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ABSTRACT Euler’s equation, that describes geodesics for a left-invariant Riemannian metric on a Lie
group associated with an inertia operator on its Lie algebra, plays an important role in mechanics.  We
examine the inverse problem of computing the inertia operator, up to multiplication by a constant, from
a single solution of Euler’s equation.  We prove that, with exactly two exceptions, every two and three
dimensional Lie group has the property that this inverse problem has a solution if and only if the
angular velocity in the body does not lie in a proper subspace of the Lie algebra.  The two exceptions are
the group of Euclidean transformations of the plane and the product of the two-dimensional affine
group with the group of real numbers.
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INTRODUCTION

Euler1 showed that the inertial motion of a rigid
body about its center of mass is described by a
function g : R → SO(3) (Lie group of rotations),
where the associated angular velocity in the body Ω
: R → R3satisfies the equation

    A AΩ Ω Ω
⋅

= x . (1.1)

Here A : R3 → R3 is the inertia operator (defined
from the mass distribution of the body), Ω is defined

by     Ω × = ∈−
⋅

υ υ υg g1 ,  R3, 
    Ω

⋅ ⋅
, g  is the derivative of

Ω, g.  We observe that R3, equipped with the vector
cross product, is the Lie algebra of SO(3):

Euler2 also showed that the inertial motion of an
incompressible inviscid fluid in a domain D ⊂  Rn, n
≥ 2 is described by a function g : R → SDiff(D)
(infinite dimensional Lie group of volume preserving
diffeomorphisms of D), where the associated velocity

u : D → R3, defined by the composition     u g g:=
⋅

−o 1 ,

satisfies the equation

    Ω
⋅

+ ∇ = − = ⋅ =u u grad p di u u n; ; .υ 0 0 (1.2)

Here p : D → R is a pressure function, n : ∂D → R3 is

the outward normal vector to D, and     ∇ = ⋅ ∇u u u u: .

Moreau3 observed that equations (1.1), (1.2)
describe geodesics on SO(3), SDiff(D) with respect
to the left, right invariant Riemannian metric
determined by an inertia operator on the associated
Lie algebra.  Arnold4 developed the generalized
Euler’s equation

    A u ad A uu

⋅
= σ * , (1.3)

that describes geodesics on Lie groups with one-
sided invariant Riemannian metrics.

Euler’s equation plays an important role in
mechanics because, according to the least action
principle, it describes inertial motions of any
dynamical system whose configuration manifold is
a Lie group and whose kinetic energy is left, right
invariant.5, 6  Arnold7 used it to relate the sensitivity
property of fluid flow to Riemannian curvature.  Ebin,
Marsden and Shkoller used it to derive existence,
uniqueness, and regularity results for both Euler’s
and Navier-Stoke’s equations.8-10  The infinite dimen-
sional group of diffeomorphisms of the circle plays an
important role in loop groups and string theories.11

Euler’s equation for the standard right-invariant L2

metric on its Lie algebra is Burger’s equation, while
Euler’s equation for its one-dimensional Virasoro
group extension with various metrics describes
the Korteweg-de Vries and shallow water wave
equations.12, 13  Fairlie, Fletcher and Zachos14, 15 and
Zeitlin16 used a sequence of geodesic flows on the
special unitary groups SU(n, C) to approximate ideal
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fluid flow on T2.  The author17 used these appro-
ximations to discuss wavelet bases for two-dimen-
sional Euler flow.  Bromberg18 and Hermann19

studied the existence of solutions of Euler’s equation
for indefinite metrics such as those that arise in
general relativity.

Lawton and Noakes20 addressed the inverse
problem of computing the inertia operator, up to
multiplication by a constant, from a single solution
of Euler’s equation and proved that for the Lie group
SO(3); a necessary and sufficient condition that this
inverse problem have a solution is that the angular
velocity in the body Ω be nondegenerate (not
contained in a proper subspace of the Lie algebra
R3).  The importance of Euler’s equation for general
Lie groups motivated the work in this paper that
addresses the inverse problem for Euler’s equation
on more general Lie groups.

Section 2 introduces basic concepts related to
Euler’s equation and derives two results valid for all
Lie groups: first, if the inverse problem has a solution
then the angular velocity in the body is nondegenerate;
second, if both the angular velocity in the body and
the angular velocity in space are nondegenerate, then
the inverse problem has a solution.

Section 3 describes Milnor’s classification of three
dimensional Lie groups and uses it to prove the main
result in this paper: the Lawton-Noakes result
extends to all Lie groups having dimension two
and three except for the unimodular group E(2)
(Euclidean transformations of the plane) and the
nonunimodular group A(1) × R (product of the two-
dimensional affine group and the group of real
numbers).

