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ABSTRACT We present an evolutionary model that marks an encounter of two seemingly unrelated
disciplines: population dynamics and number theory. Assuming mutations and selection of predators
and prey, we show that prey cycles with non-prime lengths are unstable, while cycles with prime lenghts
are stable. Allowing arbitrarily long cycles, this model is a number-theoretical tool for the calculation of
large prime numbers. An extension of this purely temporal process to an evolutionary game on a spatial
array leads to homogeneity, or to travelling or spiral waves having a predominance of prime prey cycle
lengths. These results may be related to the appearance of cicadas (genus Magicicadae) every 13 or 17
years.
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SPATIALLY HOMOGENEOUS EVOLUTION

Definitions and assumptions
We consider populations that spend periodically

a fixed number of years as larvae or dormant in one
environment, and appear in another environment
during a short time for reproduction.  (Examples
are given in Ref 1 and Ref 2).  We assume a predator
with period X and a prey with period Y.  As shown
schematically in Fig 1, we assign a momentary fitness
φy(t) of the prey in the year t as follows: it is zero if
the prey is not present, it is - 1 if both predators and
prey are present, and it is + 1 if the prey is present
but the predators are not.  The momentary predator
fitness φx(t) is defined analogously as for the prey,
but with opposite signs (see Fig 1).  The fitness Fx,
resp Fy, is defined by the sum over the φx(t), resp
φy(t), t = 0, ..., XY, divided by the number of predator,
resp prey, generations.  (Note that this yields an
average valid for t → ∞, since the process is periodic
with period XY ).  We divide by the number of
generations in order to avoid selection by virtue of
the capability of frequent proliferation; we assume
that each generation uses up metabolic resources (eg
due to metamorphosis, mating and death), and these
expenses should be minimized in the long run.
Thus, our model favours infrequent emergences of
the prey, as long as they are safe when they do appear.
A similar reasoning applies to the predator: our
model favours infrequent appearances as long as they

get nourishment when they appear.  Note that these
assumptions do not cause divergence of the prey cycle
lengths to infinity (corresponding to extinction),
because these cycle lengths actually get locked into
a prime number - as we will show below - bringing
evolution to a stop.

We compare a prey mutating to a cycle Y' with
the resident prey (cycle length Y ) at constant X.
Analogously, we compare mutant cycles X' with
resident cycles X at constant Y.  A mutant prey (resp
predator) substitutes the resident if and only if

  
′ >F Fy y , resp   ′ >F Fx x .  Thus, in the case of fitness

equality, the resident is selected.  We assume that all
interacting populations are synchronized, thus being
all present at t = 0.  We only allow mutations that
lead to cycles obeying 1 < X < Y (condition K); this
condition means that all cycles remain above the
main diagonal Y = X on the X - Y - plane.

Fig 1. Scheme of the definitions of the momentary prey fitness
φy and predator fitness φx (+1, -1 or 0).  X: period of the
predator.  Y: period of the prey.  A circle on the horizontal
lines indicates appearance.  A black circle indicates
appearance of prey and predator (φy = -1, φx = +1), of
predator without prey (φx = -1) or of prey without predator
(φy = +1).
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PROPOSITION

If Y is not a prime then there exists a sequence of
mutations that will change Y ; if Y is prime then no
mutation will change it.

INSTABILITY OF NON-PRIME PREY-CYCLES

Let lcm(X, Y): least common multiple, gcd(X, Y):
greatest common divisor of X and Y .  In XY years,
the predator appears Y times, both predator and prey
appear XY/lcm(X, Y) times, thus predators without
prey appear Y - XY/lcm(X, Y) times.  Since gcd(X, Y)
lcm(X, Y) = XY, we thus obtain the predator fitness
Fx(X, Y) = 2gcd(X, Y)/Y -1.  Analogously, we obtain
the prey fitness Fy(X, Y) = 1 - 2gcd(X, Y)/X.

