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INTRODUCTION

Recently, many researchers in the area of machine
intelligence have attempted to develop strategies for
which a computer has the ability to learn solving
sophisticated problems from its experience of
performing a control task. 1 Among practically uses
is reinforcement learning, which is a computational
approach to learn a mapping from states (situations)
to actions by trial-and-error interactions with a
complex and uncertain environment.  In this
learning strategy, the concept of reinforcement
function is defined as the performance measurement
in the form of a scalar value. 2  In other words, the
reinforcement function is the value function
mapping state/action pairs to the reinforcements after
performing actions in given states according to the
given policy.  It is called the Q-value function. 3

However, the Q-value function is usually represented
by using the universal model of the neural network.
As widely known, this mathematical model requires
computing derivatives for learning rule, ie, gradient
descent method in backpropagation training which
may not be suitable to be implemented in real time
due to the burden of computation time.  Therefore,
genetic reinforcement learning with the updating
table of Q-value function is proposed here to eliminate
such difficulty.
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ABSTRACT This paper presents an alternative approach of the machine learning- the genetic reinforcement
learning with the updating table of the Q-value function.  The proposed method in updating table is
implemented to obtain the reinforcement values of the Q-value function for given state/action pairs
corresponding to any policies during exploring environment.  To search optimal policies, the fitness of
a set of policies for genetic algorithm is defined in terms of the value of the Q-value function.  The
genetic algorithm and the reinforcement learning are then applied in conjunction to optimize the final
control system performance.  The effectiveness of the proposed methodology is demonstrated on a real
application of the obstacle avoidance robot.
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GENETIC REINFORCEMENT LEARNING

In high-level control task, a control system is
required to interact with changeable environment
in which it is performed.  Therefore, a strategy by
which the controller is able to decide on the control
input by itself required to perform the specified
functions while interacting with a dynamic environ-
ment has been of interest in intelligent control
research.  Actually, learning of a machine to interact
in real-time with complex and uncertain environ-
ments has direct roots in the learning of animals in
nature.  It is based on the concept that the tendency
of actions followed by a satisfactory or an improved
affair is reinforced.  This form of learning is called
Reinforced Learning (RL).  Fig  1 shows the block
diagram of the reinforcement learning.  In RL, the
controller is considered an agent or a learner, which
not only takes an action a at each state x of the

Fig 1. Block diagram of reinforcement learning.
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environment but also receives a reward or a
reinforcement r (x, a) value from environment as
the measure of its performance.  For an example, a
value of reward parameter r is assigned to be 1 if the
success signal is received; the reward value is assigned
to be -1 if the failure signal is received and otherwise
0.  The policy engine determines which action should
be performed in each state.  In other words, the policy
engine is a function of mapping from states to
actions.  The dashed-line arrow presents a learning
process of the adaptation in the policy engine
according to the reinforcement value r.  In our
proposed methodology, this reinforcement learning
is to use a value function of the reinforcement in
constructing an optimal policy, which is expected
to be the most suitable for interacting with the
controller’s environment.  The reinforcement
learning algorithm can be considered as follows.

Given a policy π, which determines action that
should be performed in each state, the Q-value
function of the state/action pair is defined as the sum
of the reinforcement value received when starting
in that state and following some fixed policy to a
terminal state.

  Q t Q x t a tπ π( ) ( ( ), ( ))= (1)

where t is the index of a time sequence.
Hence, the optimal policy is the mapping from

states to actions that maximizes the Q-value
function.

    
π

π π
∗

∈
= { }argmax

Π
Q x t a t( ( ), ( )) (2)

where ∏ is the set of all admissible policies.

The corresponding optimal Q-value function

  
Q x t a t

π∗ ( ( ), ( )) for the optimal policy π*is the sum

of the reinforcements when starting from its state
and performing optimal actions until a terminal state
is reached.

By the definition of the Q-value function, a
relationship between the Q-value function of two
successive states, ie, x(t) and x(t+1), can be expressed
as follows.

    Q x t a t r x t a t Q x t a tπ π( ( ), ( )) ( ( ), ( )) ( ( ), ( ))= + + +1 1   (3)

where r(x, a) is the reinforcement value.

In general, the Q-value function of any states is
unknown before learning process is complete.