A preliminary account of this work has been
presented in.21

EULER’S EQUATION

Lie Groups and their Algebras
We use Arnold’s notation4 (Appendix 2, Section

A).  G is a real Lie group, and for g ∈  G :
TGg, T*Gg is the tangent, cotangent space to G at

g;
TG := ∪ g∈ GTGg, T*G := ∪ g∈ GT*Gg is the tangent,

cotangent bundle of G;
Lg, Rg : G → G, g ∈  G is left, right multiplication

by g;
Lg*, Rg* : TG → TG is the derivative of Lg, Rg;

    
L Rg g

* *,  : T*G → T*G is the adjoint of Lg*, Rg*.

The Lie algebra G is the tangent space to G at the
identity I.

[•, •] : G x G → G is the Lie bracket product.

G* is the linear dual of G consisting of all linear

real-valued functions on G*.  If G is an infinite
dimensional Lie group we will assume that these
functions are continuous with respect to the specified
topology on G.

<•, •> : G* x G → R is the natural pairing.

Lin(G), Lin(G*) is the Lie algebra consisting of all

linear mappings of G, G* into itself whose Lie bracket
product is the commutator [X, Y] :=XY - YX.

GL(G), GL(G*) is the group of all linear isomor-

phisms of G, G* onto itself.

Definition 2.1 The adjoint, co-adjoint representation
of G is the group homomorphism, antihomomorphism
Ad : G → GL(G), Ad* : G → GL(G*) described by

      
Ad L R Ad Adg g g g gυ υ υ υ: , , : , ,* *

*= < > = < >−1 l l

g G υ, ,∈ ∈ ∗ ∈l G G .

The adjoint, coadjoint representation of G is the Lie

algebra homomorphism, antihomomorphism ad : G →
Lin(G ); ad* : G → Lin (G*) described by

      
      ad u ad adu u uυ υ υ υ: , , , : , ,*= [ ] < > = < >l l

    u υ, ,∈ ∗ ∈l G G .

Lemma 2.1 The coadjoint orbit 
      
Ad Ad g GG g

* *: { | }l l= ∈
of each element     l∈ ∗G  admits a nondegenerate
symplectic structure.

Proof This result is asserted in4 (page 321) and proved
in4 (Appendix 5).

Corollary 2.1 If dim(G) < ∞ then for every u ∈  G,

dim(AdG u) < dim(G), and for every     l∈ ∗G , dim

(      AdG

*l) is even.

Proof For each u ∈  G we construct the one parameter
subgroup H := {etu : t ∈  R } and we observe that for
every g ∈  G and h ∈  H, Adgh u = Adg u.  Therefore, the
mapping χ  defined by χ(gH) := Adg u is a
differentiable mapping of the space G/H of left cosets
of H in G, onto the orbit AdG u of u under the adjoint
representation of G.  Therefore dim (AdG u) ≤ dim
(G/H) < dim(G) and the first assertion is proved.
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The second assertion follows from lemma (2.1) and
Darboux’s theorem4 (pages 230-232).

Definition 2.2 A differentiable function g : R → G (or

trajectory in G) has associated velocity 
    
ω : :=

⋅

g  R →

TG, angular velocity in the body 
    
ωc g

L g: :
*

= −

⋅

1  R → G,

and angular velocity in space 
    
ωs g

R g: :
*

= −

⋅

1  R → G.

Lemma 2.2 
      
Ad e and Ad Ad ade

t ad d
dt e e utu

u
tu tu= = o ,

u ∈  G.

Proof See6 (Theorem 3.8, page 39).

Corollary 2.2 If g : R → G is differentiable then

  
d
dt g g gAd Ad ad ad Ad

c s
= =o oω ω .

Proof This follows from lemma (2.2) and the

approximation     g t t g t e
w tc( ) ( ) .+ ≈δ δ

Corollary 2.3 If g : R → G is once, twice, thrice
differentiable then

    
ω ω ω ω ω ω ωs g c s g c s g c cAd Ad Ad= = = +

⋅ ⋅ ⋅⋅ ⋅
, , ([ , ] ωg c

⋅⋅
).

Proof The first assertion follows immediately from
definition (2.2).  The second assertion follows from
corollary (2.2) since

    
ω ω ω ω ω ω
⋅ ⋅ ⋅

= = + =s
d
dt g c g c c g c g cAd Ad Ad Ad( ) [ , ] .

Similarly 
    
ω ω ω ω ω
⋅⋅ ⋅ ⋅ ⋅⋅

= = +s
d
dt g c g c c g cAd Ad Ad( ) [ , ] .

