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INTRODUCTION

For every n, let  Xn1, Xn2,…  be a sequence of
independent random variables and Zn a random
index independent of the sequence (Xnk), k = 1, 2,….
Put

    S X X Xn
k

n n nk
( ) ...= + + +1 2

and
    
S X X XZ n n nZn n

= + + +1 2 ... .

Many authors1-5 have investigated the limiting
behavior of the distribution functions of the random

sums 
  
SZn

.  The aim of our investigation is to extend
the theory of limit distribution function of sums of
independent random variables, especially the weak
law of large numbers and the accompanying
distribution functions to the case of random sums.

A sequence of random variables (Xn) converges
in probability to the random variable X,

if  P( | Xn - X | ≥ ε) → 0 as n → ∞ for every fixed ε > 0.

In this case we use the notation   X Xn

P

→  as n → ∞.

A sequence (Xn) is called stable if there exists a

sequence of constants (An) such that     X An n

P

− →0  as

n → ∞.  It is well-known that,  if (Xn) is stable, the
constant An may be taken to be the medians mn of Xn .

A double sequence of random variables (Xnk),
 k = 1, 2,…, kn obeys the weak law of large numbers
if the sequence of the sums

    S X X Xn
k

n n nk
n

n

( ) ...= + + +1 2

is stable.
A double sequence (Xnk), k = 1, 2,… obeys the

weak law of large numbers with respect to (w.r.t)
(Zn) if there exists a double sequence of constants
(Ank) k = 1,2,… such that
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S A nZ nZ

P

n n
− → → ∞0 as .

We shall say that (Xnj) is random infinitesimal
w.r.t (Zn) if

    
max ( ) .
1

0 0
≤ ≤

≥ → >
k Z

nk

P

n

P X ε εfor every

For the random sums     X X X An n nZ nZn n1 2+ + + −... ,

the random accompanying distribution function of
the random sums is defined to be the distribution
function whose logarithm of its characteristic

function is 
    
E tZn

ψ ( )[ ]
where

    
logψ α αk nk nj

j

k
itx

nj nj
j

k

t iA t it e dF x( ) ( ) ( )= − + + − +
= =
∑ ∫∑

1 1

1

and 

    

α τ
τ

nj nj
x

xdF x= >
<
∫ ( ) and 0  is a constant.

THE WEAK LAW OF LARGE NUMBERS OF RANDOM
SUMS

The following theorems are well-known con-
ditions under which  the weak law of large numbers
holds.6, 7

Theorem 2.1A The following statements are
equivalent.

1. (Xnk) , k = 1, 2,…, kn obeys the weak law of
large numbers.

2. dF x m nnk
xk

k

nk

n

>=
∫∑ + → → ∞

11

0( ) as

and x dF x m nnk
xk

k

nk

n
2

11

0
≤=
∫∑ + → → ∞( ) .as

3.
    

x

x
dF x m nnk nk

k

kn 2

2
1 1

0
+

+ → → ∞
−∞

∞

=
∫∑ ( ) .as
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4.

    

dF x m nnk nk
xk

kn

( )+ → → ∞
≥=
∫∑

ε

0
1

as  

for every ε > 0 and

{ ( ) ( ( )) } .x dF x m xdF x m nnk nk
x x

nk nk
k

kn
2

1 1

2

1

0+ − + → → ∞
< <=
∫ ∫∑ as

5. There exists a sequence of constants (An) such

that the distribution function of the     S An
k

n
n( ) −

converges weakly to the degenerate distribution
function

D(x) = 
    

0 0

1 0

if x

if x

<
≥





,

.

Theorem 2.2A If a double sequence (Xnk), k = 1,
2,…, kn obeys the weak law of large numbers, then
the sequence of distribution functions of the sums

    Sn
kn( )  converges weakly to the degenerate distribution

function with unit-jump at c for some constant c.
In the following, we extend Theorem 2.1A–2.2A

to the case of random sums.

Theorem 2.1B The following statements are
equivalent.

1. (Xnk), k = 1, 2,… obeys the weak law of large
numbers w.r.t (Zn).

2.