Hence, let’s define the approximation of the Q-value

function of state/action pairs to be   
√ ( ( ), ( ))Q x t a tπ .

This means that the true Q-value function is equal
to summation of the approximation of the Q-value
function and a residual error e(x(t), a(t)).

  Q x t a t Q x t a t e x t a tπ π( ( ), ( )) √ ( ( ), ( )) ( ( ), ( ))= +    (4)

The expression in Eq (4) can also be true for the
optimal policy.  The relation can be written as:

  
Q x t a t Q x t a t e x t a t

π π∗ ∗= +( ( ), ( )) √ ( ( ), ( )) ( ( ), ( ))  (5)

or, by using definition of the Q-value function in Eq
(3), the residual error can be defined by:

    
e x t a t r x t a t Q x t( ( ), ( )) max ( ( ), ( )) ( ( ),= + +{

∈π πΠ
1

a t Q x t a t( )) √ ( ( ), ( ))+ } − ∗π
1        (6)

To obtain the optimal Q-value function, the
minimization-maximization problem is established
as follows.

    
minimize max 

π π∈
+ +{{ Π

r x t a t Q x t( ( ), ( )) ( ( ),1

π
+ } − }∗a t Q x t a t, ( )) √ ( ( ), ( ))1        (7)

With Eq (7), it can be interpreted that learning
is accomplished when each update of the appro-
ximation of the optimal Q-value function reduces
the value of the residual error to zero.  At the same
time, the optimal policy can be obtained when the
maximum values of the Q-value function at each
state/action pairs are found.  It should be noted that
without searching the optimal policy (do not
maximize), as the residual error approaches zero,
the approximation of the Q-value function will
converge to the true Q-value function.  The true
Q-value function obtained corresponds the
performance of one policy among other policies in a
set of admirable policies.  Hence, if the maximization
in Eq (7) can also be accomplished, the optimal
policy is then obtained.  The difficult issue of the
problem statement in Eq (7) is that the minimization
and maximization must be achieved simultaneously
in order to obtain the optimal policy.  To solve the
problem, the updating table as discussed later on is
proposed in order to provide the values of the Q-
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    Q x N a N r x Nπ( ( ), ( )) ( ( ),− − = −1 1 1

a N Q x N a Nπ, ( )) ( ( ), ( ))− +1

  M

    Q x a r x a Q x aπ π( ( ), ( )) ( ( ), ( )) ( ( ), ( ))1 1 1 1 2 2= +

    Q x a r x a Q x aπ π( ( ), ( )) ( ( ), ( )) ( ( ), ( ))0 0 0 0 1 1= +
(9)

According to the concept above, the architecture
of the updating table can be illustrated as Fig 3.
The rows and columns of the updating table are
classified by the initial state and the transition state
respectively.  The dimension of the updating table is
defined by the number of the possible states in
environ-ment.  Let’s assume that there are all n
different types of the states, which the agent can
observe from environment.

    x x x xn= { }1 2, ,..., (10)

Additionally, the agent has the choices of actions.

    a a a am= { }1 2, ,..., (11)

After the agent performs series of actions with a
given initial state, all the values of     Q x t a tπ( ( ), ( )) for
t = 0, 1, 2, ..., N determined from Eq (9) are stored at
the same corresponding row.  Each of the values of

    Q x t a tπ( ( ), ( )) and the corresponding choices of the
actions for t = 0, 1, 2, ..., N are filled up to their
columns according to the route of the transition
states before the final state is reached.  Therefore, if
the agent is perturbed and the deviation from the
final state occurs to another state.  That state is
regarded as the initial state.  The registration of the
values     Q x t a tπ( ( ), ( )) of and the choices of the actions
are handled as mentioned above after the final state
is found again.

To get more concrete understanding, an example
is given as the case that the three possible states can
be monitored and the two actions can be made by

value function in a way that the condition on e(t)=0
is always satisfied.  With this result, the problem in
Eq (7) can be reduced to Eq (8).

    
maximize

π π∈
+ + +{ }

Π
 r x t a t Q x t a t( ( ), ( )) ( ( ), ( ))1 1   (8)

In this study, the principle of genetic algorithm 4

is used to search the optimal policy π*on the set of
the policies by stochastically creating a new policy
∏ and exploring the state-action space.  The Q-value
function for given state/action pairs are computed
to measure the fitness of each policies.  During
iteration, the “best” one that has the highest fitness
will be chosen as offspring to generate the new
generation of the policies.  This procedure continues
during the exploration of the agent.  The
arrangement of the genetic reinforcement learning
can be illustrated by Fig 2.