Definition 2.3 Two trajectories g1; g2 : R → G are
equivalent if there exists h ∈  G such that g2 = hg1.  Two
trajectories ω1, ω2, R → G are equivalent if there exists
h ∈  G such that ω2 = Adh ω1.

Lemma 2.3 Two trajectories in G have the same
angular velocity in the body if and only if they are
equivalent, and then their angular velocities in space
are equivalent and either both angular velocities in
space are degenerate or both are nondegenerate.

Proof We assume that g1, g2 : R → G have the same
angular velocity in the body ωc : R → G, we construct
the vector field υ on the manifold G x R by

    
υ ω ∂

∂
( , ) ( ( ), ) ,*g t L t

t
g G tg c= ∈ ∈ R,

and we construct two trajectories f1(t) = (hg1(t), t),

where     h g g= −
2 1

10 0( ) ( ), and f2(t) = (g2(t), t).  We
observe that f1(0) = f2(0), hence

⋅ ⋅
= = =f t L g t

t
L L t

th h g t c1 1 1
( ) ( ( ), ) ( ( ), )* * ( )*

∂
∂

ω ∂
∂

⋅
= = =L t

t
f t f thg t c 1 21

( ( ), ) ( ( )) ( ).
( )*

ω ∂
∂

υ

Theorem 35.1 in22 implies that there exists a one
parameter subgroup of diffeomorphisms Dt : G × R
→ G × R G, t ∈  R for which υ is the phase velocity
field.  Therefore, f1(t) = Dt(f1(0)) = Dt(f2(0)) = f2(t),
t ∈  R.  This proves the first assertion.  The second
assertion follows from lemma (2.3).

Definition 2.4 An inertia operator on G is a positive

definite self-adjoint isomorphism A : G → G*.  The scalar

product (•, •) : G x G → R on G induced by A is defined

by the equation (u, υ) : = < Au, υ >, u, υ ∈  G.

Definition 2.5 Let A : G → G* be an inertia operator.
Its associated left-invariant Riemannian metric Ag : TGg

→ T*Gg, g ∈  G is defined by the equation

    
< > = < > ∈ ∈− −A x y AL x L y g G x y TGg g g g, : , , , , .

* *1 1

Definition 2.6 A difierentiable function g : R  → G has
associated (relative to the left-invariant Riemmanian
metric associated to an inertia operator A on G) mo-
mentum Ms := Ag ω : R  → T*G, angular momentum in

the body 
    
M L Mc g: :*=  R → G*, angular momentum in

space 
    
M R Ms g: :*=  R  → G*, and energy 

    
E Mc c: , .= < >1

2
ω

Lemma 2.4 If G is a Lie group, A is an inertia operator
on G, and g : R  → G is differentiable, then Mc = Aωc,

Mc = 
    
Ad Mg s

* , and 2E = < Ms, ωs >.

Proof These identities follow immediately from
definitions (2.2) and (2.6).
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Definition 2.7 Let G be a Lie group and A be an inertia
operator on G.  Euler’s equation (associated to A) for a

differentiable function φ : R  → G is

    
A ad Aφ φφ

⋅
= * . (2.1)

Lemma 2.5 If G is a Lie group, A is an inertia operator
on G, g : R  → G is differentiable, and ωc satisfies Euler’s
equation, then the energy E is constant.

Proof
    

⋅
= < > = < > =E

d
dt c c c cA ad A

c

1

2
ω ω ω ωω, ,*

< > =c c cA 0ω ω ω, [ , ] .

Lemma 2.6 If G is a Lie group, A is an inertia operator
on G, and g : R  → G is differentiable, then ωc satisfies
Euler’s equation if and only if Ms is constant.

Proof: This follows from corollary (2.2) and lemma
(2.4) since for every υ ∈  G

    
< > = < > =

⋅
A Mc

d
dt cω υ υ, ,

< > = < > =Ad M M Add
dt g s

d
dt s gυ υ, ,*

      
< > + < > =

⋅
M Ad M Ads g s

d
dt g, ,υ υ

< > + < > =
⋅

M Ad M Ad ads g s g c
, ,υ υωo

    
< > + < > =

⋅
M Ad Ad M ads g g s c

, ,*υ υω

< > + <
⋅

M Ad ad As g c
c

, *υ ω
ω

, >c .υ

Corollary 2.4 If G is a Lie group, A is an inertia
operator on G, g : R  → G is differentiable, and ωc

satisfies Euler’s equation, then Mc is contained in the
orbit of Ms ∈  G* under Ad*.

