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INTRODUCTION

H∞ control theory has received much attention
over the last two decades (see Francis,4 Doyle et al,3

Stoorvogel,10 Mirkin9 and the references therein).
Early results for the H∞ control problem were derived
for the continuous-time case. However, in practical
applications controllers operate mainly in discrete-
time. We can use a discrete-time controller to control
a continuous-time system. There are many results
in this direction.1-2,12 An alternative approach is
discretizing the system first and then using H∞

control designed for discrete-time systems. This
might be a simpler approach. Also, certain systems
are in themselves inherently discrete, and certainly
for these systems it is useful to have results available
for H∞ control problem.

In a recent paper,8 we studied H∞ control for
discrete-time systems. We have obtained a necessary
and sufficient condition under which an H∞ norm
bound can be achieved by an internally stabilizing
output feedback controller. In this paper, we in-
vestigate the structure of H∞ controller in details and
show its intrinsic pseudo-state feedback structure.
Also, we derive a set of necessary and sufficient
conditions for the existence of strictly proper H∞

controllers. This problem has been studied before
in Stoorvogel,11 Mirkin.9 However, by using the
chain-scattering approach, our derivation is much
simpler and it clarifies the controller structure in a
straightforward way.

This paper is organized as follows. In Section 2,
some mathematical preliminaries are briefly reviewed.
Section 3 contains the main results. There, we clarify
the structure of discrete-time H∞ controller and the
necessary and sufficient conditions for the existence
of strictly proper controller. In Section 4 we discuss
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stability properties of the discrete-time controller.
Most parts of these details have already been reported
by Stoorvogel10 and Green et al,15 for completeness,
they are repeated here. A collection of simple
examples are given in Section 5.
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σ(A) is the maximum spectral radius of constant
matrix A,     Rm r×  is the set of real m x r matrices,    RLm r×

∞

is the set of all m x r rational matrices without pole
on the unit circle,     RHm r×

∞  is the set of all m x r rational

stable proper matrices.     BHm r×
∞  is the subset of     RHm r×

∞

whose norm is less than 1.

PRELIMINARIES AND PROBLEM FORMULATION

Plant
We consider a Linear time-invariant discrete-time

system described by

xk+1 = Axk + B1wk + B2uk, (2.1a)
zk = C1xk + D11wk + D12uk, (2.1b)
yk = C2xk + D21wk, (2.1c)

where z is the controlled error (dim(z) = m), y is the
observation output (dim(y) = q), w is the exo-
geneous input (dim(w) = r), u is the control input
(dim(u) = p).

We make the usual assumptions that
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(A1) (A, B2) is stabilizable and (A, C2) is detectable.
This assumption is necessary in order that the

H∞ control problem is solvable. In this paper, we deal
with the so-called standard problem in which the
following assumptions hold :
(A2) rank D21 = q, rank D12 = p.

Standard H∞ Control Problem
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The plant (2.1) can be written in the input/output
form as
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A feedback control law
u(z) = K(z)y(z) (2.3)

generates the closed-loop transfer function Φ (z)
from w(z) to z(z) given by

Φ : = LF(P; K) :=P11+P12K(I-P22K)-1 P21.(2.4)
The objective is to find a control law (2.3) which
internally stabilizes the closed-loop system of Fig 1,
achieving the normalized norm bound of Φ (z),
that is,

  
Φ

∞
<1. (2.5)

Chain-Scattering Representation
Assuming that P21 is invertible, we have

    w P y P u= −−
21

1
22( ).

Substituting this relation in the first equation of (2.2)
yields
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the relation (2.2) is alternatively represented as

Fig 1. H∞  control scheme.
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A feedback control law (2.3) applied to the chain-
scattering representation of plant (2.6) generates the
closed-loop transfer function Φ (z) given by

Φ (z) :=HM(G;K) :=(G11K+G12 )(G21K+G22)
-1. (2.7)

The symbol HM stands for the HoMographic Trans-
formation, while LF stands for Linear Fractional
Transformation.6 The properties of the transformation
HM are listed up in the following lemmas, which
are based on the work of Kimura.5 Their proof is
essentially the same as in the continuous-time case.

