
Chaos and Control Action in a Kolmogorov Type
Model for Food Webs with Harvesting or Replenishment

Yongwimon Lenbury*, Adoon Pansuwan, Nardtida Tumrasvin
Department of Mathematics Faculty of Science, Mahidol University, Rama 6 Rd,

Bangkok 10400, Thailand.
* Corresponding author, E-mail: scylb@mahidol.ac.th

Received 11 Sep 2001
Accepted 8 Feb 2002

ABSTRACT In this paper, we apply the feedback decoupling technique to a Kolmogorov type model for
three species food webs with harvesting or replenishment.  A feedback control law is derived to decouple
the effect of predators from prey dynamics.  It is found that the necessary and sufficient conditions for
the existence of the decoupling control law rely on the persistence of the prey population and the fact
that the specific growth rate of prey depends explicitly on the superpredator population density at any
moment in time.  It is shown that, without any control action of regulated replenishment or harvesting,
irregular or chaotic behavior is possible in such a process for certain ranges of the system parameters.
This is illustrated by the construction of a bifurcation diagram for a model of a three-species food web
with response functions of the Holling type II.  To make the system output or variables less sensitive to
irregular disturbances, the feedback control technique is applied which produces the desirable effect of
stabilizing the system.  When such a model is applied to an activated sludge process, the objective of the
control action can also be to regulate the inputs in order to obtain satisfactory water quality.
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INTRODUCTION

Ecological models may be classified as either
strategic or tactical, as identified by Holling (1966).
Tactical models are relatively more complex.  They
usually rely on a great amount of supporting data,
and are used for making specific predictions.
Strategic models, on the other hand, can provide
broader insights into possible behaviors of the system
based on simple assumptions (McLean and
Kirkwood, 1990), such as the model considered by
Hadeler and Freedman (1989) for predator-prey
populations with parasitic infection, or the model
of continuous bioreactor analyzed by Lenbury and
Orankitjaroen (1995).

As Mosetti (1992) has observed, the control of
ecological systems for management purposes is a
difficult task due to the amount of supporting data
needed as well as the conflicting management goals.
In this respect, a simple reduced strategic model
which requires fewer data for calibration can be quite
a useful tool as a building block for the study of real
problems in order to give a decision-maker some
preliminary results.

The Kolmogorov model of population growth is,
mathematically, probably the most general model of
the types considered to date.  It incorporates the

principle that the growth rate of species is pro-
portional to the number of interacting species
present.  The classical ecological models of interacting
populations have typically focussed on two species.
The first Kolmogorov model, developed in 1936, was
expanded on by several researchers, including May
(1972) and Albrecht et al (1974).  Such models have
been applied to plant and animal dynamics both in
aquatic and terrestrial environments (Hastings and
Powell, 1991).  However, mathematical developments
reveal that community models involving only two
species as the building blocks may miss a great deal
of important ecological behavior.  In fact, it is now
recognized that in community studies the essence
of the behavior of a complex system may only be
understood when attempts are made to incorporate
the interactions among a larger number of species.

Researchers in the last decade or so have turned
their attention to the theoretical study of food webs
as the “building blocks” of ecological communities
and have been faced with the problem of how to
couple the large number of interacting species.
Behavior of the entire community is then assumed
to arise from the coupling of strongly interacting
pairs.  The approach is attractive by its virtue of being
tractable to theoretical analysis (Hastings and Powell,
1991).  Yet, many researchers have demonstrated that
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very complex dynamics can arise in model systems
with three species (Gilpin, 1979; Rai and Sreeni-
vasan, 1993).  For example, an investigation by
Hastings and Powell (1991) showed that a con-
tinuous time model of a food chain incorporating
nonlinear functional responses can exhibit chaotic
dynamics in long-term behavior when reasonable
parametric values are chosen.  The key feature
observed in this chaotic dynamics is the sensitive
dependence on initial conditions.

In this paper, we first study the possibility of
making the ecosystem output or variables less
sensitive to irregular disturbances by applying the
feedback control technique in order to stabilize the
system.  A feedback control law is derived to
decouple the effect of the predators from the prey
dynamics in a three-species food web of the
Kolmogorov type.  It is found that the necessary and
sufficient conditions for the existence of the
decoupling control law rely on the persistence of
the prey population and the fact that the specific
growth rate of prey depends explicitly on the
superpredator population density at any moment in
time.