Let us assume that Y = YN is not a prime; Fx(X,
YN) has its maximum value 2gcd(XM, YN)/YN -1 at the
predator period XM = gd(YN) (gd(a): greatest divisor
of a, excluding a).  A sequence of random mutations
keeping Y = YN constant will eventually lead to XM.
However, (XM, YN) is abandoned if mutations lead to
(XM, YN ± 1).  In fact, gcd(XM, YN) = XM, implying
that Fy(XM, YN) = − 1; gcd(XM, YN ± 1) cannot be equal
to XM (the reason is: (YN ± 1)/XM = YN/XM ± 1/XM, the
first term being an integer, but the second not, so
that XM is not a divisor of YN ± 1) and gcd(XM, YN ±
1) can not be larger than XM; thus gcd(XM, YN ± 1) <
XM; this implies that Fy(XM, YN ± 1) > 1 = Fy(XM, YN).
Thus, we have shown that there exists a sequence of
mutations such that prey with a non-prime cycle Y
= YN are extinguished.  (Note: (XM, YN) may also be
abandoned by mutations larger than YN ± 1).

STABILITY OF PRIME PREY CYCLES

Assume that Y is a prime YP; by virtue of condition
K, any X is relatively prime to YP; therefore gcd(X,
YP) = 1, so that starting from (X, YP ), there exist no
predator mutants that are fitter than a resident
predator.  On the other hand, for any X, gcd(X, Y' ) ≥
1, where Y' is a prey mutant, as compared to gcd(X,
YP) = 1, so that Fy(X, Y') ≥ Fy(X, YP), ie  no prey
mutant is fitter than a resident.  In conclusion, any
initial random choice of (X, Y) and mutations
fulfilling condition K will lead and lock to a prime Y
after a sufficiently large number of mutations.

Note that we cannot loosen condition K because
the points (jYP ; YP), where YP is prime and j ∈  N, are
unstable with respect to prey mutations.  In fact:
gcd(jYP, YP) = YP, while gcd(jYP, YP - k) with k ∈  N
cannot be larger than YP - k; thus Fy(jYP, YP) < Fy(jYP,
YP - k).  This means that convergence to prey with

period YP is not possible if mutations to the points
(jYP, YP) are permitted.  These points are avoided by
the restriction to K.

GENERATION OF VERY LARGE PRIMES

We will now use the predator-prey mechanism
described above, not as a biological model, but for a
numerical purpose, namely to obtain very large
prime numbers.  For this, we allow mutations with
unbiologically large cycle changes.  As an example,
we considered mutations of size 10n, where n is a
random number, homogeneously distributed
between 0 and 5; the result is shown in Fig 2, starting
at X = 4 and Y = 12 and leading to the Euler prime Y
= E given in the figure caption.  For mimicking this
evolution process, we assumed that mutation and
selection of X alternate in successive time steps with
mutation and selection of Y.

SPATIALLY INHOMOGENEOUS EVOLUTION

The model
We now consider competition between neigh-

bouring residents in a spatially extended system,
instead of competition between mutants and residents.
We use a cellular automaton (CA), the neighbour-
hoods being defined as given in Fig 3a.  CA are useful
tools for simulations of natural phenomena in space
and time (see Refs 3-5 and references therein).  The
CA here evolves in a two-dimensional habitat, as
follows.  In each updating of the CA, the predator
and the prey of each cell are replaced by the fittest
among the neighbours Ci(i = 0, 1, ...8).  The
neighbourhood of a cell C0 is defined by the cell itself
and the 8 cells around it.  The momentary fitness