    

dF x m nnk
xk

Z

nk

Pn

>=
∫∑ + → → ∞

11

0( ) as …..(B-1)

and

    

x dF x m nnk
xk

Z

nk

Pn
2

11

0
≤=
∫∑ + → → ∞( ) .as  …..(B-2)

3.
    

x

x
dF x m nnk nk

P

k

Zn 2

2
1 1

0
+

+ → → ∞
−∞

∞

=
∫∑ ( ) .as

4. dF x m nnk nk
x

P

k

Zn

( )+ → → ∞
≥=
∫∑

ε

0
1

as  

for every ε > 0 and

 

    

{ ( ) ( ( )) } .x dF x m xdF x m nnk nk
x x

nk nk

P

k

Zn
2

1 1

2

1

0+ − + → → ∞
< <=
∫ ∫∑ as

5. There exists a double sequence of constants
(Ank), k = 1, 2, … such that a sequence of the
distribution functions of the random sums

  
S AZ nZn n

−  converges weakly to the de-
generate distribution function.

Theorem 2.2B If a double sequence (Xnk) , k = 1,
2, … obeys the weak law of large numbers w.r.t. (Zn),

then the sequence of distribution functions of   SZn

converges weakly to the distribution function F(x)

= 
    

D x dq Da aq q
( ) where

0

1

∫  is the degenerate distribu-

tion function with unit - jump at aq.
In proving the theorems, the notion of q-quantiles

of the random variable Zn plays an important role.

The q-quantiles of Zn is the function ln : (0,1) → N
defined by

ln (q) = max{k ∈ N / P(Zn < k) ≤ q}.

Clearly ln  is non-decreasing in q and
P (Zn < ln(q)) ≤ q < P(Zn ≤ ln(q)).  Next we give

lemmas that will be basic in the proofs of main
theorems.

Lemma 2.1 ([5], p.336)  For every n, let (ank), k = 1,
2,… be a non-decreasing sequence of non-negative
real numbers and a ≥ 0. Then

(i) if 
  
anZ n   →

P

a as n → ∞, then anln(q) → a as n → ∞
for every q ∈ (0,1)  and

(ii)if 
    
anl qn ( ) → a as n → ∞ for a.e.q, then 

  
anZ n

   →
P  

 a

as n → ∞.

Lemma 2.2 ([8], p.63) Xn  →
P

X as n → ∞ if and only

if every subsequence (
  
Xn k

) contains a sub-

subsequence (
  
Xn k r

) such that
  
Xn k r

→ X a.e. as r→ ∞.

Proof of Theorem 2.1B
To prove 1. → 2., we assume that there exists a

double sequence of constants (Ank), k = 1, 2,... such

that   SZn
−

  
AnZ n   →

P

0 as n → ∞.

Hence 
    
lim
n→∞

 P(  SZn
−

  
AnZ n

≤ x) = 
    

0 0

1 0

     

      

if x

if x

<
>





,

.
 .…. (1)

For each n, let Im Zn = {knj |knj < kn(j+1)}, qnj  = 
    

P
k

knj

=
∑

1

(Zn = k)

and  qno = 0.
Then for each q ∈ [ qn(j -1), qnj)  we have ln(q) =  knj

and

    
P S A x P Z k P S A xZn nZn

k Z
n nj n

k

nk
nj n

nj

nj
( ) ( ) ( )

Im

( )− ≤ = = − ≤
∈
∑

    
= − − ≤

∈
−∑

k Z
nj n j n

k

nk
nj n

nj

nj
q q P S A x

Im
( )

( )
( ) ( )1

    
= − ≤∫ P S A x dqn

l q
n q

n( ) .( ( ))
( )

0

1

ln
 …..(2)

From (1) and (2)
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lim ( )

,

.
( ( ))

( )
n

n
l q

n qP S A x dq
if x

if x
n

→∞ ∫ − ≤ =
<
>



0

1 0 0

1 0
ln

By Fatou’s lemma, for every subsequence (n') of (n)
we have

    
∫ − ≤

→∞0

1

lim inf ( )
'

'
( ))

' ( )
'

'n
n
l q

n qP S A x dqn
ln

= 0 if x < 0

and

    
( limsup ( )

'
'
( ))

' ( )
'

'
1

0

1

− − ≤
→∞

∫
n

n
l q

n qP S A x dqn
ln

= 0 if x > 0.