We demonstrate by the construction of a
bifurcation diagram for a model with response
functions of the Holling type II that, without any
control action, chaotic behavior may result through
period doubling bifurcations.  Once, the feedback
decoupling control action is in place, the system can
be stabilized and, in this context, we obtain a process
which is more easily controllable.

Moreover, when the Kolmogorov type model
with input / removal terms is applied to an activated
sludge process, the main objective is perhaps to
regulate the inputs in order to obtain satisfactory
water quality.  By simply fine-tuning the point in
time when the control action is set in motion, the
control technique considered here can be adjusted
to give the desirable outcome.

THE KOLMOGOROV TYPE MODEL AND THE
STATIC DECOUPLING PROBLEM

We consider a general Kolmogorov type model
of n-species food webs, which may be written as
follows

    

.

X
i
 = XiFi + ui, i = 1, 2, ..., n (1)

where Xi is the i-th species population density, ui is
the input/removal (replenishment/harvesting) rate

of the species which depends on the population
densities of all n-species in the food web, and

Fi = Fi (X1, X2, ...Xn), i = 1, 2, ..., n

Such a system (1) can be used to model population
dynamics of plant or animal interactions in an
aquatic or terrestorial environment such as in the
work of Lenbury and Siengsanan (1993), where an
activated sludge process was analyzed using a three-
species Kolmogorov type model.  Also, in the study
by Lenbury and Likasiri (1994), the dynamic
behavior of a model for a food web was investigated
through the application of the singular perturbation
technique.

To formulate the static feedback decoupling
problem, we let

X = (X1, X2, ... Xn)
t

F = (F1, F2, ... Fn)
t

U = (u1, u2, ... un-1)
t

and

      

G X( ) =

























1 0 0 0

0 1 0 0

0

0 0 0 1

0 0 0 0

L

L

K

L

L

L

. . . .

. . .

an n x (n - 1) matrix.
Then, the system of equations (1) with un = 0

can be rewritten as

    

.
,X X F GU

i i i
i

= +[ ]     i = 1, 2, ..., n (2)

If we now take X1 to be the state variable which is
more easily regulated externally, the “outcome” or
output of equation (2) is then assumed to be

H(X) ≡ (Xn, X2, ... Xn-1)
t (3)

The static feedback decoupling problem, as stated
in the work by Mosetti (1992) and explained in
greater detail by Isidori (1985), can be defined as
follows.  “Given equations (2) and (3), we need to
find a feedback law α(X) and a state-dependent
change of coordinates β(X) in the input space ℜ n

such that the closed-loop system formed by the
combination of (2) and (3) with the control law
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U = α(X) + β(X)V, U ∈ ℜ n-1, V ∈ ℜ n-1,

has the i-th output dependent only on the i-th
component of the new input V”.

In order to accomplish this, we introduce the
following notation.  Letting

      

∇ =






* X
X

X
X

X
X

n

n

t

1

1

2

2

∂
∂

∂
∂

∂
∂

L

then the operator ∇ F is defined as

∇ FHi = F ∇ *Hi

where Hi is the i-th component of the vector H(x)
defined in (3).

We then understand that

    ∇ = ∇ ∇ −
F

k

i F F

k

iH H( )1

while     ∇ =F i iH H0 .

Further, the characteristic number ρi associated
with the output Hi can be defined as the largest
integer such that for all k < ρi

    
grad( ) , , , ...,∇ = = −F

k

i jH G j n0 1 2 1

where Gj is the j-th column of the matrix G.
Accordingly, the decoupling matrix A(X)

associated with equations (2) and (3) is the (n - 1)x
(n - 1) matrix

    
A X aij( ) = ( )

where

    
a H Gij F i j

i= ∇grad( )
ρ

The static state-feedback decoupling theory (Mosetti,
1992) can be stated as follows.

Theorem 1A necessary and sufficient condition for
the existence of (α, β)  which solves the decoupling
problem is that the decoupling matrix A(x) is
nonsingular.  If this is the case then a possible
decoupling control is given by

α(X) = -A-1(X)J
and

β(X) = A-1(X)

where

    J H H HF F F n

tn= ∇ ∇ ∇+ + +
( , , ..., )

ρ ρ ρ1 21

1

1

2

1

provided that the decoupling matrix A(X) is
nonsingular.

Proof We refer readers to Isidori’s work (1985) for
the proof of this theorem in the general case.

In order to establish the control law for the
Kolmogorov type model, we need to first prove the
following Lemma.