Lemma 2.1 Properties of HM

(i) If   P21
1− exists, LF(P; K) =HM(CHAIN(P); K).

(ii) HM(I;K) =K.
(iii) HM(G1 ;HM(G2 ;K)) = HM(G1 G2 ;K).
(iv) If G-1 exists, HM(G;K) =F implies

K = HM(G-1; F).

Next, we recall the following theorem from
Kongprawechnon and Kimura.8

Theorem 2.2 Under the assumptions (A1) and (A2),
the normalized H∞ control problem is solvable iff

(i) there exists a solution X ≥ 0 of the algebraic Riccati
equation

    
X A XA C C F D JD B XB FT T T

z
T

z
T= + − +

1 1
( ) (2.8)

such that

    
ˆ :A A BFG = + (2.9)

is stable,
(ii) there exists a solution Y ≥ 0 of the algebraic Riccati

equation

    Y AYA B B L D JD CYC LT T
w w

T T T= + + −
1 1

( ) (2.10)

such that

z u

w y

G

Fig 2. Chain-scattering representation of the system.
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ˆ :A A LCH = + (2.11)

is stable,
(iii)

σ(XY) <1, (2.12)
(iv) there exists a nonsingular matrix Ez such that

    
D JD B XB E J E

z
T

z
T

z
T

z
+ = ' , (2.13)

holds,
(v) there exists a nonsingular matrix Ew such that

    D JD CYC E J E
W w

T T
W w

T− = " , (2.14)
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In that case, a desired controller is given by

    K HM S= −( ; ),II
11

1 (2.15)

where

    II11
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, (2.16)

    

Q

A B F B F U B L D L

F I

C D F I

w u z y

u

w

:

[ ]

=

+ + + −

+



















1 2 2 12

2 21

0

0

,(2.17)

    
U I YX:= −( )−1

(2.18)

and Vw is a nonsingular matrix satisfying

    V J V B LD X I YX B LD D D JD CYC Dw
T

pq w u u
T

u u u
T

w w
T T

u= + − + + −− −( ) ( ) ( ) ( )1 1

(2.19)
and S is an arbitrary matrix in BH∞.

MAIN RESULTS

In this section, we will consider the closed-loop
structure of an H∞ controller. From equation (2.15),
(2.17) and the cascade property of HM, we have

    K HM QV S HM Q HM V S
w w

= =− −( ; ) ( ; ( ; )).1 1 (3.1)

Fig 3. Chain-scattering representation of the controller.
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Q given in (2.17) is described in the state-space
as

    
ξ ξ

k w u k z k Y k
A B F B F U B L D a UL b+ = + +( ) + +( ) −

1 1 2 2 12
  

  
,

(3.2a)

    
u F a

k u k k
  

 ,
= +ξ , (3.2b)

    
y C D F b

k w k k ,
  = +( ) +

2 21
ξ , (3.2c)

where ξk is the state of the controller. The controller
(3.1) is obtained by introducing the relation

    
a HM V S b

k w k
   

 
= ( )−1; .

The controller can be rewritten as

    
ξ ξ

k w u k z w y k
A B F B F U B L D HM V S L b+

−= + +( ) + +( ) ( ) −( )1 1 2 2 12
1  ,;

(3.3a)

    
u F HM V S b

k u k w k
   ,= + ( )−ξ 1; (3.3b)

    
b y C D F

k k w k
  = − +( )2 21

ξ . (3.3c)

The block-diagram of the controller is illustrated in
Fig 4. The meaning of the controller (3.3) will be
discussed in the next section.

Fig 4. Block diagram of the H∞ controller.
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First, we will consider under the constraint
imposed upon the controller to be strictly proper.
As was recently shown by Mirkin et al9, sampled-
data control problems can always be formulated as
discrete-time problems with strictly causal
controllers.  Hence, the consideration of strictly
proper controllers does not lead to any loss of
generality in most cases. To parameterize all strictly
proper controllers is to extract the set of all strictly

proper controllers from     K HM Q HM V S
w

= −( ; ( ; ))1 .

