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ABSTRACT 1In this paper, we give necessary and sufficient conditions for random sums satisfying the
weak law of large numbers and give conditions for convergence of random sums. The random variables
considered in this paper are not to have finite variance.
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INTRODUCTION

For every n, let X ;, X ,,... be a sequence of
independent random variables and Z, a random

index independent of the sequence (X)), k=1, 2,....
Put

SW=X  +X,,+. X,
and S, =X, +X,+. . +X;.

Many authors'” have investigated the limiting
behavior of the distribution functions of the random
sums S, . The aim of our investigation is to extend
the theory of limit distribution function of sums of
independent random variables, especially the weak
law of large numbers and the accompanying
distribution functions to the case of random sums.

A sequence of random variables (X,) converges
in probability to the random variable X,

if P(|1X,-X|2>¢€) — 0asn— oo forevery fixed € > 0.

P
In this case we use the notation X, -X asn — oo,

A sequence (X)) is called stable if there exists a
P
sequence of constants (A,) such that X, —A, —0 as

n — co. It is well-known that, if (X)) is stable, the
constant A, may be taken to be the medians m, of X, .

A double sequence of random variables (X,,),
k=1,2,..., k, obeys the weak law of large numbers
if the sequence of the sums

Sy =X + Xy o+ Xy
is stable.
A double sequence (X,,), k =1, 2,... obeys the
weak law of large numbers with respect to (w.r.t)

(z,) if there exists a double sequence of constants
(A ) k=1.2,... such that

nk

P
S, —A,; »0asn—>co.
We shall say that (X)) is random infinitesimal
wr.t (Z) if
P

max P( Xnk| >¢)—0 for every € > 0.
1<k<z,

For the random sums X, +X,,+..+X,, -4, ,
the random accompanying distribution function of
the random sums is defined to be the distribution
function whose logarithm of its characteristic

function is E[\yzn (t)]

where

k k )
logy, () = —iAt+it Yo, +Y [ ~DdE (x+0,)

=1 =l
and o, = J'xanj(x) and 7> 0 is a constant.

e

THE WEAK LAW OF LARGE NUMBERS OF RANDOM
SUMS

The following theorems are well-known con-
ditions under which the weak law of large numbers
holds.%”

Theorem 2.1A The following statements are
equivalent.

1. X,),k=1,2,..., k, obeys the weak law of
large numbers.

ky
2. Y [dE,(x+m,)—>0asn—>eo
k=1 ‘x‘>1

ky
and Y [x*dF, (x+m,)—>0asn— oo,
k=1 ‘X‘Sl
by = g2
3. ~dF, (x+m,)—0asn— e,
k=l o 14X
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i} M“‘

f dE,,(x+m,,) —0asnh —> oo
2

for every € > 0 and

k

Y (] X*dE, (e+my)~( [xdF,

k=1 ‘ ‘<1 Md

- (x+m,)) = 0asn — oo,

5. There exists a sequence of constants (4,) such
that the distribution function of the S’ —A
converges weakly to the degenerate distribution
function

n

Theorem 2.2A  If a double sequence (X,,), k =1,
., k, obeys the weak law of large numbers, then
the sequence of distribution functions of the sums
s%) converges weakly to the degenerate distribution
function with unit-jump at ¢ for some constant c.
In the following, we extend Theorem 2.1A-2.2A
to the case of random sums.

Theorem 2.1B  The following statements are
equivalent.

1. (X)), k=1,2,...
numbers w.r.t (Z,).

obeys the weak law of large

Z, P
2. Y [dE,(x+m,)—>0asn— oo ...(B-1)

k=1 ‘x‘>1

and

Z, P
> [x*dE,(x+m,)—>0asn—oo. ... (B-2)

k=1 ‘x‘él

Z oo 2
2 X

3.) ] nk(x+mnk)—>0asn—>oo
i W 1+ x7

2, P
4. Y [dE,(x+m,)—>0asn— oo

k=1 ‘x‘?s

for every € > 0 and

Z, P
YA [P dE (x4 my)=( [xdFy (x+m,))*}>0asn— .
k=1 ‘x‘<l M<I
5. There exists a double sequence of constants
(A,), k=1,2, ... such that a sequence of the
distribution functions of the random sums
S;, —A,;, converges weakly to the de-
generate distribution function.
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Theorem 2.2B If a double sequence (X,,) , k =1,
2, ... obeys the weak law of large numbers w.r.t. (Z)),
then the sequence of distribution functions of S,
converges weakly to the distribution function F(x)

1
= _[Daq (x)dq where D, is the degenerate distribu-
tion function with unit - jump ata,.