UPDATING TABLE METHOD

As mentioned in the previous section, the values
of Q-value function are used as the fitness indexes
of the policies for the optimization with the genetic
algorithm.  The updating table method is thus
proposed to provide the values of the Q-value
function of the state/action pairs corresponding to a
given policy in simple way.  Referring to Eq (3), the
successive values of Q-value function can be
obtained by calculating the present value of Q-value
function backward to the values of Q-value function
of the transition state/action pairs and finally to the
one of the initial state/action pair.  For an example,
suppose that the agent performs the actions
according to the policy π from the initial state
x(0)until the final state x(N).  The corresponding
reinforcement values r(x(t), a(t))for each state/action
pairs have been credited from environment to the
agent.  For a given value of Qπ(x(N), a(N)), all the
values of Qπ(x(t), a(t)) for t = N - 1, ..., 2, 1, 0 can be
determined by Eq (9).

Fig 2. Arrangement of genetic reinforcement learning. Fig 3. Architecture of updating table.

          Transition
                  state x1 x2 ... xn

Initial state

x1

x2

  M
xn
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Fig 4. Values of Q value-function with three states and two
actions.

          Transition
                  state

x1 x2 x3Initial state

x1 0

x2 0 -1   a1

xn 0 -1   a2
-2   a1

the agent.  The updating table can be constructed as
shown in Fig 4.  The final state, which is desired to
reach, is the state x1.  Before starting to explore the
environment, the updating table is blank.  The policy
is first defined by randomly mapping the state to
the action until the agent finds the final state, that is
the state x1.  At each time step, if the present state is
not the final state x1, the constant reinforcement
value is given by -1.  This penalty of reinforcement
undergoes until the final state x1 is obtained.  Now,
let’s consider two cases with two initial states x2 and
x3.

    x x2

1

10 1( ) ( )⇒
−

    x x x3

1

2

1

10 1 0( ) ( ) ( )⇒ ⇒
− −

In case of the initial state x2, the agent can reach
the final state x1 with one action a1 while the agent
starts exploring environment at the state x3 with the
action a1, passes through the state x2 with the action
a2 , and then reaches the final state x1.  Corresponding
to the policy given in the updating table, all the
values of     Q x t a tπ( ( ), ( )) can be calculated backward

by Eq (9) and     Q xπ( )1 0=  as shown in Fig. 4.  In this
case, it should be noted that the maximum value of

    Q x a
π∗ ( ( ), ( ))0 0  indicates the shortest path from that

initial state to the final state.

PROCEDURES IN GENETIC REINFORCEMENT
LEARNING

The following steps of the genetic reinforcement
learning proceed during the exploration of the
agent.

Performing phase
Step 1.
(1.1)Check whether the policies are available at

the initial state where the agent is.

- If not, go to Step 2.
- If the policies are available, the agent

performs according to them.
(1.2)Check whether the value is greater than

other values in the same column of the updating
table.

- If not (the policies are not optimal), use
them as a parent for generating the
policies for new learning.  Go to Step 2.

- If its value is greater than the others, go
to (1.3).

(1.3)Check whether that the sequence of state
is similar to one in the updating table in the manner
of state by state.

- If not (the environment may be changed),
go to Step 2.

- If the sequence of state is similar, the
agent continues performing until the final
state is found.

Learning phase
Step 2. Check whether the parents in the genetic

algorithm are available for generating the policy.
- If not, initiate the policy randomly.
- If the parents are available, use them to

generate the offspring for the policies.  Go
to Step 3.

Step 3. Continue on learning according to the
generated policies in Step2 and record the values of

    Q x t a tπ( ( ), ( )) and the actions for new policies in the
updating table accordingly when the final state is
reached.

During the exploration of the agent, check
whether the limit cycle occurs or the transition state
is repeated.

- If not, go to Step 1.
- If the limit cycle occurs, go to Step 1 by

setting the current transition state to be
the initial state.

