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INTRODUCTION

An arithmetic function is a function whose
domain is N and range is a subset of C.

Let f and g be arithmetic functions. The sum (or
addition) of f and g is an arithmetic function f + g
defined by (f + g)(n) = f(n) + g(n). The Dirichlet
product ( or convolution or Dirichlet multiplication)
of f and g is an arithmetic function f * g defined by

( ) ( )f ∗ = ∑g n f d g
n

dd n

( ) ( ).

The set (A, +, *) of all arithmetic functions
together with addition and convolution is a unique
factorization domain but not a principal ideal
domain.1-3, 7-9  The function Z(n) = 0 (∀  n ∈  N) is an
additive identity, while the function

I( )
otherwise

n
 n= =





1 1

0

,     

,
 is a (Dirichlet) multiplicative

identity. Indeed, the so-called Möbius inversion
formula1-3, 7-9 states that for f, g ∈  A, we have

f n g d g n f d
n

dd n d n

( ) = ⇔ =∑ ∑( ) ( ) ( ) ( )µ , which

is equivalent to stating that f = g * u if and only if
g = f * µ, where u is the unit function defined for all
n ∈  N by u(n) = 1 and µ the Möbius function.

An arithmetic function f is said to be multipli-
cative if f (1) = 1 and f (mn) = f (m) f (n) for all
relatively prime integers m, n.  Let f ∈  A. The
(Dirichlet) inverse of f is an arithmetic function f -1

for which I = f * f -1.  It is known1-3, 7-9 that f -1 exists if
and only if f (1) ≠ 0.
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A derivation over A7 is a function D : A → A
such that for all f, g ∈  A, and for all a, b ∈  C , we
have D(f * g) = Df * g + f * Dg, D(af  + bg) = aDf +

bDg.  Three typical examples of derivation, which
are often used, are

(i) log-derivation : Dl f (n) := f (n) log n ,
(ii) p-basic derivation (p prime) : Dp f (n) :=

 f (np) vp(np), where vp(m) denotes the
highest power of p dividing m,

(iii) Dh f (n) := f(n) h(n), where h is a completely
additive arithmetic function, ie,
h(mn) = h(m) + h(n).

In 1968, D. Rearick5, 6 constructed a number of
operators over A analogous to the classical logarithmic,
exponential and trigonometric operators. He sub-
sequently used them to show that various groups of
real - valued arithmetic functions are isomorphic.
That is, (AR, +), (PR, *), (MR, *), (PR, x) and (MR, x)

are isomorphic, where
AR = { f: N → R } = set of real-valued arithmetic

functions,
PR = { f ∈  AR ; f (1) > 0 },
MR = { f ∈  PR ; f is multiplicative },

and x is the unitary product defined by (f x g)(n) =

Σ' f (d) g(n/d), with Σ' indicating that the sum is taken
over the divisors d such that (d, n/d ) = 1.

The objectives of this work are :
(i) to extend the definition of Rearick in order to

embrace those arithmetic functions which
assume complex values of all but one point,
namely, at n = 1; this is indeed suggested at the
end of Rearick paper,5 and
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(ii)to establish relevant isomorphisms among certain
groups of arithmetic functions considered in (i)
which encompass those in Rearick.5, 6

LOGARITHMIC OPERATORS

The following notation will be standard
throughout the whole paper:

AC : = { f ; f : N → C} = set of all complex-valued
arithmetic functions ,

A'C : = { f ∈  AC ; f (1) ∈  R } ,
PC : = { f ∈  A'C ; f (1) > 0 } ,
MC : = { f ∈  AC ; f is multiplicative }.

We define the (complex) logarithmic operator
LC : PC → A'C by

LCf  (1) = log f  (1) and

      

LC f n f d f n
d

d n

d( ) ( )  = D     ( ) (  >  ).= − 





∑ ∗1 log 1
-1 1f f n n

Proposition 1. For all f, g ∈  PC, we have LC (f * g) =

LCf + LCg.