In proving the theorems, the notion of q-quantiles
of the random variable Z plays an important role.
The g-quantiles of Z is the function ¢,: (0,1) > N
defined by

¢,(q) =max{ke N/P(Z, < k) <q}.

Clearly ¢, is non-decreasing in q and

P(Z, <t(q)<q<P(Z,=/l(q). Next we give
lemmas that will be basic in the proofs of main
theorems.

Lemma 2.1 ([5], p.336) Foreveryn,let(a,), k=1,
2,... be a non-decreasing sequence of non-negative

real numbers and a = 0. Then
P

—aasn—> o, thena ¢

lng > aasn— oo

() if dyz,
for every q € (0,1) and
(iDif a

asn — oo,

P
—aasn—ooforaeq,thena, — a

nl, (q)
P

Lemma 2.2 ([8], p.63) X, > X as n — o if and only

if every subsequence (X, ) contains a sub-

subsequence (X, )suchthatX, — Xae. asr— oo

Proof of Theorem 2.1B
To prove 1. — 2., we assume that there exists a

double sequence of constants (A4,,), k=1, 2,... such
P
that S, —A,, —>0asn— co.
0 if x<0,
Hence lim P(S, — nZ <x)= f x<0, @D)
n—yee " 1 if x>0.
Foreachn,letimZ, = {k, |k, <k}, q, = ZP (z,=k)

and q,, = 0.
Then for each q € [ q,.,), q,) we have £,(q) = k,
and

PS;,~Ag, <x) = XP(Z,=k,) P(S," = A, <)
= z (qﬂj - qn(j*l)) P(Sv(lknj) - Aﬂkﬂj S X)
kn]e]mzn
f I
‘[P(S;n(‘l)) - Anln(q) < X)dq ..... (2)
0

From (1) and (2)
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0if x<0,
A <xdq=1"T>
lif x>0.

By Fatou’s lemma, for every subsequence (n") of (n)
we have

lim fP(S(l h(a) _

n—oo

,[hmlnf P(Sl (@ — A SX)dq =0ifx<0

n'—eo

and

J(l hmsupP(Sl @ _

n'—oo

Ay $X)dq=0if x> 0.
Hence fora.e.q,

lim inf P(S" @ — Ay $X)=01ifx<0 ....(3)
and

lim sup P(Si’?‘(f‘)) —AyS$¥)=1ix>0. ....(4)

To prove (B-1) and (B-2), by Lemma 2.2 we let
(n") be any subsequence of (n). From (3) and (4),
we have a sub-subsequence (n") of (n') such that
(S A 1) converges weakly to the degenerate
distribution function. By Theorem 2.1 A ,(X,.,), k =
L2,..,
and

£,(q) obeys the weak law of large numbers

n"(,

=

_[ F.,.(x+m,)—>0asn"—co ....(5)
‘>

kl‘xl

and
i _[ F.(x+m,)—>0asn"—>e ...(6)
k=1 ‘S
for a.e.q. By Lemma 2.1(ii) and (5), we have
Zyr P
Y [ dE,(x+m,,)—>0asn"— .
k=1‘x‘>1
From this fact and Lemma 2.2, (B-1) holds.

Similarly,we can show that (B-2) holds.

To prove 2. — 1. ,we assume the conditions (B-1)
and (B-2) hold. By Lemma 2.1, for every q € (0,1)
we have

n(q

Y [ dE,(x+m,)—>0asn—> oo (D)
k= 1‘ ‘>1

and
ln(q)
Y [x*dE,(x+m,)—>0asn—e.  ...(8)
k=1‘x‘51

From (7), (8) and Theorem 2.1A, a double sequence

(X,),k=1,2,..., £ (q) obeys the weak law of large

nk
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numbers for every g and there exists a sequence (4,,),
k=1, 2,... such that

P
!
Sh@ A @—>0asn— oo

So for every g € (0,1) and € > 0, we have
P(l S(ln(q)) _A

Hence P(S,,

jP(| S(l L (4) _

0

() 2 €) > 0asn —> e
—A,;, [2€) which is equal to

A, ) B&)dqconverges to 0. That is 1. true.

To prove 1. <> 3. and 1. <> 4. we use the same

technique and the fact
f x*dF,, (x+m,,)—( J.xank (x+m,))* =0.

|x[<1 |x[<t

To prove 1. — 5. we assume a double sequence
(X,.),k=1,2... obeys the weak law of large numbers
w.r.t (Z,). By (B-1) and (B-2) and Lemma 2.1(i), we
have (7) and (8) hold for every q € (0,1). By
Theorem 2.1A there exists a double sequence (4,,),
k=1,2,...such that (S"©” — A, () converges weakly
to the degenerate distribution function. Hence for
each q € (0,1),

0if x<0,
Anl(q)Sx)z f
" Lif x>0.

