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INTRODUCTION

Since the discovery of the icosahedral quasicrystal
in Al-Mn alloys, the quasicrystals with noncrystallo-
graphic symmetry, such as decagonal, dodecagonal and
octagonal phases have been extensively studied.1-4

For resent years in the process of the rapid solidified
V6Ni16Si7 alloy, Feng et al5-6 discovered a kind of
quasicrystal with cubic symmetry, which has been a
new subject in the field of quasicrystals. Wang et al7

have discussed the projection description of the
cubic quasicrystals and Yang et al8 have studied their
linear elasticity theory. There are still many physical
properties of the cubic quasicrystals have not been
studied yet. For example, one of the important physical
properties, the specific heat of cubic quasicrystals
has not been studied. It is well-known that for the
general quasicrystals it is impossible to obtain an
analytical solution of lattice vibration properties.
Therefore it is impossible to get an analytic result
for the physical properties related to the quasicrystal-
lattice dynamics. Due to the special structure of the
cubic quasicrystals, we can obtain some analytical
results on its lattice dynamics. In the present article
we will report our study on the specific heat of cubic
quasicrystals. We have first derived the equation of
wave propagation in the cubic quasicrystals and then
obtained the specific heat expression of the cubic
quasicrystals. It is well-known that the calculation
of the specific heat for both of the crystals and
quasicrystals has to base on the knowledge of their
lattice vibration modes. In order to simplify the
calculation, Debye9 assumed that the lattice wave of
the solid is an elastic wave of continuous medium.
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Based on this hypothesis he successfully obtained
the specific heat formulas and explained the
experimental phenomenon that the specific heat of
crystals decrease by T3 at low temperature. In this
paper, following the Debye hypothesis we will extend
the continuous medium model to the cubic quasi-
crystals, in which the contributions of the phonons,
phasons and their couplings on the specific heat are
considered in the six-dimensional space but the wave
propagaation still exists in the physical spaee.5-8 By
this generalized Debye hypothesis we first derive the
wave equations to obtain the wave velocity
expression, then we derive the analytical expression
of specific heat for the cubic quasicrystals and
provide a set of formulas to calculate the Debye
temperature θD. This paper is organized as follows:
In Section II based on the linear elasticity theory we
derive the wave propagation equation and phase
velocities for the cubic quasicrystals. In Section III,
based on the results of Section II, we derive the
formulas to calculate the specific heat of the cubic
quasicrystals. The Section IV is a brief conclusion.
Because up to now there is no related experiment
dates reported yet, therefore in this article we only
present the theoretical results.

LINEAR ELASTICITY THEORY AND WAVE
PROPAGATION EQUATION OF THE CUBIC
QUASICRYSTALS

According to the result of Wang et al7, the cubic
quasicrystals can be obtained by projecting a six-
dimensional periodic structure onto a three-

dimensional physical subspace. Letting   

r
ξ  be a
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displacement vector in the six-dimensional space,

u and w be the components of   

r
ξ  in the parallel

subspace (ie, physical subspace VE) and per-
pendicular subspace (ie, complementary subspace
VI), respectively, then we have

      

r
ξ = +u w. (1)

For the cubic quasicrystals which possess the
crystallographic point-group symmetry, physical-
property tensors in VE and VI can be transformed
under the same irreducible representation. Therefore,
they will induce the same elastic behavior in that
two subspaces. If u1, u2, u3 stand for the displacement
components of the phonon field u, and w1, w2, w3

for the displacement components of the phason field
w along main-axis x1, x2, x3, respectively, then we
have

ui = ui (x1, x2, x3; t) (i = 1, 2, 3);
wi = wi (x1, x2, x3; t) (i = 1, 2, 3). (2)

According to the linear elasticity theory of the cubic
quasicrystals developed by Yang et al8, the stress-
strain relations become

