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INTRODUCTION

Shrinkage of concrete has a significant influence
on the durability and serviceability of the concrete
structure.  Concrete is composed of paste phase and
aggregate phase.  However the shrinkage was
regarded to occur only in the paste phase whereas
the aggregate phase was considered to restrain the
shrinkage by their particle interaction.  There is
much research for predicting the shrinkage taking
into account aggregate restraint.  One of these is
Hobbs’ model,2 which was proposed for estimating
drying shrinkage of concrete considering the effect
of aggregate.  However, this model was not applicable
for all ranges of aggregate content and the proportion
between fine aggregates and coarse aggregates.  The
other one is a two-phase material model, taking into
account the restraint shrinkage due to aggregate
particle interaction, has been proposed by Tangterm-
sirikul and Nimityongskul.1 The deformation
behavior of aggregate particle system can be predicted
using the idea from the two-dimensional constitutive
model for solid phase under compression.  However,
the aggregate stiffness equations used in the model
were still macroscopic.  So, a more rational micro-
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ABSTRACT This paper is aimed to propose a model for simulating aggregate phase stiffness and its effect
on concrete shrinkage based on the concept of concrete as a two-phase material (paste phase and aggregate
phase).  Regarding the effect of aggregate phase, concrete shrinkage is found to be affected by the
aggregate content, strain of the aggregate phase and the proportion between coarse aggregates and fine
aggregates.  The aggregate particles are considered to be uniformly distributed in the concrete and in
contact with one another at various contact angles.  As a result, the stress of the aggregate phase can be
obtained from the summation of stresses of all contact angles.  A two-dimensional constitutive model is
used for computing the stiffness of the aggregate phase of concrete.  The stiffness of the aggregate
particle system is then derived from the ratio between stress and strain.  Because of concrete shrinkage
is restrained by aggregates, the effect of aggregate stiffness on concrete shrinkage is proposed based on
the concrete shrinkage model by Tangtermsirikul and Nimityongskul.1 Verification tests on fine aggregates
are conducted on mortar specimens while coarse aggregates and binary mixture of aggregates are
conducted on concrete specimens.  The verification indicated that the model is effective for deriving the
stiffness of aggregate phase and predicting the shrinkage of concrete as well.  From the test and analysis
results, high aggregate contents induce great stiffness.  As a result, it will have effect on small shrinkage.
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scopic model is proposed in this study.  This paper
proposes a stiffness model which is applicable to fine
aggregates and coarse aggregates, and also covers the
stiffness of binary mixture between coarse and fine
aggregates.

TWO-PHASE MODEL FOR CONCRETE
SHRINKAGE [OVERVIEW]

Concrete is regarded as a two-phase material
comprising of paste phase and aggregate phase.  Paste
phase being the part to undergo shrinkage, consists
of all cementitious and powder materials, water, all
kinds of mineral and chemical admixtures and air
voids.  The aggregate phase, considered much more
stable in volume, consists of coarse and fine
aggregates.  Under the assumption that paste phase
and aggregate phase develop a full bond, the
deformation strain of both phases can be assumed
to be equal, and also equal to the deformation strain
of concrete.  The equilibrium condition between two
phases can be written in the internal stress form.
Stresses inside concrete are from stress on aggregate
phase from paste phase and stress on paste phase
from aggregate phase.  From the above assumptions
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based on the properties of concrete, Tangtermsirikul
and Nimityongskul1 proposed an equation for
computing shrinkage strain of concrete as
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where εconc is the shrinkage strain of concrete, εpo is
the free shrinkage of paste in concrete, Ep is the paste
stiffness (kgf/cm2), Ea is the aggregate stiffness (kgf/
cm2), and na is the volume concentration of aggregate
which is obtained from

na = Va/Vconc (2)

where Va is the volume of aggregate in concrete (m3)
and Vconc is the volume of the concrete (m3).