We describe a class of rank one self-adjoint
operators on G* and on G.  A vector u ∈  G induces a

mapping u : R  → G that is defined by the equation

u(t) : = tu, t ∈  R, therefore its adjoint u* : G* → R is

an element in G** that is described by the equation

u* υ : = < υ, u >, υ ∈  G*.  The mapping u → u*

defines a linear injection of G into G** and we will

regard G as a subspace of G** under this injection.  If

u ∈  G then we can regard the composition uu* : = u

o u* : G* → G as an operator uu* : G* → G** that satisfies

< uu* υ, ω >  = < υ, u > < ω, u>, υ, ω ∈  G* and
therefore is a positive-semidefinite self-adjoint
operator on G*.  It has rank one if and only if u ≠ 0.

Furthermore, if υ ∈  G* then the restriction of the

composition υυ* : =  υ o υ* : G** → G* to the subspace

G of G** satisfies < υυ* u, ω > = < ω, u > < υ, ω >, u, ω
∈  G and therefore is a positive-semidefinite self-

adjoint operator on G.  It has rank one if and only if
υ ≠ 0.  The following result follows immediately from
definition (2.4) and the preceding discussion.

Lemma 2.7 If G is a Lie group with dim(G) ≥ 2, A : G
→ G* is an inertia operator on its Lie algebra, and υ ∈

G* is nonzero, then     A A
~

: *:= +υυ G → G* is an inertia
operator that is not a constant multiple of A.

The following result shows that the only if part of
the Lawton-Noakes result20 holds for all Lie groups.

Theorem 2.1 If G is a Lie group whose dimension is ≥
2, A is an inertia operator on G, g : R  → G is
differentiable, ωc satisfies Euler’s equation, and ωc is
contained in a proper closed subspace of G, then there

exists an inertia operator    A
~

: G → G* that is not a
multiple of A and such that ωc satisfies Euler’s equation
for the left-invariant Riemmanian metric associated

to     A
~

.

Proof: Assume that the range of ωc is contained in a
proper subspace of G.  Then there exists a nonzero υ

∈  G* such that < υ, ωc > = 0, hence     < >
⋅

υ ω, c  = 0 and

the operator     A
~

: G → G*, defined by     A A
~

: *= +υυ ,

satisfies 
    
A ad Ac c c cc

~
*

~

* * .ω ω υυ ω υυ ωω

⋅ ⋅
= = =since 0

Furthermore, lemma (2.7) implies that the operator

    A
~

 is an inertia operator that is not a constant
multiple of A.

Theorem 2.2 If G is a Lie group, A is an inertia operator
on G, g : R → G is differentiable, ωc satisfies Euler’s
equation, and both ωc and ωs are nondegenerate, then
A can be computed, up to multiplication by a constant,
from the values of ωc over any interval [a, b] ⊂  R.
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Proof It follows from lemma (2.3) that we may,
without loss of generality, compute the trajectory g
from ωc as the unique solution of the differential

equation 
    
g Lg c

⋅
= *ω  with initial condition g(a) = I,

and compute the angular velocity in space by ωs =
Adgωc.  Then we compute the operators Φ, Ψ : G* →

G by  Φ : =     ∫ a

b

c ct t dtω ω( ) ( )*  and     Ψ = ∫ a

b

s st t dtω ω( ) ( )*

and observe that they are invertible since both ωc

and ωs are nondegenerate.  Therefore, since the
angular momentum in space satisfies the equation

    
M Ad As g c= −1

* ω , we compute Ms (up to multiplica-

tion by a constant) from the equation

            M M t t dts s a

b

s sΨ = ∫ =ω ω( ) ( )*

        M t t dt E t dta

b

s s s a

b

s= ∫ < > = ∫ω ω ω, ( ) ( )* ( )* .2

and substitute it into the equation

    
A A t t dta

b

c cΦ = ∫ =ω ω( ) ( )*

M t t dt Ad M t dta

b

c c a

b

g s c= ∫ = ∫ω ω( ) ( )* ( ) ( )**

to compute A (up to multiplication by a constant).

Corollary 2.5 If G is two dimensional and if ωc is
nondegenerate, then A can be computed, up to a constant
multiple, from the values of ωc over any interval [a, b]
⊂  R.

Proof Assume that ωc is nondegenerate.  Theorem
(2.2) implies that it suffices to show that ωs is
nondegenerate.  Assume to the contrary that ωs

is contained in a proper subspace V of G.  Then

        ωc V x∈ ∈I{ G | < , > 2 }.M x = Es    Since E > 0 and

G has dimension 2, this intersection has exactly one
element.  Therefore ωs, and hence ωc, is constant
and this contradiction completes the proof.

THE INVERSE PROBLEM FOR THREE DIMENSIONAL
LIE GROUPS

Throughout this section we make the following
four assumptions:

1. G is a connected three dimensional Lie group
with Lie algebra G,

2. A : G → G* is an inertia operator on G,

3. ωc : R → G satisfies Euler’s equation with
respect to A,

4. ωc is nondegenerate.