Lemma 1The characteristic number ρ1 = 1 and ρi

= 0, i = 2, 3, ..., n - 1.
Proof In the case of ρ1 (i = 1), we first consider

grad 
    
∇( ) = −F

k

jH G j n1 1 2 1, , , ..., ,  when k = 0.  We

find that

grad 
    
∇( )F jH G0

1  = grad (Xn)Gj

= 
∂
∂

∂
∂

∂
∂

X

X

X

X

X

X
n n n

n1 2

0

0

0

1

0

0

...











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
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





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


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


M

M

j th← − row

= 0 0 0 1
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1
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





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
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






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




← −j th row

= 0
since j < n.
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However, when k = 1, we find

grad
    
∇( )F jH G1

1  = grad 
  
∇( )F n jX G1

= grad 
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∂
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∂
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∂
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∂
∂X j

X F X
F

X
n n n

n

j

( ) =

≠ 0

if we assume that Fn is an explicit function of Xj for
all j = 1, 2, ..., n - 1.  Therefore, ρ1 = 1.

Now, for  ρi, i = 2, 3, ..., n - 1, we consider

grad 
    
∇( )F

k

jH G1  for i ≥ 2 when k = 0, and obtain

grad 
    
∇( )F i jH G0  = grad (Xi)Gj

= 
∂
∂

∂
∂

∂
∂

∂
∂

X

X

X

X

X

X

X

X
i i i

j

i

n1 2
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0

0
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M

M


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
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






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








j th← − row

= 
  

1 if i = j

0 if i j≠




Thus, grad 
    
∇( ) ≠F i jH G0 0 for some j, which means

that ρi = 0 for i = 2, 3, ..., n - 1.
We can now derive the entries aij of the decoupling

matrix 
  
A x( )  as follows.

a1j = grad 
    
∇( )F jH G1

1

= grad 
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∂
∂
∂
∂

∂
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= grad (FnXn)Gj

=
  

X
F

X
n

n

j

∂
∂

for j = 1, 2, ..., n - 1.

On the other hand, for i ≥ 2, ρi = 0, we therefore
obtain

aij = grad 
    
∇( )F i jH G0

=
  

1 if i = j

0 if i j≠




for j = 1, 2, ..., n - 1 and i = 2, 3, ..., n - 1.  Thus, the
decoupling matrix is

A x

X
F

X
X

F

X
X

F

X
n

n
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n
n

n

n

( ) =























−

∂
∂

∂
∂

∂
∂1 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

L L L

L

L

M M M M L M

L



ScienceAsia  28 (2002) 209

and

    

u xf
h

h
zh h

zh

h

hx

z

x

y

x

1 1 2

1= − − + + −( ) ν ν (8)

u2 = -yg + ν2 (9)

Proof From Lemma 1, we found that ρ1 = 1 and
ρ2 = 0.  We then obtain

    
∇ = ( )∗ H z

t

1 0 0

so that     ∇ = ∇ =F FH zh H y1

1

0

2, .and   Therefore, we
are led to the decoupling matrix

    

A X
zh zhx y

( ) =





0 1
(10)

Thus, A(X) is nonsingular if and only if  det A ≠ 0,
namely

zhx ≠ 0 (11)

This leads to the requirement that prey persists, in
which case z > 0, and that hx ≠ 0 or, equivalently,
h depends explicitly on x.

Moreover, we have

    ∇
+

F H
ρ1 1

1 = ∇ = ∇ ∇F Fz F z2 ( ) { ( )}

= 

    

∇ ( )























F f g h

x
z

x

y
z

y

z
z

z

{ }

∂
∂
∂
∂
∂
∂

= ∇ F(hz)

= 

    

f g h

x
x

hz

y
y

hz

z
z

hz

( )























∂
∂
∂
∂
∂
∂

( )

( )

( )

= xzfhx + yzghy +z2hhz + zh2

Also,

APPLICATION TO THREE SPECIES FOOD WEBS

The control law
We now derive the control law for the

Kolmogorov type model for a three species food web
which can be written as

    x
.

 = x f (x, y, z) + u1 (4)

    y
.

 = y g (x, y, z) + u2 (5)

    z
.

 = z h (x, y, z) (6)

where z is the prey population density, y and x are
the predator and superpredator, respectively, while
u1 and u2 are the corresponding input rates.  Then,

  
X x y z

t

= ( )
    F f g h= ( )

    
U u u

t

= ( )1 2

    

G X( ) =














1 0

0 1

0 0

and the output is

    
H X z y

t

( ) = ( ) (7)

The main result of the static state-feedback
decoupling theory can be stated as follows.