In this study, the free shrinkage of paste in
concrete (εpo) was obtained from the shrinkage test
on paste mixtures.  A model for predicting free
shrinkage of paste has been studied by the authors.3

For stiffness of paste (Ep), Yomeyama et al4

proposed the model which is taken from the effective
tensile Young’s modulus with no historically
sustained tension or compression as

 Ep = 1.05 x 104 x (fc)
0.474  (3)

where fc is the compressive strength of paste.

AGGREGATE STIFFNESS OF SINGLE MATERIAL

In simulating the shrinkage of concrete by a two-
phase material model, stiffness of aggregate phase
has to be obtained as one of the phase properties.
The deformational behavior of aggregate particle
system can be predicted using the idea from the two-
dimensional constitutive model for solid particles
under compression.  The model which is applicable
to fine aggregate and coarse aggregate individually
as single materials is firstly proposed based on the
contact density concept.  Then the concept for deriv-
ing stiffness of combined fine and coarse aggregates
as binary mixtures was introduced later.

Concept of the Aggregate Stiffness Model for Single
Material

Aggregate is considered to be composed of
particles which are contacting one another.  Each
contact has its own contact angle (θ) and the density
distribution of the contact angle is assumed to be

Ω(θ).  The Ω(θ) can be simply explained as to
represent the ratio of the numbers of contact which
have angles θ to the total numbers of contact.  The
force system contains normal force which is caused
by the deformation normal to the contact plane and
friction force which is due to the deformation parallel
to the contact plane.  Stress-strain relation that is
applied for relating the deformation normal to the
contact plane to the corresponding stress is assumed.
Friction is treated as dry Coulomb’s friction.  Contact
area increases as the deformation progresses and is
affected by particle shape, size and grading of the
aggregate.  Re-arrangement of particles is also a
significant factor especially for low friction particles.

Probability Density Function for Contact Angle
Particles are considered to have a density function

for contact angle as in Fig 1.  Li and Maekawa5

proposed a different function for effective contact
area to model the shear transfer across crack.  Here
it is reasonable to assume that there are negligible
contact angles which are normal and parallel to the
principle strain direction (θ equals 0 and π/2 ), but
most contact angles are nearly or just π/4.  Then the
function for contact angle is assumed as

Ω(θ)= sin2θ (4)
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Deformation at a Contact
From the geometry in Fig 2, considering a unit

volume, the deformation, ωθ and δθ, can be related
to strains (εy and εz) by coordinate transformation.
Then

ωθ = εz . cosθ + εy . sinθ (6)
δθ = εz . sinθ - εy . cosθ (7)

As the co-ordinate axis coincides with the
principal strain directions, the shear strain, εxy, equals
zero.

Fig 1. Density Function of Contact Angle.
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Fyθ) in the global coordinate system as

Fzθ = (σcθ . cosθ + ƒθ . sinθ) . Acθ (10)
Fyθ = (σcθ . sinθ - ƒθ . cosθ) . Acθ (11)

where Acθ is contact area.

Equilibrium is satisfied by integrating the
multiplication product of forces with the density
function of the contact angle in the global coordinate
over contact angles from θ = 0 to π/2 and equate the
integral to the external forces as

σ θ θθ
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= ⋅ ⋅∫ Ω (12)
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where σy and σz are the stresses in y and z directions
in global coordinate system, respectively; and Ay and
Az are the area normal to y and z directions in global
coordinate system, respectively.

Substituting Eq.(10) and Eq.(11) into Eq.(12)
and Eq.(13), since Ay = Az = 1, the principal stresses
can be obtained as
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By introducing the function for contact area (Acθ),
Eq.(6), Eq.(7), Eq.(8), Eq.(9), Eq.(14), and Eq.(15)
can be solved simultaneously.  Subsequently, the two-
dimensional stress-strain relationship of the single
materials can be obtained as
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where Eay and Eaz are the aggregate stiffness in y and
z directions of the global coordinate, respectively.

