in neonatal and adult rodents have been
documented23-24, those in the aged animals are very
limited.  Hence, it was the purpose of this study to
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disclose the histological structures of Ruffini endings
in young and aged mice using immunohistochemistry
for PGP 9.5 at light and electron microscopic levels.

MATERIALS AND METHODS

Twelve C3H/HeSlc mice, with ages of 7 and 35
weeks old (n = 6 for each group), were used in this
study.  They were experimentally handled, according
to the instructions of World Health Organization.28-29

Under a deep anaesthetization with diethyl ether,
the mice were perfused through their left ventricles
with 4% paraformaldehyde in 0.1 M phosphate buffer
(PB), pH 7.4.  Their maxillae were removed en bloc,
stored in the same fixative solution at 4 °C for 14
hours, and decalcified in 10% ethylene diamine tetra-
acetic acid (EDTA)-2Na solution, pH 7.4 at 4 °C for
3 weeks.  Then, the decalcified specimens were
immersed overnight in 0.01 M phosphate-buffered
saline (PBS) containing 30% sucrose solution at 4 °C.

Frozen sections, 20 µm thick, were prepared
sagittally and serially using a cryostat (Leica
CM3000), and collected on poly-L-lysine-coated
glass slides (Matsunami, Osaka, Japan).  The avidin-
biotin-complex (ABC) method was performed after
incubating in 0.01 M PBS containing 0.3% Triton X-
100 (Sigma Chemicals, St Louis, MO, USA) at room
temperature for 15 minutes.  The sections were then
processed using immunohistochemistry for PGP 9.5.
Free-floating 50 µm thick sections were also
conventionally prepared for the transmission
electron microscopic observation.

Immunohistochemistry for PGP 9.5 at the light
microscopic level

Prior to an incubation with the primary antibody,
endogenous peroxidase activity and non-specific
binding were blocked using 0.3% H2O2 in absolute
methanol and 2% normal goat serum (Vector
Laboratories, Burlingame, CA, USA), respectively.
The sections were then incubated with a rabbit
polyclonal antiserum against human PGP 9.5
(Ultraclone), diluted 1:10,000 with 0.01 M PBS, in
a humid chamber at 37 °C overnight.  The sections
were subsequently incubated with biotinylated anti-
rabbit IgG (Chemicon, CA, USA) and ABC complex,
according to the manufacturers’ instructions (Vector
Laboratories).  For the final visualization of immuno-
reactive sites, the sections were treated with 0.02%
3,3-diaminobenzidine tetrahydrochloride and 0.01%
H2O2 in 0.05 M tris-HCl buffer, pH 7.6.  After rinsing,
the sections were counterstained with 1% methyl
green, dehydrated in ascending graded series of

ethanol, cleared in xylene, and mounted with
Entellan new (E Merck, Darmstadt, Germany).
Specificity of immunohistochemistry for PGP 9.5
was verified by replacing the primary antibody with
non-immune rabbit antiserum and by omitting the
treatment with anti-rabbit IgG or ABC complex.

Immunohistochemistry for PGP 9.5 at the electron
microscopic level

Free-floating 50 µm thick sections were
processed for PGP 9.5 immunohistochemistry as
described above, except that pre-treatment with
0.3% H2O2 in absolute methanol, Triton X-100 and
counterstaining were omitted.  After light
microscopic observation and photography, the
sections were post-fixed with 2% glutaraldehyde in
0.1 M phosphate buffer (PB, pH 7.4) for 2 hours,
and with 1% osmium tetroxide (OsO4) reduced with
1.5% potassium ferrocyanide in the same buffer
for 2 hours.  The sections were then dehydrated
through graded series of ethanol, infiltrated and flat-
embedded in Epon 812.  Ultra-thin sections were
cut with a diamond knife, double-stained with uranyl
acetate and lead citrate, and examined under a
transmission electron microscope (Hitachi H-800)
at an accelerating voltage of 75 kV.

For ultrastructural observations, some mice were
perfused with a mixture of 3% paraformaldehyde and
2.5% glutaraldehyde in 0.1 M PB, pH 7.4, followed
by EDTA decalcification, OsO4 post-fixation, and
embedding in Epon 812.

RESULTS
In all animals, it was found that thick nerve

bundles positively immunoreacted to anti-PGP 9.5
antibody entered the lingual periodontal ligament
through slits in the lingual bone (Fig 1a, b).  Some
of them branched toward the incisal and basal
directions.  The nerve bundles then diverged in a
dendritic form, and each of them terminated in
dilated bulbs as Ruffini nerve endings.  The endings
were closely associated with periodontal collagenous
fibers restricted to the alveolus-end of the PDL, and
were seen throughout a large area of PDL.  At high
magnification (Fig 2), Ruffini endings possessed
irregular outlines with numerous fine micro- or
finger-like projections.  In addition, some thin nerve
endings were also observable.  Ultrastructural
observation revealed that Ruffini endings consisted
of expanded axon terminals filled with numerous
mitochondria (Fig 3).  The axon terminals were
covered by thick Schwann sheaths, and externally
surrounded by several layers of basal lamina, which
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were penetrated by collagenous fibrils.  Moreover,
some axonal spines were occasionally found
extending from the axon terminals through slits in
the Schwann sheath.