Our objective is to derive conditions on G, A, and
ωc that are both neccessary and sufficient for A to be
determined, up to multiplication by a constant, from
ωc.  We let (•, •) denote the scalar product induced
by A.  We specify an orientation on G and let x denote
the vector cross product on G with respect to (•, •)
and the specified orientation.  Clearly, (u, υ × ω) =
(u x υ, ω), u, υ, ω ∈  G.  We use the following
convention on indices: ai : = aj where j = 1 + (i -
1)mod 3.  Thus a4 = a1.  We choose a basis {e1, e2, e3}
for G that is orthonormal with respect to (•, •) and
satisfies ei x ei+1 = ei+2, i = 1, 2, 3.  We define the linear
operator L : G → G by Lei+2 := [ei, ei+1], i = 1, 2, 3.
Then

[u, υ] = L(u x υ), u, υ ∈  G (3.1)

hence the operator L is independent of the choice of
basis.  However, choosing a different orientation has
the effect of changing L into - L.  We let L* : G* → G
denote the adjoint of L and we let y; [L] represent
ωc, L with respect to the basis { e1, e2, e3}.

Lemma 3.1 [A-1 L* A] = [L]T.

Proof  
    
[ * ] ( * , ) * ,A L A A L Ae e L Ae eij j i j i

− −= = < >1 1

( , ) [ ] , , , , .e Le L i jj i ij

T> = = =1 2 3

Corollary 3.1 Euler’s equation for y is

    
y y L y

T⋅
= − ×[ ] . (3.2)

Proof Eulers equation for ωc, equation (3.1), and
lemma (3.1) imply that

      
    
y e A L A ei c i c c i

⋅ ⋅
−= = × =( , ) ( * , )ω ω ω1

      A L A e y L y ic c i

T

i

−− × = − ×[ ] =( * , ) ( ) , , , .ω ω1 1 2 3

In addition to the previous assumptions, we
further assume that B : G → G is an inertia operator
on A such that ωc satisfies Euler’s equation with
respect to B (in addition to satisfying Euler’s equation
with respect to A) and such that < Bωc, ωc > = 2E.
We construct the operator C := A-1B : G → G and we
let [C] represent C with respect to { e1, e2, e3 }.  We
let I denote the 3 × 3 identity matrix.
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Lemma 3.2 [C]T = [C], yT y = yT [C] y = 2E, and
either [C] =I or [C] - I is nonsingular.  The inertia
matrix A is determined, up to multiplication by a
constant, by ωw if and only if our assumptions on B
imply that [C] = I.

Proof The first assertion follows from [C]ij = (Cej, ei)

= < Bej, ei > = < Bei, ej > = 
    

C
ij

T[ ] ,  the second follows

from yT y = (ωc, ωc) = < Aωc, ωc > = 2E; and the third
follows from yT[C]y = (Cωc, ωc) = < Bωc, ωc > = 2E.
Therefore, yT ([C] - I)y = 0, and since ωc and therefore
y is nonsingular, either [C] - I = 0 or [C] - I is
nonsingular.  The final assertion follows from the
fact that A is determined, up to multiplication by a
constant, from ωc if and only if our assumptions on
B imply that there exists µ ∈  R such that B = µA.
Then 2E = < Bωc, ωc > = µ < Aωc, ωc >= µ2E, hence
µ = 1 andthe proof is concluded.

Lemma 3.3 Let L and B satisfy the assumptions above.
Then

    
C y y L C y

T[ ] = − ×[ ] [ ]
⋅

. (3.3)

Proof This follows from the following derivation

  
    

C y C e B e
i

c i c i[ ]







 =









 = < > =

⋅ ⋅ ⋅
ω ω, ,

        
    
< [ ] > = < × > =B e B L ec c i c c iω ω ω ω, , , ( )

       < × > = × =−L B e A L B ec c i c c i* , ( * , )ω ω ω ω1

    
( * , ) ( ) , , , .− × = − ×[ ] [ ] =−ω ωc c i

T

iA L AC e y L C y i1 1 2 3

Lemma 3.4 If [C] ≠ I then there exists a function R :
R2 → R where R = R0 +R2 +R4, Rj is a homogeneous
polynomial of degree j, R2 ≠  0, and the components y2

and y3 of y satisfy

R(y2, y3) = 0. (3.4)

Proof We define cij : = [C]ij, i, j = 1, 2, 3, and construct
polynomial functions P, Q : R3 → R  and pi, qi, R