Constitutive Relation for Normal Direction
In this study, the stress-strain relationship for

relating the normal stress (σcθ) to its corresponding
deformation (ωθ) is considered to be linear.  The
monotonic local stress-strain relation of a contact is
assumed to be

σcθ = Ec′ . ωθ (8)

where Ec′ is the stiffness of stress-strain relation-
ship of the contact displacement in the direction
normal to the contact plane, and was reasonably
assumed to have a value of 2.5 x 105 kgf/cm2 in this
study.

Stress in Direction Parallel to Contact Plane
To simplify the problem, the frictional stress (ƒθ)

is assumed constant independent on slip (δ) as in
the following expression

ƒθ = µ. . σcθ  (9)

where µ is the coefficient of physical friction between
grain of particles.  In this study, all of concrete
specimens were conducted on water to cement ratio
equal to 0.30, µ for crushed limestone coarse
aggregate and river sand were assumed to have
the values of 0.36 and 0.31, respectively.  However,
increased amount of water has an effect to lubricate
the aggregate particles and reduces the friction along
the interfaces of aggregates.  As a result, µ is less in
the mixes that have a greater water to cement ratio.

Equilibrium Equations
The local force system performing on the contact

at angle can be transformed to be the forces (Fzθ,

Fig 2.  The 2-dimension Displacement Compatibility of a Contact
at Contact Angle θ Showing Initial as well as Deformed
Configurations of a Contact.
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Contact Area
The factors affecting contact area of the particles

are size, shape, gradation and re-arrangement of the
particles.  An important phenomenon is the increase
of the contact area as the deformation progresses.
By assuming that the contact area of a contact angle
increases along with the amount of slip in that
contact (δθ).  The contact area at a contact angle
can be expressed as

  A A dAc co cθ θ φ= + ⋅∫  (18)

where Aco is initial contact area (cm2/m3), and φ is a
function to govern effect of particle size, shape,
grading and re-arrangement on contact area.  For
crushed limestone coarse aggregate and river sand,
φ equals to 1.4 and 1.1, respectively.

From the two-dimensional contact configuration
in Fig 2, it can be assumed that the contact area of a
constant angle θ increases along with the amount of
slip (δθ) in that contact in a unit volume (m3) so
that a unit width (1 m) can be applied.  As a unit of
contact area is cm2/m3, a unit width in one meter is
transformed to a hundred centimeters.  A summation
of increase of contact area can be derived from

  dAcθ θδ∫ = ⋅100 (19)

The initial contact area (Aco) can be assumed to
be expressed by a non-linear function of the total
surface area of aggregate (consider a unit volume of
concrete).  For crushed limestone coarse aggregate
and river sand, the equation for Aco were found from
the back analysis to be as in Eq.(20) and Eq.(21),
respectively.
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where ζG is the total surface area of coarse aggregate
in a cubic meter of concrete (cm2/m3), and ζS is the
total surface area of fine aggregate in a cubic meter
of concrete. (cm2/m3).  ζG,max is the total surface area
of the densely compacted coarse aggregate in a cubic
meter of bulk volume (cm2/m3), and ζS,max is the total
surface area of the densely compacted fine aggregate
in a cubic meter of bulk volume (cm2/m3).  The surface

area ratio (ζg/ζg,max, ζs/ζs,max) is equal to aggregate
volume concentration ratio (ng/ng,max, ns/ns,max) that
is defined as
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where ng is the coarse aggregate volume concentra-
tion, ns is the fine aggregate volume concentration,
ng,max is the aggregate volume concentration of the
densely compacted coarse aggregate in a cubic meter
of bulk volume, ns,max is the aggregate volume con-
centration of the densely compacted fine aggregate
in a cubic meter of bulk volume, Vg is the volume of
coarse aggregate (m3), Vs is the volume of fine
aggregate (m3), Vc is the volume of concrete (m3),
Vg,max is the densely compacted coarse aggregate
volume in a cubic meter of bulk volume (m3), and
Vs,max is the densely compacted fine aggregate volume
in a cubic meter of bulk volume (m3).