Theorem 2A necessary and sufficient condition for
the existence of (α, β) which solves the decoupling
problem for equations (4)-(6) is that the prey
population persists and the specific growth rate of
prey h depends explicitly on the superpredator
population density.  If this is the case, then a possible
decoupling control is given by:

    

α ( ) ( )X xf
h

h
zh h yg

x

z

t

= − − + −






    

β( )X zh

h

hx

y

x
=

−














1

0 1
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    ∇
+

F H
ρ2 1

2 = ∇ F y1 ( )

= 

  

f g h

x
y

x

y
y

y

z
y

z

( )























∂
∂
∂
∂
∂
∂

= gy

Therefore,

J =     ( )∇ ∇+ +
F FH H
ρ ρ1 21

1

1

2

= 

    

xzfh yzgh z hh zh

gz

x y z+ + +









2 2

which leads us to

α(X) = -A-1(X)J

= 

    

−














+ + +









1

0 1

2 2

zh

h

h
xzfh yzgh z hh zh

gy
x

y

x

x y z

= 

    

− − −

−















xf zh
h

h

h

h

gy

z

x x

2

while

β(X) = A-1(X)

= 

    

1

0 1

zh

h

hx

y

x















as claimed.
If we now let

  
ξ = dz

dt
(12)

then, since     z
.

 = zh, we have

    

d

dt

zh

x
x

zh

y
y

zh

z
z

ξ ∂
∂

∂
∂

∂
∂

= + +( ) . ( ) . ( ) .

=  zhx(xf+u1)+zhy(yg+u2)+(zhz+h)zh = ν1

by applying the law in equations (8) and (9).  Also,
using (9), we find

dy

dt
yg u= + =2 2ν

Therefore, in the new coordinate system (ξ, y, z) we
have

    

d

dt

ξ ν= 1 (13)

    

dy

dt
=ν 2 (14)

  

dz

dt
= ξ (15)

which clearly shows the decoupled structure, namely,
each of the control variables acts only on one state
variable.  In fact, to keep the system decoupled, one
approach is to set ν1 = 0.  Then, ξ now remains
constant, say at ξ(t0).

Integrating (15), we obtain

z(t) = ξ(t0)t = z(t0)

Thus, if ξ(t0) = 0 at a given initial time t = t0 when
the control is activated, then

z(t) = z(t0)

for any subsequent time t, whatever the fluctuation
of ν2.  This means that the prey population will not
depend upon variations in the predator or
superpredator.  This is the essential feature of this
technique, whereby the variations in the predator
and superpredators are decoupled from the prey
dynamics.

Persistence conditions
The question of persistence has been dealt with

in various literature in all its versions : weak persis-
tence; strong persistence; and uniform persistence
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(Huaping and Zhien, 1991).  We shall give, in the
following Lemma, the persistence conditions for the
standard food web consisting of equations (4)-(6)
with

    

f x y z
c y

b y

c z

b z
d( , , ) ≡

+
+

+
−2

2

3

3

(16)

    

g x y z
c z

b z

a x

b y
d( , , ) ≡

+
+

+
−1

1

2

2

(17)

    

h x y z r
z

k

a y

b z

a x

b z
( , , ) ( )≡ − −

+
−

+
1 1

1

3

3

(18)

where d is the specific removal rate, and the terms

    

c z

b z
ii

i +
=, ,1 3

and

    

c y

b y
2

2 +

are the population response functions of the Holling
type II in which ci is the maximum growth rate and
bi is the so-called half-saturation constant.  The
construction and analysis of the model in the case
that u1 = u2 = 0 may be found in the work of Lenbury
and Likasiri (1994).

A standard food web given by equations (4)-(6)
with (16)-(18) generally posesses only one positive

equilibrium     E y z
∧ ∧ ∧

= ( , , )0  and possibly only one

positive limit cycle     

∧ ∧ ∧

=Γ ( , ( ), ( ))0 y t z t  for its sub-
system (5)-(6) with x set equal to zero.  Under this
assumption, we are led to the following Lemma.