2 →
R, i = 0, 1, 2, by

            P x x x E x x x ET( ) := − = + + − =2 21

2

2

2

3

2

        p x x x p x x x p x x E( , ) ( , ) ( , ) ,+ + −20 2 3 1

2

1 2 3 1 2 2 3

        
    

Q x x C x E c x x ET

ij i j
i j

( ) :
,

= [ ] − = − =
=

∑2 2
2

3

        q x x x q x x x q x x E( , ) ( , ) ( , ) .+ + −20 2 3 1

2

1 2 3 1 2 2 3

Hence

    p x x p x x p x x x x0 2 3 1 2 3 2 2 3 2

2

3

21 0( , ) , ( , ) , ( , ) ,= = = +

    q x x c x q x x c x c x0 2 3 11 2

2

1 2 3 12 2 13 32 2( , ) , ( , ) ,= = +

q x x c x c x x c x2 2 3 22 2

2

23 2 3 33 3

22( , ) .= + +

Lemma (3.2) implies that P(y) = Q(y) = 0, therefore
(Proposition 10.123) implies that the components y2

and y3 of y satisfy equation (3.4) where

    

R

p p p

p p p E

q q q

q q q E

E

E

: det=

−
−

−
−





















0 1 2

0 1 2

0 1 2

0 1 2

2 0

0 2

2 0

0 2

is the resultant of polynomials P and Q, considered
as polynomials in the variable x1 whose coefficients
are functions of x2 and x3.  We compute

    R q c p c E p E q= − + − + −( ( ) ) ( ) ,2 11 2 11

2

2 1

21 2 2

    R c E0 11

2 21 4= −( ) ,

R c E q c p Eq2 11 2 11 2 1

21 4 2= − − −( ) ( ) , (3.5)

    R q c p p q4 2 11 2

2

2 1

2= − −( ) ,

and observe that if R2 = 0; then equation (3:4)
implies that

    c c y c y y c y c y c y11 22 2

2

23 2 3 33 3

2

12 2 13 31 1 2 1 0− = − + + − = + =( ) ( ) .

Since y is nondegenerate, c11 = c22 = c33 = 1, c23 = c12 =
c13 = 0, and [C] = I.

UNIMODULAR GROUPS

Definition 3.1 A Lie group G is unimodular if its left
invariant Haar measure is also right invariant.

Lemma 3.5 A connected Lie group G is unimodular if
and only if either of the following equivalent conditions
are satisfied: (i) det Adg = 1, G ∈  G, (ii) trace adx = 0,

x ∈  G.

Proof See24 (page 366).

Theorem 3.1 G is unimodular if and only if [L]T =
[L], and in this case, since the eigenvalues of L are
real, the orientation on G can be chosen such that L has
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at least as many positive eigenvalues as negative
eigenvalues.  Furthermore, the basis {e1, e2, e3} can be
chosen such that

L[ ] =

















λ
λ

λ

1

2

3

0 0

0 0

0 0

. (3.6)

where the signs of the eigenvalues λ i, i = 1, 2, 3 of L
correspond to the six unimodular three dimensional
Lie groups shown in Table 1.

If G is not unimodular we can choose the basis {e1, e2,
e3} such that α + δ > 0 and

    

L[ ] = −
−

















0 0 0

0

0

γ α
δ β

. (3.7)

Table 1. Unimodular Three Dimensional Lie Groups.

λλλλλ1 λλλλλ2 λλλλλ3 Lie group description

+ + + SU(2) or SO(3) compact, simple
+ + - SL(2, R ) or O(1; 2) noncompact, simple
+ + 0 Euclidean group E(2) solvable
+ - 0 Lorentz groupE(1, 1) solvable
+ 0 0 Heisenberg group H(1) nilpotent
0 0 0 R3 commutative

Proof See Milnor.25

Lemma 3.6 If L and B satisfy the assumptions above
and [L]T = [L], then either [C] = I or [L] is a linear
combination of [C] and I: Therefore, the basis {e1, e2,
e3} can be chosen such that [L] satisfies equation (3.6)
and [C] is a diagonal matrix.

Proof If [L]T = [L] then equation (3.2) implies that

    

d
dt

T T
T

y L y L y y[ ] = [ ]





=
⋅

2 0 so there exists a constant

c ∈  R such that yT[L]y = 2Ec.  Assume that [C] - I
≠ 0.  Then lemma (3.2) implies that [C] - I is
nonsingular, hence there exists an eigenvalue α ∈  R
and a generalized eigenvector e such that ([L] - cI)
e = α ([C] - I)e.  Therefore the matrix M := [L] - cI -
α ([C] - I) is singular.  Since yTMy = 0 and y is nonde-
generate, it follows that M = 0 and therefore [L] =
(c - α) I + α [C].