Fig 2. Evolution of X and Y by alternating mutations (size: 10n)
of X and Y, followed by selection.  (n is a random number
homogeneously distributed in [0,5]).  Evolution stops as
soon as a prime Y is reached.  Here, the system locks at the
Euler prime Y = 2147483647.
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φx(t) of a predator at the time step t is computed
here as follows: φx(t) = 0 if the predator does not
appear in that time step; if the predator appears and
the number ν of cells in the neighbourhood occupied
by prey is not zero (1 ≤ ν ≤ 9), then φx(t) = ν; φx(t) =
- p if the predator appears and ν = 0.  p is a natural
number describing a “punishment” for a predator
that appears but finds no prey.  The momentary
fitness φy(t) of the prey is computed analogously, but
with opposite signs.  The fitness Fx, resp Fy, of a
predator, resp prey, are given by the sum of the φx(t),
resp φy(t), over all t, t ranging from 1 to the product
of all 9 cycle lengths interacting in the neighbour-
hood of C0; this sum is then divided by the number
of generations of the predator, resp the prey.  In order
to determine X and Y in cell C0 in the next CA
updating, we perform the evaluation that we just
described for all 9 Ci; then, we replace X, resp Y, in
C0 by the value of X, resp Y of the cell Ci in which
the largest fitness Fx, resp Fy was obtained.  We use
cyclic boundary conditions.

RESULTING MODES

Starting with random spatial distributions of
X and Y, we obtain after a sufficient number of
iterations, three types of attractors: homogeneity
with a prime prey, travelling waves (as in Fig 3b)
and spiral waves (as in Fig 3c).  The travelling wave
illustrated in Fig 3b is explained as follows.  Let us
call the cycles in the backround XB, YB, and those in
the wave XW, YW.  The populations in the numbered
columns in Fig 3b are: XB, YB in columns 1 and 6,
XB, YW in column 2, XW, YW in columns 3 and 4, and
XW, YB in column 5.  Note that in the case illustrated
here the width of the wave is two cells (columns 3
and 4), but any width 1, 2, 3, ...  (small enough to fit

in the grid) is possible and does not change the
present reasoning.  The predator wave is always
displaced one cell from the prey wave.  The direction
of this displacement (to the right in Fig 3b) determines
the moving direction of the wave (arrow in the
figure), as we will explain now.  We consider that
predator-prey interactions occur here only with
the two immediately neighbouring columns of each
column.  The predator in column 5 (resp column 2)
can feed on two types of prey and thus has a larger
fitness than the predator in column 6 (resp column
3), which can only feed on one type of prey;
therefore, the predator-wave will move one cell to
the right in the next time step.  The prey in column
5 (resp in column 2) can be eaten by two types of
predators and thus has a lower fitness than the prey
in column 4 (resp column 1), which can only be
eaten by one type of predator; therefore also the prey-
wave will move one cell to the right.  We also found
travelling waves moving diagonally; their mechanism
is more complicated, but it can be understood by
the same type of reasoning steps as the wave in Fig
3b.

The spiral wave illustrated in Fig 3c is explained
by the existence of three adjacent zones, shown here
white (cycle lengths: X1, Y1), light grey (cycle lengths:
X2, Y2) and dark grey (cycle lengths: X3, Y3).  The
populations with cycle lengths X1 and Y1 are fitter
than those with X2 and Y2, which are fitter than those
with X3 and Y3.  Those with X3 and Y3 are, in turn,
fitter than those with X1 and Y1.  Thus, after each
updating of the CA, the light grey cells become white,
the white cells become dark grey, and the dark grey
cells become light gray.  This causes a constant
rotation of the spiral, without needing a pacemaker,
so that we are dealing with a so-called autowave.

The travelling and spiral waves here show a
similar behaviour to waves in prebiotic evolution6,
in host-parasitoid systems7, as well as in excitable
media (see Refs 4, 8-10 and references therein) such
as chemical reactions, heart muscle and epidemics.
In the latter, the black, dashed and white regions
shown in Fig 3b, correspond to excited, refractory
(or immune) and excitable (or resting) states,
respectively.

PROBABILITY DISTRIBUTIONS OF PRIMES AND
NON-PRIMES

We now determine the probabilities P of prey
cycle lengths.  For this we started a CA (with 10 x
10 cells) with 104 different initial configurations, the
X and Y being chosen randomly within 2 ≤ X, Y ≤ 50.