Then, the initial contact area in (Aco) in Eq.(20)
and Eq.(21) can be modified as
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STIFFNESS OF BINARY MIXTURES OF AGGREGATES

The above stiffness model was proposed for single
materials (coarse and fine aggregates individually).
However, aggregates in concrete are usually mixtures
of coarse and fine aggregates.  The stress of the mixture
of aggregates is considered to be the combined results
of stresses contributed by each single material, namely
stress produced by coarse aggregates (σg) and stress
produced by fine aggregates (σs).  The stress con-
tributed by coarse aggregates can be obtained from
the summation of stresses from coarse aggregate -
coarse aggregate interaction (σg-g) and fine aggregate -
coarse aggregate interaction.  The fine aggregate -
coarse aggregate interaction stress can be obtained
from the fine aggregate-fine aggregate interaction
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(σs-s) and the coarse aggregate volumetric ratio as

σg = σg-g + ng 
. σs-s (26)

where σg is the stress produced by coarse aggregate
(kgf/cm2), σg-g is the stress from coarse aggregate -
coarse aggregate interaction (kgf/cm2), σs-s is the
stress from fine aggregate - fine aggregate interaction
(kgf/cm2), and ng is the coarse aggregate volume con-
centration.

In the same way, the stress contributed by fine
aggregates can be obtained from the fine aggregate-
fine aggregate interaction as

σs = (1-ng) . σs-s  (27)

Then the total stress of the binary aggregate phase
(σt) is calculated from

σt = σg + σs = σg-g + σs-s  (28)

where σg-g and σs-s are obtained from the stiffness
model of single material, so
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where Acθ(g) was defined in Eq.(18).  Aco(g) in this
equation can be obtained from Eq.(24), while Aco(s)

can be obtained from
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The fine aggregate particles usually fill the voids
among the coarse aggregates.  When the mixture
contains small amount of fine aggregates, they can
fill the voids without disturbing the contacts among
coarse aggregates.  However, all fine aggregates
cannot get inside the voids among coarse aggregates

when there is a large amount of fine aggregate in the
mixture.  When the amount of fine aggregate is
increased so that the particles of coarse aggregates
are far apart from each other, the contact area of
coarse aggregate will be reduced from this particle
interference by fine aggregate as

  A A dAc g coθ θ φ ϕ( ) ( ) ( )= + ⋅ ⋅ −∫ 1 (32)

where Aco of the coarse aggregate was defined in
Eq.(24), and ϕ is the parameter to govern the effect
of particle interference of fine aggregate on the
contact area reduction of coarse aggregate which was
derived to be
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where ns is fine aggregate volume concentration, and
ng is coarse aggregate volume concentration.

Then the stiffness of binary mixture of aggregate
can be obtained from
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REULTS AND DISCUSSION

To verify the versatility of the proposed aggregate
stiffness model and the two-phase material concrete
shrinkage model, autogenous shrinkage of mortar
and concrete with different aggregate contents and
ratio of fine to coarse aggregate was adopted from
Deesawangnade.6 Properties of the materials used
in the experiments are given in Table 1.  The tested
mix proportions are listed in Table 2.  Autogenous
shrinkage strain of all specimens was obtained from
test results with water to cement ratio equal to 0.30.
The proposed model for stiffness of aggregates was
utilized to compute the stiffness and compared with
the results indirectly derived from back analysis of
the tested shrinkage using the author’s two-phase
model for shrinkage of concrete.  Fig 3 demonstrated
the comparison results.  It was found from both the
tests and the model that stiffness increases with the
increasing of volume concentration of aggregate.
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(b)(a)

Fig 3. Test and analytical results of stiffness of (a) fine aggregate (b) coarse aggregate.

The reason is that the larger volume concentration
has an effect to increase the stress produced by
aggregate to obtain a greater stiffness.  The
comparison of stiffness of fine and coarse aggregate
at the same volume concentration of aggregate is
demonstrated in the Fig 4.  It can be seen that the
stiffness of fine aggregate is smaller than coarse
aggregate at the same volume concentration because
coarse aggregate produces higher stress due to larger
contact area.  The simulated results of aggregate
stiffness of binary mixture are compared with the
results from back analysis for mixtures with varied

sand-aggregate ratio by weight (s/a) and volume
concentration ratio of total aggregates (na/na, max) as
shown in Fig 5.  Higher aggregate stiffness of binary
mixture is obtained when coarse aggregate content
increases.