Hence for a.e.q,

    
lim inf ( )

'
'

( ( ))
' ( )

'

'
n

n
l q

n l qP S A x ifn

n
→∞

− ≤ = <0 0x …..(3)

and

    
lim sup ( ) .

'
'

( ( ))
' ( )

'

'
n

n
l q

n l qP S A x ifn

n
→∞

− ≤ = >1 0x   …..(4)

To prove (B-1) and (B-2), by Lemma 2.2 we let
(n') be any subsequence of (n). From (3) and (4),
we have a sub-subsequence (n") of (n') such that

    ( )"
( ( ))

" ( )
"

"
S An

l q
n l q

n

n
−  converges weakly to the degenerate

distribution function.  By Theorem 2.1 A ,(Xn"k), k =
1, 2,…,       ln q( ) obeys the weak law of large numbers
and

    xk

l

n k n k

n q

dF x m n
>=
∫∑ + → → ∞

11

0
"( )

" "( ) "as …..(5)

and

    

x dF x m n
xk

l

n k n k

n q
2

11

0
≤=
∫∑ + → → ∞

"( )

" "( ) "as …..(6)

for a.e.q.  By Lemma 2.1(ii) and (5), we have

    xk

Z

n k n k

Pn

dF x m n
>=
∫∑ + → → ∞

11

0
"

" "( ) " .as

From this fact and Lemma 2.2, (B-1) holds.
Similarly,we can show that (B-2) holds.

To prove 2. → 1. ,we assume the conditions (B-1)
and (B-2) hold. By Lemma 2.1, for every q ∈ (0,1)
we have

    xk

l

nk nk

n q

dF x m n
>=
∫∑ + → → ∞

11

0
( )

( ) as …..(7)

and

 

    

x dF x m n
xk

l

nk nk

n q
2

11

0
≤=
∫∑ + → → ∞

( )

( ) .as …..(8)

From (7), (8) and Theorem 2.1A,  a double sequence
(Xnk), k = 1, 2,…,       ln q( ) obeys the weak law of  large

numbers for every q and there exists a sequence (Ank),
k = 1, 2,… such that

     S A nn
l q

nl q

P
n

n

( ( ))
( ) .− → → ∞0 as

So for every q ∈ (0,1)  and ε > 0, we have

    P S A nn
l q

nl q
n

n
(| | ) .( ( ))

( )− ≥ → → ∞ε 0 as

Hence     P S AZ nZn n
(| | )− ≥ ε  which is equal to

    
P S A dqn

l q
nl q

n

n
(| | )( ( ))

( )− ≥∫ ε
0

1

converges to 0. That is 1. true.

To prove 1. ↔ 3. and 1. ↔ 4. we use the same
technique and the fact

    

x dF x m xdF x mnk nk nk nk
xx

2 2

11

0( ) ( ( )) .+ − + ≥
<<
∫∫

To prove  1. → 5. we assume  a double sequence
(Xnk), k = 1, 2…  obeys the weak law of large numbers
w.r.t (Zn).  By (B-1) and (B-2) and Lemma 2.1(i), we
have (7) and (8) hold for every q ∈ (0,1). By
Theorem 2.1A  there exists a double sequence (Ank),

k = 1, 2,… such that     ( )( ( ))
( )S An

l q
nl q

n

n
−  converges weakly

to the degenerate distribution function.  Hence for
each q ∈ (0,1),

lim ( )
,

.
( ( ))

( )
n

n
l q

n qP S A x
if x

if x
n

→∞
− ≤ =

<
>





ln

0 0

1 0

which implies 
    
lim ( )

.
( ( ))

( )
n

n
l q

n qP S A x dq
if x

if x
n

→∞ ∫ − ≤ =
<
>



0

1 0 0

1 0
ln

So (
  
S AZ nZn n

− ) converges weakly to the degenerate

distribution function.
To prove 5. → 1.  assume that

    
lim ( )

,

.n
Z nZP S A x

if x

if xn n→∞
− ≤ =

<
>





0 0

1 0
…..(9)

From (9) and the fact that

 
    