In other words, one should find whether there

exists a transfer matrix       S ∈ + × +
∞BH( ) ( )p q p q  such that

    K HM Q HM V S
w

( ) ( ; ( ; ))( )∞ = ∞ =−1 0. To this end, note

that Q(∞)=I. Due to (ii) of Lemma 2.1,

    K HM V S
w

( ) ( ; )( )∞ = ∞−1 . Let
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from (iv) of Lemma 2.1. Since       S ∈ + × +
∞BH( ) ( )p q p q , hence
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12 22
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Thus to adjust Theorem 2.2 to the case of strictly
proper controller, one has to add (3.5) to the con-
ditions of Theorem 2.2. From Lemma 2.1 of Ionescu
et al14 , Vw can be chosen block lower{left triangular,
that is,
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which always satisfy (3.5).
Next we will consider the structure of the central

controller. From     K HM Q HM V S
w

= −( ; ( ; ))1  = H M (Q;R),

where     R HM V S
w

: ( ; )= −1 , we have

    
S HM V R V R V R Vw    = ( ) = +( )−

; .11 21 22

1

If we choose S = 0, then we have R= 0. Moreover,
we obtain the so-called central controller, which is
described as

    
ξ ξ ω ξ ω

k k k k y k k k
A B B u UL y C D  ,= + + − − −( )1 0 2 2 21 0

ˆ ˆ

(3.6a)

    u F
k u k

= ξ , (3.6b)

where

    ̂ .w F
k w k0

= ξ (3.7)

The representation (3.6a)-(3.7) clarifies the observer
structure of the central controller. Fig 5 illustrates
the block diagram of this controller.

STABILITY PROPERTIES

In this section, we prove the stability of some
closed-loop matrices based on the solutions to the
Riccati equations (2.8) and (2.10), under the
standing assumptions,
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From the lemma 2.1 of Ionescu et al14, then the
condition (iv) of the Theorem 2.2 can be written as

    ( ) ( ) .I B XB B XB B XB D D B XBT T T T T− + + >−
1 1 1 2 2 2 12 12

1
2 1

0

(4.2)
and the condition (v) of the Theorem 2.2 can be
written to be

    ( ) ( ) .I C YC C YC D D C YC C YCT T T T T− + + >−
1 1 1 2 21 21 2 2

1
2 1

0

(4.3)
From the assumption (4.1) the inequalities (4.2) and
(4.3) are both satisfied in this case. Now we
summarize the result.
Corollary 4.1 Under the assumptions (4.1), the H∞

control problem is solvable iff the following conditions hold.

Fig 5. Block diagram of the central controller.
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(i) There exists a solution X ≥ 0 of the Riccati

equation (2.8) that stabilizes     Â A BF
G

= + .

(ii)There exists a solution Y ≥ 0 of the Riccati

equation (2.10) that stabilizes     
ˆ .A A LC

H
= +

(iii) σ(XY) <1
Under the assumption (4.1), the plant is now given

by
xk+1 = Axk + B1wk + B2uk, (4.4a)
zk = C1xk + D12uk, (4.4b)
yk = C2xk + D21wk. (4.4c)

Let X ≥ 0 be a solution to the algebraic Riccati
equation (2.8) and write

    ψ( ) .x x Xx
k k

T
k

= (4.5)

The differential of ψ (xk) along the trajectory of
(4.4a) is calculated to be

δ ψ ψ ψ( ( )) ( ) ( )x x xk k k= −+1
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k k
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k1 1
.

Using (2.8) and (4.4a), we obtain
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This is a key identity from which various pro-
perties of H∞ control can be extracted. Obviously,

J(w,u;T) ||w|| ||z||→ −2 2 , as     T → ∞.  The design objective
is attained iff

    J w u w L( , ; ) , .∞ > ∀ ∈0
2

(4.6)

Actually, if we use the state feedback control law

    u F x
u0

= , (4.7)

the design objective (4.6) is attained with possible
equality due to the assumption (4.1) and X ≥ 0.

Lemma 4.2 Under the assumption (4.1), the state
feedback (4.7) achieves the design objective for the plant
(4.4a).
On the other hand, the exogenous signal given by

  w F x
w0

= (4.8)

represents the worst case for the controller, in the
sense that it maximizes J(w, u; ∞).