In the PDL of aged mice, lingual alveolar bone
was composed of 2 parts, ie, the old (area under the
demarcated area in Fig 1b) and the newly formed
(area above the demarcated area in Fig 1b) segments.
Ruffini endings with the previously recognized
structures were detected above the latter part.
Additionally, some endings found under that newly
formed alveolar bone were trapped in a narrow and
small portion of the PDL between the alveolar bone.
Such endings possessed a club-shaped configuration
with few, if any, micro-projections (Fig 4).  Immuno-
electron microscopic observation of these endings
(Fig 5) revealed a smooth contour and a marked
decrease in the number of mitochondria and small
vesicles of 30-130 nm in diameter in comparison
with those in the young animals.

DISCUSSION

For light microscopy, nerve fibers are commonly
revealed by silver impregnation and immunohisto-
chemical methods.  However, silver provides non-
specific stains for other extracellular substances in
periodontal ligament (PDL) such as oxytalan and
elaunin fibers.30-31  It is thus considered an inappro-
priate label for periodontal nerves.  On the other
hand, the use of immunohistochemistry clearly

Fig 2. Light micrograph showing a typical Ruffini ending in the
lingual periodontal ligament of a 7-week-old mouse.  The
endings exhibit irregular outlines and possess numerous
fine micro-projections (arrowheads).  A thin nerve ending
is also noted (arrow).  Bar = 25 µm.

Fig 1. Light micrograph showing distribution of PGP 9.5-
immunoreactive nerve elements in the lingual periodontal
ligament (PDL) of the incisors of mice with the ages of 7
(a) and 35 (b) weeks old.  Large nerve bundles (NB) enter
the lingual PDL through slits of the alveolar bone (AB),
and branch toward the incisal and basal directions.  They
terminate as thin free endings or thick Ruffini-like endings.
Large arrow indicates the direction of incisal edge, BV:
blood vessel, C: cementum, DP: dental pulp.  Bar = 200
µm.

Fig 3. Transmission electron micrograph of typical Ruffini
endings in the periodontal ligament of a 7-week-old mouse
demonstrating an axon terminals (AT) enclosed with
Schwann sheath (SS) and basal lamina.  Note a large
number of mitochondria in the terminal and an axonal
spine (arrow) extending from the terminal to basal lamina
through a slit in the Schwann sheath.  Bar = 1 µm.
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distinguishes nerve and other components.  Recently,
periodontal nerve endings have been successfully
stained by several markers.5, 27  Neurofilament
protein (NFP) and neuropeptides, which are used
as neuronal markers, enable a visualization of some
periodontal nerves.  Anti-NFP and anti-neuropeptides
are suitable and efficient for the detection of A delta
and C fibers, respectively.32  Being within the A beta
range33, Ruffini endings (RE) possess no immuno-

reactivity for neuropeptides34-36, and their detailed
structures are undetectable by the use of immuno-
histochemistry for NFP.5, 24, 37  Protein gene product
(PGP 9.5), on the contrary, is distributed in both
central and peripheral nerves and is a general marker
for nerve and neuroendocrine cells.17, 20  Since its
ability in a revelation of nerves in dental structures22

and of RE in the PDL23, 27 has been demonstrated,
anti-PGP 9.5 antibody was used in this study to
disclose neural elements in the PDL of mouse
incisors.

The PDL of mammals is adapted to its
predominate function, supporting the teeth in their
alveolar sockets and concomitantly permitting them
to withstand considerable force during mastication.
The orientation and development of PDL fibers are
dependent on the masticatory force.  Recent studies
of rodent periodontal fibroblasts have shown some
age- and force-related changes in their con-
figuration.38-39  Apart from its shortest in vitro life-
span when compared with those in other connective
tissues40, the aged periodontal fibroblasts develop
more catabolic activity of cathepsin41, indicating an
increase in the periodontal breakdown by the
fibroblasts themselves.  Additionally, the aged
fibroblasts tend to fuse and form multinucleated
cells42, which eventually are involved in phagocytosis
and intracellular degradation of incorporated
collagenous fibrils.43  Interestingly, the aged PDL
fibroblasts of humans also play a role in destruction
of hard tissue.  A recent in vitro study by Sawa et al44

has shown that the production potential of
osteocalcin, a non-collagenous protein of alveolar
bone, is impaired by the aged PDL fibroblasts in
culture.  In response to both internal and external
stimuli, the aged PDL fibers can degrade both
themselves and their surrounding structures.

Post-natal morphology of mouse periodontal RE
undergoes a complex developmental process, and
functional stimuli contribute to their final differentia-
tion.23  Periodontal nerves possessing an expanded
configuration first appear in PDL 4 days after birth.
Nakakura-Ohshima et al24 studied the ultrastructures
of the developing RE in post-natal rats and observed
that the bulbous portions possess several mito-
chondria and various kinds of vesicles.  They
gradually increase their number, and the ones with
morphological structures similar to RE in adult rats
are noticeable around 7-11 days after birth, the time
when eruption of incisors is recognized.  During this
stage, some parts of the axon terminals extend
through the slits of Schwann sheath and form finger-
like projections or axonal spines.  After a com-

Fig 4. Light micrograph of the demarcated area in Fig 1b, at high
magnification showing Ruffini endings which are
noticeable only in the 35-week-old mice and exhibit a club-
shaped structure with few micro-projections.  The endings
are situated in a narrow and small portion of the
periodontal ligament and among the alveolar bone.  Bar =
10 µm.

Fig 5. Immuno-electron micrograph of the club-shaped Ruffini
endings shown in Fig 4.  The axon terminal (AT) possesses
a smooth contour and a relative decrease in mitochondrial
number.  SS: Schwann sheath.  Bar = 3 µm.
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