Proof. LC (f * g)(1) = log (f * g)(1) = log (f (1)g (1))

    = log f (1) + log g (1)

    = LCf (1) + LCg (1).
Since LCf  = f -1 * D1f, evaluating at n > 1, we see that
         LC (f * g)(n) = ((f * g)-1 * Dl (f * g))(n)

 = (f-1 * g-1 * (f * Dlg +  g * Dlf )) (n)

 = LCg (n) + LCf (n).

Proposition 2. For each h ∈  A'C, there is a unique
f ∈  PC such that h = LCf.

Proof. Define f(1) = exp h(1). Let n > 1 and assume
f (k) has been defined for all k < n.  The value
f -1(k) are recursively determined by the relation

      

−∑ =
1

f
d k

d f
k

d
k( ) ( )    ( )I . This gives us a triangular

system which can be solved for the unknowns
f -1(k). Now given h(n), f (k) and f -1(k) for all k < n, we
define f(n) by solving for the term corresponding to

d = n in the equation h(n) =  f

d n

d f
n

d
d∑ −( ) ( ) 1 log ,

noting that the term containing f -1(n) disappears
because log 1 = 0 and all other terms are known.

Remark. Proposition 1 and 2 show that the map

f   a  LCf  is an isomorphism of the groups (PC, *) and
(A'C, +).

Proposition 3. Let f ∈  PC. Then f is multiplicative if
and only if LCf (n) = 0 whenever n is not a prime
power.

Proof. Assume f is multiplicative.  Then f (1) = 1

and so LCf (1) = 0.
Let N be a positive integer which is not a prime
power.  Then there are positive integers
m, n both > 1, (m, n) = 1 such that N = mn.  Thus

LCf (N) = f

d mn

d f
mn

d
d∑ −( ) ( ) 1 log

        = f d

d n

f

d m

d f - m

d
f

n

d
d d( ) ( ) ( ) -1 ( )(

2
)

1

21

2
1

1 2
1

∑∑ +log log

        = LCf (m) I(n) + LCf (n) I(m) = 0.

Next assume that LCf (n) = 0 whenever n is not a
prime power.  Since LCf (1) = 0, then f (1) = 1.  For

n > 1, define g ∈  PC by g(1) = 1 and g(n) = 
      
∏
p n

f p
|

( v )

where pv||n.  Clearly, g is multiplicative. We now show
that f = g.  Observe that f (n) = g(n) and f -1(n) = g-1(n)

whenever n is a prime power.  From the definition
of LC, we thus get LCf (n) = LCg (n) whenever n is a
prime power. Since  g ∈  PC, then the first half of the
proof yields that LCg (m) = 0 whenever m is not a
prime power.  Hence, LCf (n) = LCg (n) for all n ∈  N

and so f = g by the isomorphism LC.

Remarks. Proposition 3 implies that the groups
(MC, *) and (A"C, +) are isomorphic, where
A"C : = { h ∈  A'C: h(n) = 0 whenever n is not a prime
power }.  The group (A"C, +) is also isomorphic to
the group (AC, +)via the map h ↔ H where H(n) =

h(kn) with {kn} being the sequence of prime powers
arranged in ascending order.

 Consequently, the groups (MC, *) and (AC, +)

are isomorphic.

OTHER OPERATORS

Let h ∈  A'C. Denote by ECh, call the (complex)
exponential of h, the unique element f ∈  PC , justified
by Proposition 2, such that h = LCf.  It follows easily
from the definition and the properties of logarithmic
operators that
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(i) EC (h1+h2) = EC h1 * EC h2 (∀  h1, h2 ∈  A'C)

(ii) LC (ECh) = h (∀  h ∈  A'C)

(iii)EC (LCf) = f (∀  f ∈  PC)

(iv) EC (Z) = I.

For f ∈  PC, and r ∈  R define the rth power
arithmetic function by f r : = EC (r LC f).

It is easily checked that

(i) (f r)s = f rs.
(ii) f r+s = f r 

* f s.
(iii)(f * g)r = f r 

* gr.
(iv) If r is a positive interger, then

f r = EC (LC f + ... +  LC f) = f * ... * f (r factors),
agreeing with our previous definition of positive
integral power function.