Theorem 3.2 If G is unimodular and if G ≠ E(2) (the
group of Euclidean motions of R2), then A is determined,
up to multiplication by a constant, from ωc.

Proof Assume that G is unimodular, that L and B
satisfy the assumptions above, and that [C] ≠ I.  Then
theorem (3.1) and lemma (3.6) imply that we can
choose the basis {e1, e2, e3} such that

    

L C

c

c

c

[ ] =

















[ ] =

















λ
λ

λ

1

2

3

1

2

3

0 0

0 0

0 0

0 0

0 0

0 0

,

where the signs of λ1, λ2, λ3 ∈  R  are described by
one of the six entries in Table 1 and c1, c2, c3 ∈  R.  It
suffices to prove that c1 = c2 ≠ c3,  λ1 =  λ2 > 0, and
λ3 = 0.  We observe that equations (3.2) and (3.3)
imply that the components y1, y2, y3 of y satisfy the
following equation

    

[ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )]

.

c c c y y

c c c y y

c c c y y

1 2 3 2 2 3 3 2 3

2 3 1 3 3 1 1 2 3

3 1 2 1 1 2 2 2 3

0

0

0

λ λ λ λ
λ λ λ λ
λ λ λ λ

− − −
− − −
− − −
















=

















Furthermore, since y is nondegenerate, each of the
functions y2y3, y3y1, y1y2 assumes a nonzero value
hence

    

0

0

0

0

1 2 3 1

1 2 2 3

3 1 2 3

1

2

3

c c c c

c c c c

c c c c

− −
− −
− −
































=

λ
λ
λ

. (3.8)

If λ j = 0, j = 1, 2, 3 then G = R3 and Euler’s equation
has only constant solutions.  This is impossible since
we assumed that ωc is nondegenerate.  Therefore
equation (3.8) implies that 2(c1- c2)(c3 - c1)(c2 - c3)
= 0.  This fact and the fact that [C] is not a constant
multiple of I implies that exactly one of the following
conditions hold: (i) c1 = c2 ≠ c3, (ii) c1 = c3 ≠ c2, or
(iii) c2 = c3 ≠ c1.  Condition (ii) is impossible since it
implies that λ1 = λ 3 ≠ 0 and λ2 = 0 which is
inconsistent with the signs in Table 1.  Condition
(iii) is impossible since it implies that λ1 = 0 and
λ2 = λ3 ≠  0 which is inconsistent with the signs in
Table 1.  Therefore, condition (i) must hold and it
implies that λ1 = λ2 > 0 and λ3 = 0 hence G = E(2).
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NONUNIMODULAR GROUPS

Lemma 3.7 Assume that G is nonunimodular and that
A, B, C, R, L and ωc satisfy the assumptions stated
previously in this section.  Choose a basis {e1, e2, e3}
for G such that [L] satisfies equation (3.7).  Define

  

D =












α β
γ δ

and construct functions z2, z3 : R
2 → R  by

    

z

z
exp

y

y

1

2

2

3

0

0

( )

( )
( )

( )

( )
,

s

s
sD s












=













∈ R. (3.9)

Then

R(z2(s); z3(s)) = 0,   s ∈  R. (3.10)

Proof Equation (3.2) implies that the components
y1, y2,y3 of y satisfy the following differential equation

    

y

y

y D
y

y

⋅

⋅
















=

















2

3

1

2

3

. (3.11)

Therefore,

    

y

y

y

y

2

3

2

3

0

0

( )

( )
( ( ) )

( )

( )
,

t

t
f t D












=













exp (3.12)

where f : R  → R satisfies the differential equation

    f y
⋅

= 1.  Since y is nondegenerate, y1 is not identically

zero so the range of f contains a nonzero open
interval.  This implies that equation (3.10) is satisfied
over that open interval.  Since R, z2, z3 are analytic,
R(z2(s), z3(s)) is an analytic function of s and
therefore vanishes for all values of s.

Theorem 3.3 If G is nonunimodular then A is
determined, up to multiplication by a constant, from
ωc if and only if G is not isomorphic to the product of
the two-dimensional affine group with R.

Proof Let A, B, C, D, R, L, ωc satisfy the assumptions
in lemma (3.7).  It suffices to prove that [C] = I.  Let

λ1 and λ2 denote the eigenvalues of D ordered so that
ℜ  λ1 ≥ ℜ  λ2.  Clearly ℜ  λ1 > 0 since theorem (3.1)
implies that λ1 + λ2 = α + δ > 0.  Therefore it suffices
to consider the three cases: ℜ  λ2 > 0, ℜ  λ2 = 0, and
ℜ  λ1 < 0.