RESULTS AND DISCUSSIONS

The viability of the proposed method is demon-
strated by solving the obstacle avoidance problem
of the mobile robot.  The robot has to produce a
“best” sequence of control actions or set of policies
by itself in order to move forward when possible
and avoid obstacles.  As illustrated in Fig 5 (a), the
robot with 5-inch diameter was independently driven
by two DC motors.  Six infrared proximity sensors
were placed around the front of robot to perceive its
environment.  The location of the sensors and two
DC motors is shown as Fig 5(b).  The micro-
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controller of ATMEL-AVR90S8535 was used to
handle the input-output signals.  I1, I2,..., I6 and
M1 as well as M2 represent the infrared sensors and
the DC motor.  The two successive infrared sensors
were grouped to provide a wider range of the
detection.  The possible eight states (2 3=8) can be
defined in combination of S1, S2 and S3 in Table 1.
There are five specified actions of the robot, that is,
move forward a1, rotate in counter-clockwise
direction a2, rotate in clockwise direction a3, turn
left with the rotation of the left wheel backward a4

and turn right with the rotation of the right wheel
backward a5.  It can be expected that the robot will
try to make rotations and turns when the obstacle is
founded.  After the state x8 is reached or the obstacle
is not found, the robot will move forward with action
a1.  Fig 6 shows the obstacle environment of the wall
arrangement in learning.  Its dimension of the square
field is 1.2x1.2 m 2.  Based on eight states in Table 1,
the updating table has the eight rows and eight

columns.  To avoid the unavailable policies at the
beginning, the values of Q-value function and the
policies for given initial states are first filled up
randomly.  For an example of one experiment, the
initial updating table is presented as Fig 7.  For a
given initial state, the fitness of a set of the policies
in the same row is defined with the value of Q-value
function of that initial state.  This definition is based
on the hypothesis that if each fitness in each initial
state is maximized, the fitness of overall policies is
also maximized.  The performance index is defined
as the summation of fitness values for all initial states.
Intuitively, the performance index of the fitness-value
summation from the genetic reinforcement can be
used to quantify the capacity of the robot in avoiding
the obstacles.  This means that the more the perfor-
mance index increases, the less the number of the
penalties due to the unsuitable turns for the obstacle
avoidance.  Referring to Fig 7, the initial value of
the performance index is equal to -49.  Next, the
proposed procedures in genetic reinforcement
learning is implemented during the exploration of
the robot.  During first 100 seconds, the performance
index against time is plotted in Fig  8.  The performance

Fig 5. Diagram of mobile robot: (a) miniature mobile robot and
(b) location of sensors and DC motors.

(b)

(a)

Fig 6. Obstacle environment of wall arrangement in top view.

Table 1.  Definition of observed states.

States S1 (I1+I2) S2 (I3+I4) S3 (I5+I6)

x1 1 1 1

x2 1 1 0

x3 1 0 1

x4 1 0 0

x5 0 1 1

x6 0 1 0

x7 0 0 1

x8 0 0 0

1-found obstacle; 0- not found obstacle.
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index increases during the exploration of the robot.
This means that the improved policies for environ-
ment in Fig 6 can be obtained.  After 60 seconds,
the performance index converges to the value of
-17.  During that time, the updating table at time of
30 seconds is picked as shown in Fig 9.  Only the
initial states x5, x6 and x7 are found and are learnt.
The corresponding performance index is -35.  It is
observed from experiment that after the 15-minute
exploring of the robot is taken for finding all initial
states, the value of the performance index is equal
to -14.  The optimal policies are shown as Fig 10.  It
should be noted that learning may take longer time
to reach the optimal policies in the cases of more
complicated environment.  Furthermore, it can be

interpreted from the experiment results in the case
that the state x6 is the initital state as follows.  When
the robot starts at the initial state x6, the robot will
choose to turn to the right.  The state x5 is then found.
Rotation counter-clockwise is performed to avoid the
obstacle to the right.  Next, the state x7 is founded.
The robot makes a left turn.  Finallly, the final state
x8 is reached.  However, at initial state x6, another
feasible action is clockwise rotation which can be

Fig 8. Performance index of learning against time.

Fig 7. Initial updating table of values of Q-value function  with
eight states and five actions.