The two-phase model for simulating shrinkage
of concrete taking into account the aggregate
restraint stiffness was then utilized to compute the
shrinkage of the tested specimens and compared with
the test results.  Fig 6 demonstrates the comparison.
It was found from the test and analytical results that
shrinkage decreases with the increasing of stiffness

Table 1. Physical properties of materials used in the test.

Material
Max size Specific Blaine Absorption Void

(mm) gravity (g/cm3)  fineness (cm2/g) (%) content (%)

Gravel 20 2.7 - 0.61 45.3

Sand 5 2.56 - 0.90 33.0

Cement Type 1 - 3.15 3467 - -

Table 2. Mix proportion of autogenous shrinkage specimens of mortar, no-fine concrete and concrete.

Mix no Designation
s/a w/c Cement Sand Gravel na na(%) (%) (kg/m3) (kg/m3) (kg/m3) na,max

1 S-85 - 30 630 1457 - 0.85 0.570

2 S-70 - 30 792 1201 - 0.70 0.469

3 S-60 - 30 900 1029 - 0.60 0.402

4 S-50 - 30 1008 858 - 0.50 0.335

5 S-40 - 30 1116 686 - 0.40 0.268

6 G-100 - 30 661 - 1458 1.00 0.550

7 G-80 - 30 838 - 1188 0.80 0.440

8 G-60 - 30 1016 - 891 0.60 0.330

9 G-40 - 30 1194 - 594 0.40 0.220

10 SG25-70 25 30 805 320 961 0.70 0.481

11 SG50-70 50 30 723 699 699 0.70 0.532

12 SG75-70 75 30 768 980 327 0.70 0.504

13 SG25-50 25 30 1026 229 686 0.50 0.344

14 SG50-50 50 30 968 499 499 0.50 0.380

15 SG75-50 75 30 1000 700 233 0.50 0.360
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of aggregate and the increasing of volume con-
centration of total aggregates (na).

As from the comparison, the proposed model
of effect of aggregate on shrinkage model is proved
to be satisfactory for simulating the stiffness of
aggregate and then the shrinkage of concrete as a
two-phase material.

CONCLUSIONS

A mathematical model for simulating the
shrinkage of concrete was derived based on concrete
as a two-phase material.  This model involved the
stiffness, equilibrium condition of stress and strain
compatibility of paste phase and aggregate phase.
The shrinkage restraint of aggregate phase was
expressed in terms of stiffness of aggregate.  The
model for simulating the stiffness of aggregate phase
was derived based on the particle contact density

Fig 5. Test and analytical results of stiffness of binary mixture
with (a) na/na,max = 0.70 (b) na/na,max = 0.50.

(b)

(a)

Fig 4. The comparison between stiffness of fine and coarse
aggregates with similar na.

Fig 6. Test and analytic results of autogenous shrinkage of (a)
mortar (b) no-fine concrete (c) concrete with binary
mixture.

(b)

(a)

(c)

concept and two-dimensional constitutive condition.
Shrinkage tests were conducted on mortar and
concrete specimens to verify the aggregate stiffness
model for fine aggregate, coarse aggregate, and binary
mixture of aggregate.  It was found from the
comparison between the back analysis stiffness from
the two-phase material shrinkage model and
analytical results from the proposed aggregate
stiffness model that the model was effective for
computing the restraint stiffness of fine aggregate,
coarse aggregate, and combination of fine and coarse
aggregate at different sand-aggregate ratio.  It was
found from both the tests and the model that
aggregate stiffness increases with the increasing of
volume concentration of aggregate.  The stiffness of
coarse aggregate is larger than the stiffness of fine
aggregate at the same volume concentration.  The
shrinkage of concrete was found to decrease when
the stiffness of aggregate increases and the volume
concentration of total aggregates increases.
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