P S A P S A P S AZ nZ Z nZ Z nZn n n n n n

( ) ( ) ( )− ≥ = − ≥ + − ≤ −ε ε ε

    
= − − < + − ≤ −1 P S A P S AZ nZ Z nZn n n n

( ) ( )ε ε

we have 
    
S A nZ nZ

P

n n
− → → ∞0 as . #

Proof of Theorem 2.2B
Assume that (Xnk), k = 1, 2,.. obeys  the weak law

of large numbers w.r.t. (Zn).  By Theorem 2.1B and
Lemma 2.1(i), we have (8) and (9) for every q ∈
(0, 1).  By Theorem 2.1A and Theorem 2.2A, for
every q ∈ (0,1) the sequence of distribution functions

of the sums     ( )( ))Sn
l qn  converges weakly to 

  
Daq

, where

  
Daq

 is the degenerate distribution function with unit-
jump at aq. By Lebesgue Dominated Convergence
Theorem,



36 ScienceAsia  26 (2000)

 
    
lim ( ) lim ( )( ( ))

n
Z

n
n
l qP S x P S x dq

n

n

→∞ →∞
≤ = ≤∫

0

1

    
= ∫ D x dqaq

( ) .
0

1

     #

THE RANDOM ACCOMPANYING DISTRIBUTION
FUNCTION OF RANDOM SUMS

In this section we generalize neceesary and suf-
ficient condition for convergence of sums of in-
dependent random variables to the case in which
the number of term in the sums are random.  This is
done by using the concepts of random infinitesimal
and random accompanying distribution function of
random sums.

Lemma 3.1 Let (Xnk), k = 1, 2, 3,… be random
infinitesimal.  Then

(i)

    

max | | ( )
1

0 0
≤ ≤

<

→ = >∫
k Z

nk

P

nj nj
xn

where xdF x andα α τ
τ

is a constant

(ii) max | |
1

0
≤ ≤

→
k Z

nk

P

n

m where mnk is the median of Xnk

(iii)
    
max |
1

0
≤ ≤

→
k Z

nk

P

n

| β where βnk nk nkt= −ϕ ϕ' ( ) '1 and

is the characteristic function of  X'nk  =  Xnk – αnk.

Proof.
(i) follows from the fact that

    

| | | ( ) |α
τ

nk nk
x

xdF x=
<
∫

≤
    

| |
| |

x
x ≤
∫

ε
dFnk(x) + 

    
| |

| |

x
xε τ< <
∫ dFnk(x)

≤   ε + τ P( | Xnk | ≥ ε )

for sufficiently small ε.
To prove (ii) let q ∈ (0,1) and ε > 0.  By Lemma

2.1(i) we have
    
max

( )1≤ ≤k l qn

P( | Xnk | ≥ ε )→ 0.  So there exists n0

∈ N such that 
    
max

( )1≤ ≤k l qn

P( | Xnk | ≥ ε ) < 
  

1

2
 for n ≥ n0. We

note that if the probability of X lying in some interval

is greater than 
  

1

2
 , then every median m of X belongs

to this interval.  So | mnk | ≤ ε  for every n and k such
that 1 ≤ k ≤ ln(q) and n ≥ n0.  Hence for n ≥ n0 we

have
    
max

( )1≤ ≤k l qn

| mnk | ≤ ε which implies 
    
max

( )1≤ ≤k l qn

| mnk | → 0.

By Lemma 2.2(ii) we have 
    1

0
≤ ≤

→
k Z

nk

P

n

mmax | | .

(iii) follows from (i) and the fact that
| ϕ'nj(t)–1 | =  | ∫ (eitx –1) dF'nj(x) |

    

≤ − +
< ≥
∫ ∫| | ' ( ) ' ( )e dF x dF xitx

x
nj nj

x

1 2
ε ε

    
≤ + ≥( )ε ε| | | ' |t P X nj2

    
≤ + ≥ + ≥ε ε α ε

| | [ (| | ) (| | )].t P X Pnj nj2
2 2

where F'
nj is the distribution function of X'

nj .   #

Lemma 3.2   If there exist   AnZn
 such that the

sequence of distribution functions of random sums

    S X X X AZ n n nZ nzn n n
= + + −1 2...

of random infinitesimal (Xnk) converges to a limit,
then for q ∈ (0, 1) there exists a constant cq such
that