(v) If r = -1, then f -1 = EC (-LC f), and so
f  * f -1 = EC (LC f) * EC (-LC f) = EC (LC f - LC f) = I

agreeing with the usual meaning of inverse.
(vi) If r ∈  R - {0} and f ∈  PC, it follows that the

equation gr = f is uniquely solvable for g ∈  PC;

indeed, the solution is g =     f
r
1

, which amounts

to saying that every f ∈  PC has a unique rth root
in PC.

Proposition 4. Let r ∈  R. If f ∈  MC, then f r ∈  MC.

Proof.  If f ∈  PC, then by Proposition 3 , LCf (n) = 0

whenever n is not a prime power and so is rLCf (n).
Therefore, Proposition 3 again yields that
f r = EC (rLC f) is multiplicative.

Remark. It follows from the last proposition that for
nonzero real r, the map f → f r is an automorphism
of the group (PC, *) which sends multiplicative
elements onto themselves.

Let f ∈  A'C. Define the hyperbolic sinh, cosh and
tanh as follows:

      
S E E

c c c
f f f= − −1

2
( ( )),

      
C E E

c c c
f f f= + −1

2
( ( )),

      
T S C

c c c
f f f= ∗ −( ) 1.

Since this definition mimics the classical one, it
is clear that most elementary identities involving
hyperbolic and/or trigonometric functions hold. We
list some examples here.

(i) SC f  + ((SC f )
2 + I)1/2 = EC f.

(ii) If SC f = SC g, then EC f = EC g and  f = g, ie SC

is injective.
(iii)For each h ∈  A'C, there exists an f ∈  A'C such

that SC f = h, viz, f = LC (h + (h2 + I)1/2). This
shows that SC is surjective.

(iv) SC (f + g) = SC f * ( (SC g)2 + I )1/2 +

SC g * ( (SC f)
2 + I )1/2.

Proposition 5. The system ( , )′AC �  forms a group

which is isomorphic to ( , )′ +AC
, where

    f� ( I) + ( + I) .2 1/2 2 1/2g = f g + g f∗ ∗

Proof. That ( , )′AC �  is a group can be directly checked
using the identities mentioned above.  The map

( , )′ +AC
 → ( , )′AC �  defined via f   a  SCf  provides us

with a desired isomorphism.

Let VC := { f ∈  A'C : -1 < f (1) < 1} and let ∆ be a
binary operation defined over VC via f ∆ g := (f + g) *
(I + f * g)-1.  It is easily checked that (VC, ∆) forms a
group with the zero function Z acting as the group
identity.

Proposition 6. The groups (VC, ∆) and ( , )′ +AC
 are

isomorphic.

Proof. The hyperbolic tanh map TC :  f → TC  (f) =

SCf * (CCf)-1 gives a desired isomorphism from A'C
onto VC.

Proposition 7. The groups (AC, +), (AR, +) and
(A'C, +) are all isomorphic.

Proof. The map α : (AR, +) → (AC, +) defined for
each positive integer n by

α (f) (n) := f (2n-1) + i f (2n)

yields a desired isomorphism, while the map
β : (AR, +) → (A'C, +) defined by

β(f) (1) = f (1), β(f) (n) = f (2n-2) + i f (2n-1) (n > 1),

yields the other desired isomorphism.
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To sum up, we have the following isomorphisms
diagram.

(PC , * )                                    ( cA' , )  

                                                                                     SC

                                                         LC                     

                                                           

(PR , * )                                            ( cA' , +)                                   (VC , ∆)  

 TC

(AR , )                                              β

                              SR                                                             

                                                                                         

(VC , ∆)                                               (AR , +)                                  (AC , +)

                                TR

                                                                      prime power                           prime power

(MR ,* )                                              ( RA" , +)                                ( cA"  , +)

                                LR

                                                                                                         LC

(MC , * )

LR

α
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