Case 1 ℜ  λ2 > 0.  Clearly lims →−∞ |zj(s)| = 0, j = 2, 3
therefore equation (3.10) implies that R0 = R(0, 0) =
0 and lemma (3.4) implies that c11 = 0 and

    R p q p q Eq= − + −( ) .2 2

2

2 1

2

1

2

2 (3.13)

Furthermore, lims →∞ |zj(s)| = ∞, j = 2, 3 therefore
there exists s0 such that

      p2(z2(s); z3(s)) > 2E,  whenever s >s0. (3.14)

If q1 ≠  0 then, since y is nondegenerate, there exists
a s1 > s0 such that

      q1(z2(s1), z3(s1)) ≠ 0. (3.15)

Equations (3.10), (3.13) and (3.15) imply that 2E ≥
p2(z2(s1) which contradicts equation (3.14) and
proves that q1 = 0.  Then R2 = 0 and lemma (3.4)
implies that [C] = I.

Case 2 ℜ  λ2 = 0.  Clearly λ1 and λ2 are real and
distinct therefore we can choose the basis {e1, e2, e3}
such that α = β = 0 and z2(s) = y2(0) ≠ 0, s ∈  R.  This
equation defines a plane and y must lie in the circle
formed by intersecting this plane with the sphere
defined by the equation P(y) = 0.  This circle is
orthogonal to and centered about the e2 axis,

therefore there exists a > 0 such that     y a y y2

2

1

2

3

2

= +( ).

The argument used in the proof of lemma (3.6)
shows that either [C] = I, or that the matrix diag
([a - 1 a]) is a linear combination of [C] and I.
Therefore [C] is a diagonal matrix and q1 = 0 and

    ( ) ( ) ( ) .c E c c y c c y11 22 11 2

2

33 11 3

2

2 2 0− + − + − =  (3.16)

Since y2 = y2(0) ≠ 0 and y3 is not constant, c33 = c11,
[C] = diag([c11 c22 c11]), and

(c11 - 1)2E + (c22 - c11)y2(0)2 = 0. (3.17)

We combine equations (3.2), (3.3), (3.7) and the
fact that α = β = 0 to obtain
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c

c

c

y y

11

22

11

0 0

0 0

0 0

0 0 0

0

0 0 0

















× − −
































=γ δ

y

c

c

c

y

11

22

11

0 0 0

0

0 0 0

0 0

0 0

0 0

× − −

































γ δ ,

hence γy2y3(c22 - c11) = γy2y1(c22 - c11) = 0 and either
c22 - c11 or γ = 0.  If c22 = c11, then equation (3.17)
implies that [C] = I, contradicting our initial
hypothesis.  Therefore γ = 0 and G is the product
of the two-dimensional affine group with R.  Con-
versely, if G is the product of the two-dimensional
affine group with R, then we can choose a basis {e1,
e2, e3} such that α = β = γ = 0 and δ > 0 and C := A-1 B
has the representation [C] = diag([c11 c22 c33]) where
c11, c22 > 0 satisfy equation (3.17) and c11 ≠ c22.  This
shows that A is not determined, up to multiplication
by a constant, from ωc.

Case 3 ℜ  λ2 < 0. We choose a 2 × 2 matrix F such
that D = F-1 diag([λ1  λ2])F and define variables

    x jj

~

, ,= 2 3

    

x

x

F
x

x

~

~
: ,

2

3

1 2

3

















=

















−

and polynomials 
    
R x x R x x jj j

~ ~ ~

( , ) : ( , ), , , ,2 3 2 3 0 2 4= =

R R R R
~ ~ ~ ~

: .0 2 4= + +   Clearly     R j

~

 is homogeneous of

degree j, and the functions     z j

~

, j = 2, 3 defined by

    

z s

z s

F
z s

z s

~

~
:

2

3

1 2

3

( )
( )

















=
( )
( )



















−

satisfy 
    
z s e z z s e z

s s~ ~ ~ ~

, ,2 2 3 3
1 2

0 0( ) = ( ) ( ) = ( )λ λ
s ∈ R,

where     z jj

~

( ) , ,0 0 2 3≠ = , and     R z s z s
~ ~ ~

( ( ), ( )) .2 3 0=

The polynomial     R
~

 is a sum of nine monomials.  The
preceeding equations and the inequalities λ1 > 0 >
λ2 and λ1 + λ2 > 0 imply that λ1 = -3λ2 and that all

the coefficients of     R
~

 vanish except for the constant

term     R
~

0  = R0 and the coefficient of     x x
~ ~

.2 3
3   Therefore,

    R
~

,2 0=  hence R2 = 0 and lemma (3.4) implies that

[C] = I.  This completes the proof.
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