T11 = C11E11 + C12E22 + C12E33 + R1F11 + R2F22 + R2F33

T22 = C12E11 + C11E22 + C12E33 + R2F11 + R1F22 + R2F33

T33 = C12E11 + C12E22 + C11E33 + R2F11 + R2F22 + R1F33

T23 = 2C44E23 + 2R3F23 = T32

T31 = 2C44E31 + 2R3F31 = T13

T21 = 2C44E12 + 2R3F12 = T12

H11 = R1E11 + R2E22 + R2E33 + K11F11 + K12F22 + K12F33

H22 = R2E11 + R1E22 + R2E33 + K12F11 + K11F22 + K12F33

H33 = R2E11 + R2E22 + R1E33 + K12F12 + K12F22 + K11F33

H23 = 2R3E23 + 2K44F23 = H32

H31 = 2R3E31 + 2K44F31 = H13

H12 = 2R3E12 + 2K44F12 = H21 (3)

where Eij are the strain components associated with
phonon field u, Fij the strain components associated
with phason field w and
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Tij are the stress components similar to those in
conventional crystals, Hij the stress components due
to the existence of the phason field, Cij the elastic
constants of the phonon field, Kij the elastic constants
of the phason field, and Ri, the phonon-phason

coupling elastic constants. The corresponding
equations of mass-point vibration are
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where ρ is the mass density of the quasicrystals.
Because a cubic quasicrystal is an anisotropic crystal
with nine independent elastic constants, the pro-
pagation of vibration varies with the polarization
direction. In the following we first discuss the wave
propagation in the direction ℘  of the physical space.
Let 1, m, n stand for the direction-cosines of ℘ , we
can rewrite the Eq (4) as follows:
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Substituting Eq (6) into Eq (3), then into Eq (5)
again, we can obtain
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Let   

r
ξ  stand for elastic displacement vector related

to the wave propagation along ℘  direction, and p,
q, r, p’, q’, r’ for its direction-cosines in the six-
dimensional space, then

u p u q u r w p w q w r1 2 3 1 2 3= = = = ′ = =ξ ξ ξ ξ ξ ξ, , , , , ,

ξ = + + + ′ + ′ + ′pu qu ru p w q w r w1 2 3 1 2 3 , (11)

where ξ is the length of   

r
ξ . Substituting Eq (11) into

Eq (7), we obtain the following wave equation
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which implies that the phase velocity v =  C p C* / , *

is the effective elasticity coefficient, and satisfies the
following equations:

p q r p q r pCΓ Γ Γ Γ Γ Γ11 12 13 14 15 16 16+ + + ′ + ′ + ′ = *

p q r p q r qCΓ Γ Γ Γ Γ Γ21 22 23 24 25 26 26+ + + ′ + ′ + ′ = *

p q r p q r rCΓ Γ Γ Γ Γ Γ31 32 33 34 35 36 36+ + + ′ + ′ + ′ = *

p q r p q r p CΓ Γ Γ Γ Γ Γ41 42 43 44 45 46 46+ + + ′ + ′ + ′ = ′ * (13)

p q r p q r q CΓ Γ Γ Γ Γ Γ51 52 53 54 55 56 56+ + + ′ + ′ + ′ = ′ *

p q r p q r r CΓ Γ Γ Γ Γ Γ61 62 63 64 65 66 66+ + + ′ + ′ + ′ = ′ *.

Providing that the Eq (13) has a solution, then we have
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Above Eq (14) is a secular-equation of effective
elastic constants C*. In principal, combining Eqs (8-
10) we can solve the Eq (14) to obtain C* and then
calculate the phase-velocities of wave propagation
along any direction. It is however very difficult to
analytically solve the Eq (14) for all propagation
direction. To simplify the calculation and obtain a
possible analytical solution, we consider the wave
propagating along the (100) direction of cubic
quasicrystals in physical subspace. In this special
cace Eq (l4) reduces to
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The solutions of above equation are, respectively,
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then the six velocities, vi(i = 1, ... 6), of wave
propagating along the (100) direction of the cubic
quasicrystals in physical-subspace have the following
expressions:
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From above formulas we can see that Eq. (17)
contains only four parameters C11, K11, R1 and R3. If
we consider other propagation direction, says, to
calculate the phase velocities of wave propagating
along the (111) direction, then from Eq. (14) we
will see that the velocity expression would involve
nine independent elastic constants of the cubic
quasicrystals. Obtaining an analytic solution is
therefore very difficult. For these more general cases
ones can only expect to have a numerical solution.