<) 0if x<0
<x)dq =
1 Lif x>0.

lim P(S!@ —

n—eo

1
which implies lim '[P(Sf[["(q)) Ay
n— oo 0

So (S, —A
distribution function.
To prove 5. = 1. assume that

. ) converges weakly to the degenerate

lim P(S, —A,. <x)= { ix<0 .(9)
n—ee 1if x>0.
From (9) and the fact that
P(S, -4, 2 Az 28)+P(S;  S-€)
=1-P(S; -4, < s)+P(SZn -A,; <€)
we have S, —A, —P>0 asn —>oo. #

Proof of Theorem 2.2B

Assume that (X,), k=1, 2,.. obeys the weak law
of large numbers w.r.t. (Z,). By Theorem 2.1B and
Lemma 2.1(i), we have (8) and (9) for every q €
(0, 1). By Theorem 2.1A and Theorem 2.2A, for
every q € (0,1) the sequence of distribution functions
of the sums (S"“”) converges weakly to D, . where

D, is the degenerate distribution function with unit-
jump at a,. By Lebesgue Dominated Convergence
Theorem,
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lim P(S, <x) jhm P(s"“ < x)dgq

nﬁ)oo

1
= [D, (x)dq. #
0

THE RANDOM ACCOMPANYING DISTRIBUTION
FUNCTION OF RANDOM SUMS

In this section we generalize neceesary and suf-
ficient condition for convergence of sums of in-
dependent random variables to the case in which
the number of term in the sums are random. This is
done by using the concepts of random infinitesimal
and random accompanying distribution function of
random sums.

Lemma 3.1 Let (X
infinitesimal. Then

), k=1, 2, 3,... be random

nk

(1) max | o

P
|—>0wherea.,; = deF (x)andt>0
1<k<Z,

nk nj

<e

is a constant

p
(i)  max|m, |—>0 where m,, is the median of X,
1<k<z,

P
(iii) max | B | >0 where B, =¢', ()—land ¢',,

is the characteristic function of X', = X, — o,.

Proof.
(i) follows from the fact that

0y 1= [xdE, ()]

e

< [IxIdF,, () +  [lxIdF,,(x)

IxI<e e<lxl<t

< e+TP(1X,12¢)

for sufficiently small €.
To prove (i) let ¢ € (0,1) and € > 0. By Lemma

2.1(1) we have I max P( | X, |=€)— 0. So there exists n,

€ N such that  Inax P( [X,12€)< = forn =n, We
0 (0)
note that if the probablhty of X lying in some interval

1
is greater than — , then every median m of X belongs

to this interval. So|m,|<¢ for every nand k such
that 1 < k <1,(¢q) and n > n,. Hence for n > n, we

have max, | m,,| <& which implies max Im,1k|—>0
1<k< 1<k

P

By Lemma 2.2(ii) we have max [m,, [—0.
1<k<Z,
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(iii) follows from (i) and the fact that
l@',(O-11= |] (e ~1) dF,(x) |

< [Jle™ =11dF, (x)+2 [dF', (x)

[xf<e [xfze

IN

elt]+2P(1X',|2¢)

IN

eltl+2[P(1X, 2 )+P(|0c |2 )].

nj
where F,; is the distribution functlon of X,;. #
Lemma 3.2 If there exist A,, such that the
sequence of distribution functions of random sums

Szn =X, +an---+an" -
of random infinitesimal (X,,) converges to a limit,
then for g € (0, 1) there exists a constant <, such
that

nz,

1, (@) x?
j—ank(x+ 0, <,

h

Proof. To prove the lemma, it suffices to show

l L, (q) 2

Z j—ank(x+ocnk)—>0

for every sequence (a,) such that 0 < a, <1 and
a, — 0. Note that, for large n

J

~dF, (x+0,,)

1+x
2 2m,, -0t )
Sj%dﬁh(“mnk)ﬂ (my ~0,y) -dF, (x+m,,)
1+(X+mnh o 1+(x+mnk_ank)
2x?
< M(X"'mn )+2(mn n )2
J‘1"'(X+Wlnk _a‘nh)z ] ‘ ' '
2’ 2
< dE, (x+m) +4( [(x=m, )dE, (x))

T+ (x+my, -0,

e

+4( _[mndenk (x))?