Let us focus on the central controller again. We
can see that the representation (3.6a) clarifies the
pseudo-state feedback structure of the central
controller. The control law (3.6b) is just the replace-
ment of x by ξ in (4.7). Hence, (3.7) represents the
estimate of the state feedback control law. The most
interesting feature of (3.6a) is that it assumes the

exogenous signal w to be the worst. The signal     ̂w0

given by (3.7) represents the estimate of the worst

one. In view of (4.4c), b = y -C2ξ-D21    ̂w0
  represents

the innovation assuming w =     ̂w0
 . The observer gain

is given by ULy.

EXAMPLES

In this section, a collection of simple examples
is given, in order to get an idea of the structure of
H∞  control.
Example 5.1 Consider a first-order plant

xk+1 = axk + b1wk + b2uk,
zk = c1xk + uk,
yk = c2xk + wk,

where all the quantities in these expressions are
scalar. The assumption (A1) implies that

a < 1 or b2c2 ≠ 0.
The assumption (A2) implies that

    
( ) ( ) .a b c a b c− −( ) − −( ) ≠

2 1
2

1 2
21 1 0

The Riccati equation (2.8) becomes in this case

    
( ) ( ) .a b c X b b X− −( ) − − =

2 1
2

2
2

1
2 21 0

The stabilizing solution X ≥ 0 exists iff βc > 0, and is
given by

    

X
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c
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and the stabilized matrix is given by
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It is important to notice that the role of F is to bring
the closed-loop pole at the mirror image of a-b2c1,
the zero of P12 (z). Dually, the Riccati equation (2.10)
becomes in this case

    
( ) ( )a b c Y c c Y− −( ) − − =

1 2
2

2
2

1
2 21 0.

The stabilizing solution Y exists iff βo > 0, and is
given by
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and the stabilized matrix (2.11) is given by
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o
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Example 5.2 This example is the so-called two-block
case. Numerical computations are performed on the
control design software MATLAB. We consider the
following second-order system

    
x x u

k k k+ =








 +









1

0.1 0

0 2

0

1
,

    
z x u

k k k
= [ ] +0 1.7 ,

    
y x wk k k= [ ] + [ ]0 4.2102 0 0.7988 .

The solution of (2.8) and (2.10) are given re-
spectively by

    
X Y= =









 >0

0 0

0 0.1205
0, .

The matrices     ÂG
 in (2.9) and     ÂH

 in (2.11) are given

respectively by

    

ˆ , ˆ ,A AG H=








 =











0.1 0

0 0.3

0.1 0

0 0.5

which satisfy the conditions of Theorem 2.2. In this
case, the central controller is given by

    
ξ ξk k kv+ =









 +









1

0.1 0

0 0.3

0

0.1801
,

    
u v

k k k
= −[ ] −0 1.7 0.1973ξ ,

    
v y

k k k
= − [ ]0 4.2102 ξ .

Remark: This is the case that    A B D C− −
2 12

1
1
 is stable.

Therefore, Condition (i) of Theorem 2.2 is un-
necessary. Also, Condition (iii) holds automatically
and Condition (iv) can be checked easily.
Example 5.3 Finally, we consider another second-
order system. This is an example of four-block case.

    
x x w u

k k k k+ =








 +









 +









1

0 0.9665

1.1387 0

0 0

1.2828 0

0

6.0231
,

    
z x u

k k k
=









 +











0.1884 0

0 0

0

0.7821
,

    
y x w

k k k
= [ ] + [ ]3.3510 0 0 5.4403 .

Then we obtain

    
X =









 >

0.0521 0

0 0.0486
0,

and

    
Y =









 >

3.4473 0

0 3.6908
0.

satisfy all conditions of Theorem 2.2. In this case,
the central controller is given by

    
ξ ξ

k k k
b+ =









 −









1

0 0.9665

0.2993 0

0

0.0549
,

    
u b

k k k
= −[ ] −0.1433 0 0.0263ξ ,

    
b y

k k k
= − [ ]3.351 0 ξ .

CONCLUSION

The closed-loop structure of discrete-time H∞

control has been discussed. The existence condition
for a strictly proper  H∞ controller for discrete-time
systems has also been derived. We believe that the
result derived in this paper may be a useful tool in
solving various control problems with the H∞

performance measure.
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