Fig 3. a: Scheme of cellular automaton neighbourhoods.  For a
cell C0, the total fitness of predator and prey is determined
for the 9 neighbours Ci, i = 0, 1, 2, ...8 (grey cells).  The
predator or prey with the largest fitness in this grey
neighbourhood replaces the residents in C0.  For the
determination of the fitness in a cell Ci, the interaction of
all predators and prey in the 9 neighbours of that Ci

(surrounded here by thick lines for the upper right Ci) is
considered.  b: Scheme of a planar travelling wave; WY :
prey wave (columns 2,3 and 4; dashed obliquely); WX

predator wave (columns 3, 4 and 5; dashed horizontally).
c: Scheme of a spiral wave.
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Then we evaluated the appearance of different Y after
the CAs had reached the attracting modes.  Fig 4
shows results of such analysis.  The dark squares
(primes) and grey squares (non-primes) were
obtained setting p = 5, ie predators getting no prey
lose the average of what they would gain (between
1 and 9) if they found prey in the neighbourhood;
analogously, prey meeting no predators gain the
average of what they would lose (between 1 and 9)
if predators emerge in their neighbourhood.  One
clearly sees in Fig 4 much more frequent appearance
of prime prey cycles (the maximum occurs at Y =
17), as compared to non-prime prey cycles (grey
symbols, all being very close to the abscissa).  P vs
YP (YP : prime prey cycle lengths) can be well approxi-
mated by a piecewise linear function, as shown in
Fig 4.  This result is robust to drastic variations of
the model, the results after these variations being
displayed by triangles and stars in Fig 4.  We also
found that changing the upper bounds of X and Y
from 50 to 100 or 200 also renders a peak-like shape
for P vs Y with a maximum at Y = 17.  This maximum
is also insensitive to the “punishment” parameter p
Changing the grid size of the CA to 20 x 20 cells
yields a maximum of P(Y) at Y = 13; however, if the
grid is too small (eg  5 x 5 cells) non-prime prey
cycles are selected.

DISCUSSION

We have shown that a simple predator-prey
model involving mutations and selection can be used
to generate very large prime numbers.  This is a
remarkable merging of number theory with
population biology.

An extension of the model into a spatio-temporal
configuration, namely a cellular automaton, yields
homogeneity, travelling waves and spiral waves.
Such waves allow the coexistence of different species
in a spatial domain.  A statistical analysis, evaluating
all periods of the attracting modes resulting from a
large number of initial configurations, leads to a
predominance of prime prey cycles.  Depending on
model parameters, the probability of final prey cycle
lengths has a maximum at 13 or 17.  This results
evokes associations with cicadas (genus Magicicadae;
see Refs 1, 2, 11-19 and references therein), which
have periods of 13 or 17 years.

The periodical cicadas spend most of their lives
below the ground emerging and dying within a few
weeks.  Our model contains the hypothesis that the
cycle length is a prime in order to optimally escape
predators.  A drawback of this hypothesis is that there
are as yet no relevant periodic predators of cicadas.
Nevertheless, Lloyd and Dybas20 pointed out that
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Fig 4. Probability P that prey periods Y are selected after the cellular automaton described in the text has converged to an attractor
(dark squares for prime Y and grey squares for non-prime Y).  Triangles: p=0, ie predators emerging but finding no prey are
undisturbed, while prey emerging but meeting no predators are not rewarded.  Stars: φx(t) = +1 if the predator emerges and
finds prey, independently of the number ν of prey-populated neighbouring cells and φy(t) = -1 if emerging prey meets predators,
no matter how many.  The two straight lines are best linear fits, considering the three variations of the model (black squares,
triangles and stars).



ScienceAsia  28 (2002) 203

the predator hypothesis can be maintained by
assuming parasitoids that attack eggs or adults;
lacking their prey, these predators then go to
extinction.  An alternative mechanism to the
predator hypothesis is given by Yoshimura19; he
argues that prime numbers are selected because these
cycles are the least likely to coemerge and hybridize,
so that they prevent genetic breakdown by breeding
synchrony.  This mechanism has been compared12

with that proposed by Cox and Carlton11, which also
involves advantage of prime cycles due to less
frequent hybridization.  In view of these proposed
mechanisms, it remains an open question whether
the relationship of our results with the cicada
periodicity is a coincidence, or if it follows from
relevant features of the model.
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