SPECIFIC HEAT OF THC CUBIC QUASICRYSTALS

After obtaining the above velocity expressions
we now can evaluate the specific heat of the cubic
quasicrystals by extending the Debye hypothesis to
the studied systems. Debye9 considered the crystals
as a continuous elastic medium to propagate the
waves of elastic vibration. Under this hypothesis he
calculated the specific heat of ideal crystals, which
was in good agreement with the experimental results
at low temperature. We will now try to extend the
Debye hypotheses to the cubic quasicrystals, i.e., we
also consider the cubic quasicrystal as a continuous
elastic medium. Noting that the phason do not form
new degrees of freedom, the total number of freedom
degrees remains three times the number of atoms
contained in the cubic quasicrystal. Therefore, there
are 3N independent harmonic vibration modes,
where N is the number of atoms in the cubic
quasicrystal. Denoting ω for the atom vibration

circle-frequency and g(ω) for the frequency
distribution function, then g(ω)dω is the number of
the harmonic vibration modes between ω and ω +
dω, and we have

    0 3
∞

∫ =g d N( ) .ω ω (18)

For the cubic quasicrystals containing phonon as
well as phason by the Debye hypothesis we have

g d B d( ) ,ω ω ω ω= 2 (19)
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and V represents the volume of the cubic quasi-
crystals, vi(i = 1, ..., 6) are defined by Eq (17).

Considering that the total number of freedom
degrees should be finite, so there is a maximum
frequency wD, then Eq (18) can be rewritten as

    g d ND ( ) .ω ω
ω

=∫ 3
0

(21)

Substituting Eq (19) into the above formula and
because the phase velocities vi, i = 1,2, ...6 are
independent of the frequency, so we easily obtain

    ωD N B3 9= / . (22)

If we introduce an effective average energy , then
the total energy reads
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where Eo is a constant and
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where k is the Boltzmann constant, T is the absolute
temperature, respectively. According to the definition
of specific heat,
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Using Eqs (22-24) we obtain
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where B is given by Eq. (20). If we introduce two
new parameters x and y as following:
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where ΘD is the generalized Debye characteristic
temperature for the cubic quasicrystals, and evaluated
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then the Eq. (26) can be rewritten as
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Above Eq (30) is an analytic expression of specific
heat for tbe cubic quasicrystals. It is also one of
the main analytic results which we expect to obtain.

CONCLUSION

In this paper, we first obtained the wave pro-
pagation equation of the cubic quasicrystals. Based
on this equation, we derived the formulas of wave
velocities propagating in the cubic quasicrystals. By
extending the Debye’s continuous medium hypothesis
for ideal crystals to the cubic quasicrystals, we obtained
the analytic expresion of specific heat for the cubic
quasicrystals and provided an approach to calculate
the Debye temperature ΘD. Formally the present
specific heat and Debye temperature expressions for
cubic quasicrystals are almost same as that of the
ideal crystals, but the ΘD contains the contributions
of the phonons, the phasons, and the coupling
between phonons and phasons. Thus, the present
theoretical results on the specific heat of the cubic
quasicrystals are an meaningful extension of the

Debye theory for ideal crystals, and also only because
the special geometric structure of the cubic quasi-
crystals we can obtain these interesting analytical
results, for other kinds of quasicrystals we generally
can not obtain such impact analytical solution. Ones
can only expect a numerical result, but it is a heavy
and tedious work.
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