    

x

x
dF x cnk nk q

k

l qn 2

2
1 1+

+ <∫∑
=

( ) .
( )

α

Proof. To prove the lemma, it suffices to show

    
a

x

x
dF xn nk nk

k

l qn
2

2

2
1 1

0
+

+ →∫∑
=

( ) ,
( )

α

for every sequence (an) such that  0 < an < 1 and
an → 0.  Note that, for large n

    

x

x
dF xnk nk

2

21+
+∫ ( )α

    
≤

+ + −
+ + −

+ + −
+∫ ∫

2

1

2

1

2

2

2

2

x

x m
dF x m

m

x m
dF x m

nk nk
nk nk

nk nk

nk nk
nk nk

( )
( )

( )

( )
( )

α
α

α

    
≤

+ + −
+ + −∫

2

1
2

2

2
2x

x m
dF x m m

nk nk
nk nk nk nk

( )
( ) ( )

α
α

    

≤
+ + −

+ + −∫ ∫
<

2

1
4

2

2
2x

x m
dF x m x m dF x

nk nk
nk nk nk nk

x( )
( ) ( ( ) ( ))

α τ

    

+
≥
∫4 2( ( ))m dF xnk nk

x τ

    

≤
+ + −

+ + −∫ ∫
<

2

1
4

2

2
2x

x m
dF x m x m dF x

nk nk
nk nk nk nk

x( )
( ) ( ( ) ( ))

α τ

    + ≥4 2m P Xnk nk(| | )τ

≤
+

+ + −∫ ∫
<

c
x

x
dF x m x m dF xnk nk nk nk

x

2

2
2

1
4( ) ( ) ( )

τ
    + ≥4 2m P Xnk nk(| | )τ

for some constant c  (by Lemma 2.1 and Lemma 3.1
(i, ii))

    

≤
+

+ + +∫ ∫
<

c
x

x
dF x m x dF x mnk nk nk nk

x

2

2
2

21
4( ) ( )

τ
    + ≥4 2m P Xnk nk(| | )τ
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(by Lemma 3.1 (ii)).

Hence

     
    
a

x

x
dF x A B Cn

k

l q

nk nk n n n

n
2

2

2
1 1+

+ ≤ + +∫∑
=

( )

( )α

where

    
A c a

x

x
dF x mn n

k

l q

nk nk

n

=
+

+∫∑
=

2
2

2
1 1

( )

( )

    

B a x dF x mn n
xk

l q

nk nk

n

= +
<=
∫∑4 2 2

21 τ

( )

( )

and 
    
C a m P Xn n nk

k

l q

nk

n

= ≥
=
∑4 2 2

1

( )

(| | ).τ

If we can show that An → 0, Bn → 0 and Cn → 0, we
have the Lemma.  Since the distribution functions

of   SZn
converge weakly and an → 0,     a Sn Z

P

n
→0.  So

    a S Dn Z

W

n
→ .  ByTheorem 2. 1B and Lemma 2.1(i)  we

have

    −∞

∞

=
∫∑

+
+ →a x

a x
dF x mn

n
nk nk

k

l qn 2 2

2 2
1 1

0( )
( )

which implies An → 0.  In the same way, we can
show Bn → 0 and Cn → 0. #

Theorem 3. Assume that (Xnk) is random infi-
nitesimal. Then there exists a double sequence of
constants (Ank) such that the sequence of distribution
functions of random sums

  SZn
  =  Xn1 + Xn2 +…+   XnZn

 –   AnZn

converges weakly to a limit, if and only if
1. their random accompanying distribution

functions converge weakly to the same limit and

2.
    

x

x
d F x

k

l q

nk nk

n 2

2
1 1+

+∫∑
=

( )

( )α  is bounded for a.e.q in

(0, 1).

Proof.