MZI

< I 2’

< m ank (x+ m, )+4( I(X —-m, )anh (X))2
nk ~ Ynk

ke
+4m2P(X,, 1>1)
2

stlf dE, (e +my, ) +4 [Gommy, PdE, (x) + 4mPO X, 12 17)

nk
ke

for some constant ¢ (by Lemma 2.1 and Lemma 3.1
(i, ii))

2

X
SCJHX2

dF, (x+m,)+4 J xzanh (x+m,)+ 4m?

‘x‘dr

P(X, 127)

nk
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(by Lemma 3.1 (ii)).

Hence

N

wSA +B +C,

nk

where

1, (@) x2
Anzcarlej ZdF;lk(x-'-mnk)
k=1~ 14+ Xx

R4 2
B,=4a; Y, [x'dF,(x+m,)

k=1 ‘x‘<2r

L@
and C,=4a. Yy m’ P(1X,|1>1).
el

If we can show that A, - 0,B, > 0and C, — 0, we

have the Lemma. Since the distribution functions
P
of S, converge weakly and a, = 0, a,S, —0. So

w

a,S, —D. ByTheorem 2. 1B and Lemma 2.1(i) we

have
I,(q) = a2X2
j = dE, (x+m,)—0
o e lt+aix’

which implies A, = 0. In the same way, we can
show B, = 0 and C, — 0. #

Theorem 3. Assume that (X,,) is random infi-
nitesimal. Then there exists a double sequence of
constants (4,,) such that the sequence of distribution
functions of random sums

SZ,, = an +Xn2 ot XnZ" - AnZn
converges weakly to a limit, if and only if
1. their random accompanying distribution

functions converge weakly to the same limit and

1, (q) 2

ZJ

(0, 1).

d F,(x+a,,) is bounded for a.e.q in

Proof.

(=) Let @, ,(t) be the characteristic function of

Sl _ A Hence

nl, (q)°
L(q)

@, (O =exp(=it A, ) [Te,.®.
k=1

where @,, is the characteristic function of X .
Hence
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(@) (@)
QO =exp(=it A, ., +it Y o) [Te', ©.
k=1 k=1

Since (X,,) is random infinitesimal, by Lemma 3.1
(iii) and Lemma 2.1(i) we have

1<k<l()|ﬁ"k|%0 (10)

So, for large n we have

logg', () = log(1+p,)

1 2 1 2
ﬁ)lk_5ﬁ11k+§ﬁn}z_
which implies
1B, I’

| 1o t mk__y o 11

80,0~ B, <5 1—|ﬂ,1kl) (11)

Hence for large n

| (Pl"((p(t) - W}n (q)(t) | < | 10g (Pln(q)(t) - 1Og W)"(q)(t) |

1,(q) 2
Sli |ﬁnk|
2 |ﬁnk|

=

(by (11))

< Inax )|/3nk I Z 1Byl .....(12)
Note that
1Bl =1, -1l
= | f (eif,\'_ 1) dF‘nj(x) |

s%mz [ X*dE, () +2 [ dE, CO+1tll [ xdE, ()]

Ixl<t IxI>t Ixl<t

T
and for large n such that max Iocnk <= we have
1<k<l, () 2
| | xdF,,(x)]
Ixl<t
< | [ xdE, ()= [ xdE, (141 | xdFy, (x)]
Ixl<t e +0t<T b+t |<T
< [ xdF, )+ [ (x=0,)dE, (x)]
1<|x|<ﬂ k<t
2 2
<

2T dﬁlk(x)% [ dF, ()

Ix|>% \x|>§
=21 | dE,(x).
x>
X>§
Hence

1B, IS%ItIZ [ XdF. () +Q+21tD) | dF,(x)

Ixl<t T
Ix|>—
2
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2 2 2
s%mz(l#)j 2 s | g
e ¥ IX\% 1
x? '
Sc(t)j . dF,, (x) for some constant c(¢). .....(13)
+x

From (12) and (13) we see that

2

Iy (q)
| (pln(q)(t) - \Illn(q)(t) | s C(t) max | ﬁnk | Z I _zank(X + (xnk)'

1<k, (q) PR |

s (1)

By (14), Lemma 3.1(iii) and Lemma 3.2 we have
| (Pln(q)(f) - W)"(q)(t) | — O

which implies |E[¢, (O]-Ely, (O]1-0. .....(15)

Since (S, ) converges weakly to a limit and the

characteristic function of S, is El¢, (], by (15)

we have the sequence of random accompanying
distribution functions converges weakly to the same

limit and 2. holds by Lemma 3.2.

2
X

()
(«-) From (10), (14) and the fact Y, jl—zanh
k=l X

is bounded fora.e. q we have |, ()=, ,()[—=0.

(x+0,,)

Using the same technique, we have (Elg, (1)])

converges to the same limit. So the converse is
proved. #
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