Lemma 2The food web given by equations (4)-(6)
with (16)-(18) is persistent if

    

c y

b y

c z

b z

d2

2

3

3

∧

∧

∧

∧

+
+

+
> (19)

      and (in the case that     
∧

Γ  exists)

    

1 2

2

3

3

0T

c y t

b y t

c z t

b z t

dt d
T

∧

∧

∧

∧

+
+

+















>∫
( )

( )

( )

( )

(20)

where T is the period of the limit cycle     
∧

Γ , provided
that u1 and u2 are identically zero.  Otherwise, the
population persists if

    u y z1 0 0( , , )
∧ ∧

> (21)

and (in the case that     
∧

Γ  exists)

    

1
0 010T

u y t z t dt
T

( , ( ), ( ))
∧ ∧

∫ > (22)

Proof  This is a straight forward extension of the
result given in one of our earlier papers (Lenbury
and Likasiri, 1994) with the addition of the input/
removal terms u1 and u2.

Consequently, on substituting (16)-(18) into (8)
and (9), one obtains the following decoupling
feedback law.
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Figure 1 shows the time courses of the three state
variables and the discharge rates u1 and u2 under
normal conditions.  We then chose to start our
control action at the time t = t0 shown in the Figure

where     z
.

 = ξ(t0) = 0.  Thus, the effect of the control
action is seen in Figure 2 when the new input ν1 is
set equal to zero and ν2 is taken to be of the form

ν2 = Ae-γt sin ωt
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which corresponds to a damped sinusoidal input.
The prey population density z becomes constant after
the time t0, while the predator and superpredator
vary in a sinusoidal fashion with damping amplitude.
As time passes, the new input rate ν2 becomes
negligibly small and the corresponding population
densities of all three species are maintained at
constant levels as a result.

CONTROL ACTION ON A CHAOTIC SYSTEM

In the work by Lenbury and Likasiri (1994), the
model of a food web given by equations (4)-(6) with
(16)-(18) and u1 = u2 = 0 have been analyzed using
the singular perturbation method.  Explicit
conditions were derived which separate the various
dynamic structures and identify the limit cycles
composed of alternately slow and fast transitions.
In particular, it was found that the system will have
a unique global attractor in the first octant which is
a low-frequency limit cycle with a period of high-
frequency oscillation if the following conditions hold
on the system parameters.
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and 
    

c

d
ii ( , , )=1 2 3  are sufficiently high.

We now carry out a numerical investigation to
determine the ranges of parametric values where
chaotic dynamics were likely.  Our choice of
parameters was guided by two factors.  First, we
follow the example of the work by Lenbury and
Likasiri (1994) and assume that the ecological
system under study may be characterized by highly
diversified dynamics.  Accordingly, we chose
parametric values so that the time response of the

Fig 1. Time evolution of superpredator x (______), predator y
(.........), and prey z ( _ _ _ _ _ ), and constant discharge
rates u1 and u2 with no control action.  Here, a1 = 0.05,
a2= 0.5, a3 = 0.5,  b1 = 4.0, b2 = 8.0, b3 = 8.0, c1 = 15.0, c2 = 1.5,
c3 = 1.5, d = 1.0, k = 10.0, r = 10.0, u1 = 0.05, and u2 = 0.05.

Fig 2. Time evolution of superpredator x, predator y, and prey z,
and discharge rates u1 and u2 under control operations
starting at t = t0 with ν1 = 0 and ν2 = 100e-t/3 sin 3πt, and
other system parameters as in Figure 1.



ScienceAsia  28 (2002) 213

system equations (4)-(6) increases from top to
bottom.  The prey is assumed to have very fast
dynamics, while the predator and superpredator have
intermediate and slow dynamics, respectively.
Phytoplankton - zooplankton - fish is a typical
example of an ecosystem where the time response
increases with the trophic levels.  In fact, most food
chains observed in nature have time responses
increasing along the chain from top to bottom.

Second, as has been noted by many previous
workers (Hastings and Powell, 1991; Rai and
Sreenivasan, 1993), one may be able to generate
chaos in a nonlinear system which already exhibits
limit cycle behavior.  We therefore chose parametric
values to satisfy the conditions (27)-(29) found by
Lenbury and Likasiri (1994) to lead to a solution
trajectory on a low frequency limit cycle with bursts
of high frequency oscillations.

Our investigation involves letting the system run
for 100,000 time steps and examining only the last
80,000 time steps to eliminate transient behavior.
We use values of b1 between 4.0 and 4.5, changing
b1 in steps of 0.01.  The relative maximum values
xmax of x, collected during the last 80,000 time steps,
are plotted as a function of b1 as shown in Figure 3.