(→) Let     ϕl qn
t( )( ) be the characteristic function of

    S An
l q

nl q
n

n

( ( ))
( ).−   Hence

    
ϕ ϕl q nl q nk

k

l q

n n

n

t it A t( ) ( )

( )

( ) exp( ) ( ).= −
=

∏
1

where ϕnk is the characteristic function of Xnk.
Hence

    
ϕ α ϕl q nl q nk

k

l q

nk
k

l q

n n

n n

t it A it t( ) ( )

( ) ( )

( ) exp( ) ' ( ).= − +
= =
∑ ∏

1 1

Since  (Xnk) is random infinitesimal, by Lemma 3.1
(iii) and Lemma 2.1(i) we have

    
max

( )1≤ ≤k l qn

| βnk | → 0. …..(10)

So, for large n we have
logϕ'nk(t) =   log(1 + βnk)

=   βnk – 
  

1

2
 β

2

nk + 
  

1

3
 β

3

nk  – …..

which implies

| logϕ'
nk

(t) – β
nk 

| ≤
    

1

2 1

2

(
| |

| |
).

β
β

nk

nk−
 .....(11)

Hence for large n

    | ( ) ( ) | | log ( ) log ( ) |( ) ( ) ( ) ( )ϕ ψ ϕ ψl q l q l q l qn n n n
t t t t− ≤ −

    
≤

−=
∑1

2 1
11

2

1

| |

| |
( ( ))

( ) β
β

nk

nkk

l qn

by

    
≤

≤ ≤ =
∑max | | | | .

( )

( )

1 1k l q
nk nk

k

l q

n

n

β β   …..(12)

Note that

| β
nk

 | = | ϕ'
nj
(t) – 1 |

= | ∫ (eitx – 1) dF'
nj
(x) |

    
≤ + +

< ≥ <
∫ ∫ ∫

1

2
22 2| | ( ) ( ) | || ( ) |' ' '

| | | | | |

t x dF x dF x t xdF xnk
x

nk
x

nk
xτ τ τ

and for large n such that 
    
max | |

( )1 2≤ ≤
<

k l q
nk

n

α τ
 we have

    
| ( ) |'

| |

xdF xnk
x <
∫

τ

    
≤ − +

< + < + <
∫ ∫ ∫| ( ) ( ) | | ( ) |' ' '
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xnk nkτ α τ α τ
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∫ ∫xdF x x dF xnk

x
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x

'

| |
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( ) | ( ) ( ) |
τ τ τ

α

2

3

2

    

≤ +
> >

∫ ∫
3

2 2
2 2

τ τ
dF x dF xnk

x x

nk

' '

| | | |

( ) ( )
τ τ

    

=
>

∫2

2

τ
τ

dF xnk

x

'

| |

( ).

Hence
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| |
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βnk
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x

t x dF x t dF x
nk
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∫ ∫
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2
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2

τ
τ τ



38 ScienceAsia  26 (2000)

≤ +
+

+ + +
+< >

∫ ∫
1

2
1

1
2 1

4

1
2 2

2

2

2

2

2

2

2

| | ( ) ( ) ( | |)
( )

( )' '

| |
| |

t
x

x
dF x t

x

x
dF x

nk
x

nk

x

τ τ τ
ττ τ

    
≤

+∫c t
x

x
dF xnk( ) ( )'

2

21
 for some constant c(t). …..(13)

From (12) and (13) we see that

    
| ( ) ( ) | ( ) | | ( ).( ) ( )

( )

( )

maxϕ ψ αl q l q
k l q

nk
k

l q

nk nkn n
n

n

t t c t
x

x
dF x− ≤

+
+

≤ ≤ =
∫∑

1

2

2
1 1

β

…..(14)

By (14), Lemma 3.1(iii) and Lemma 3.2 we have

    | ( ) ( ) |( ) ( )ϕ ψl q l qn n
t t− → 0

which implies     | [ ( )] [ ( )]| .E t E tZ Zn n
ϕ ψ− → 0  …..(15)

Since (  SZn
) converges weakly to a limit and the

characteristic function of   SZn  is     E tZn
[ ( )]ϕ , by (15)

we have the sequence of random accompanying
distribution functions converges weakly to the same
limit and 2. holds by Lemma 3.2.

(←) From (10), (14) and the fact 
    

x

x
dF x

k

l q

nk nk

n 2

2
1 1+

+∫∑
=

( )

( )α

is bounded for a.e. q  we have     | ( ) ( ) |( ) ( )ϕ ψl q l qn n
t t− → 0.

Using the same technique, we have (    E tZn
[ ( )]ϕ )

converges to the same limit. So the converse is
proved. #
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