    Transition
           state

x1 x2 x3 x4 x5 x6 x7 x8Initial
  state

x1 -7 
a5

-6 
a5

-5 
a2

-4 
a5

-3 
a3

-2 
a3

-1 
a3

0 
a1

x2 -6 
a2

-7 
a2

-5 
a3

-4 
a2

-3 
a3

-2 
a2

-1 
a2

0 
a1

x3 -5 
a3

-6 
a2

-7 
a4

-4 
a2

-3 
a4

-2 
a5

-1 
a4

0 
a1

x4 -4 
a5

-5 
a5

-6 
a4

-7 
a4

-3 
a4

-2 
a4

-1 
a3

0 
a1

x5 -3 
a2

-4 
a2

-5 
a4

-6 
a5

-7 
a2

-2 
a4

-1 
a5

0 
a1

x6 -2 
a3

-3 
a2

-4 
a4

-5 
a2

-6 
a4

-7 
a2

-1 
a4

0 
a1

x7 -1 
a5

-2 
a2

-3 
a2

-4 
a4

-5 
a5

-6 
a3

-7 
a5

0 
a1

x8 0 
a1

Fig 10. Updating table with optimal policies at 900 second.

    Transition
           state

x1 x2 x3 x4 x5 x6 x7 x8Initial
  state

x1 -2 
a4

   
a4

   
a3

   
a2

-1 
a3

   
a4

   
a3

 0 
a1

x2 -2 
a2

-3 
a4

   
a2

   
a3

-1 
a3

   
a3

   
a5

0 
a1

x3    
a2

   
a2

-2 
a2

-1 
a3

   
a4

   
a2

   
a3

0 
a1

x4    
a5

   
a5

   
a5

-1 
a3

   
a4

   
a2

   
a3

0 
a1

x5    
a3

   
a5

   
a2

   
a2

-2 
a2

-1 
a5

   
a5

0 
a1

x6    
a5

   
a4

   
a3

   
a5

-2 
a2

-3 
a5

-1 
a4

0 
a1

x7    
a2

   
a3

   
a2

   
a5

   
a4

   
a5

-1 
a2

0 
a1

x8 0 
a1

Fig 9. Updating table with policies at 30 seconds.

    Transition
           state

x1 x2 x3 x4 x5 x6 x7 x8Initial
  state

x1 -7 
a5

-6 
a5

-5 
a2

-4 
a5

-3 
a3

-2 
a3

-1 
a3

0 
a1

x2 -6 
a2

-7 
a2

-5 
a3

-4 
a2

-3 
a3

-2 
a2

-1 
a2

0 
a1

x3 -5 
a3

-6 
a2

-7 
a4

-4 
a2

-3 
a4

-2 
a5

-1 
a4

0 
a1

x4 -4 
a5

-5 
a5

-6 
a4

-7 
a4

-3 
a4

-2 
a4

-1 
a3

0 
a1

x5   
a2

   
a5

   
a4

   
a2

 -2 
a4

   
a3

-1 
a3

0 
a1

x6 -3 
a2

   
a5

   
a4

   
a2

-2 
a4

-4 
a4

-1 
a5

0 
a1

x7    
a5

   
a4

   
a3

   
a2

   
a3

   
a2

-1 
a4

0 
a1

x8 0 
a1
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performed to avoid the obstacle.  If it is such case,
the sequence of action and states will be changed
accordingly.  Also, it is found that the robot can
always avoid the wall obstacles during longer
experiment run.  This control scheme is thus quite
robust to the variations in environment such as the
friction and slipping of the wheel.

CONCLUSION

In this paper, the genetic reinforcement learning
with the updating table of the Q-value function has
been described.  The genetic algorithm provides a
systematic way of creating new policies for efficiently
and effectively exploring the state/action space,
which is required in reinforcement learning scheme.
Without the computation burden, the updating table
is exploited to yield the value of the fitness of the
policies in such a way that the optimal policies are
eventually obtained.  According to the experimental
results, it can be shown that the proposed metho-
dology can be effectively used to solve the obstacle
avoidance problem in real-time implementation.  The
robot learns and improves the policies for better
performance in driving itself from an arbitrary state
to a specified final state within a finite time.
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