We discover in this bifurcation diagram the
appearance of a period doubling route to chaos,
similar to those exhibited by one-dimensional
difference equations such as the logistic population
model.  Apparently, the system of equations (4)-(6)
with (16)-(18) exhibits chaotic dynamics for the
values of b1 between 4.22 and 4.32 .  Windows in
the bifurcation diagram are observed for b1 in the
ranges of 4.26 < b1 < 4.32 and 4.34 < b1 < 4.40, for
example, where periodicity is re-established.

Figure 4 shows the solution trajectory of the
model system (4)-(6) with (16)-(18) using b1 = 4.3
in the chaotic range identified in the bifurcation
diagram.  The strange attractor is projected onto the
(y, z)-plane in Figure 4, and the corresponding
chaotic time courses of x, y and z in uncontrolled
conditions are shown in Figure 5 with the discharge
rates u1 and u2.

Fig 3. Bifurcation diagram for the model system (4)-(6) with
(16)-(18), using the value of b1 from 4.0 to 4.5, and other
parametric values as in Figure 1.  Plots are of the relative
maximum values of x vs b1.

Fig 4. Projection onto the (y,z)-plane of the strange attractor
obtained on simulating the model system (4)-(6) with (16)-
(18) using b1 = 4.3 in the chaotic range identified in the
bifurcation diagram, and other parametric values as in
Figure 1.

Fig 5. Time courses of the three state variables exhibiting chaotic
behavior when there is no control action, and parametric
values are as in Figure 4.
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Figure 6 shows the time courses of z starting from
two different initial conditions.  The difference in
the two starting values of z is merely 0.01.  We observe
that, while the two plots follow indistinguishable
paths during the initial short period, they begin to
diverge and follow noticeably different paths
eventually.  This clearly demonstrates the sensitivity
to initial conditions which is the essential characteristics
of chaotic behavior.

Figure 7 then shows the effect of the control
action on the chaotic system of Figure 4 with ν1 set
equal to zero and ν2 irregular.  Here, the control is

initiated at the point where     z t
.
( )0 0=  and     z t

..
( )0 0< .

Once the control action is in place, prey is maintained
at a constant high level, while the variations in
predator, superpredator, and the discharge rates u1

and u2 are irregular.
On applying the model to an activated sludge

process, the state variables can be nutrient-bacteria-
protozoa, for example, and the objective of the
control action is perhaps to regulate the inputs in
order to obtain satisfactory water quality.  In such a
case, it is desirable to start the control action when

the variable z falls to its first lowest point (    z t
.
( )0 0=

and     z t
..
( )0 0> ).  We will then be able to maintain z at

a constant low level.

CONCLUSION

It has been demonstrated that while some
inherent properties of a nonlinear model permit the
emergence of chaotic dynamics, they also allow the
existence of a feedback decoupling control mechanism.
Since the behavior of the entire community is
believed to arise from the coupling of these strongly
interacting species, the detection and possibility of
control of a chaotic system is of critical importance.
If a generalization from a food web model depends
crucially upon behavior after a long time, then the
role of chaos may be extremely relevant.

On a cautious note, the question of whether or
not deterministic chaos actually occurs in a real
ecosystem is still open to discussion.  As has been
observed by Sabin and Summers (1993), “...  there
is still no generally accepted example of a chaotic
ecosystem in nature.  Moreover, some traditional
ecologists believe that irregular oscillations in natural
populations are attributed to random perturbations
or noise in the environment rather than being the
result of the intrinsic nonlinear dynamics of the
system”.

Fig 7. Time evolution of the three state variables, using para-
metric values of Figure 5.  The chaotic system becomes
stabilized when the control action is initiated at t = t0 with
ν1 = 0 and ν2 irregular.

Fig 6. Divergence of solutions when the system exhibits chaotic
dynamics.  Prey densities are plotted for two different initial
conditions ( ____ and _ _ _ ), differing only by 0.01 in z.

Perhaps the first concrete example of occurrence
of chaos in nature is due to Sugihara and May
(1990) who showed that there underlies a three-
dimensional chaotic attractor in the dynamics of
marine planktonic diatoms.  Despite the fact that the
corresponding time series is very noisy, they have
been able to extract the information which allows
them to describe some of the dynamics as deter-
ministic chaos.

Such irregular behavior is not desirable when one
is interested in managing a system, since chaos allows
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only short-term predictions.  Thus, a feedback control
mechanism such as the one we have been discussing
provides an attractive and useful tool to regulate the
process since it can stabilize the system and make it
less sensitive to the exogenous disturbances or noise
input.  The present study has potential to act as a
spring board for a generalization to more complex
models in the hope of obtaining a more manageable
system.
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