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INTRODUCTION

Let X be a Banach space, and let S (X) and B (X)
denote its unit sphere and unit ball, respectively. An
element e in B (X) is called an  extreme point if
there are no distinct elements x,y in B (X) with 2e =
x + y. We write Ext B (X) for the set of all extreme
points in B (X). If Ext B (X) = S (X), then X is called
a rotund (R) space. For each x in B (X), write

λ (x) = sup{ λ ∈ [0,1]: x =  λ e+ (1- λ)y for some
e ∈ Ext B (X), y ∈ B (X)}.

If λ (x) > 0 for all x ∈ B (X), then X is said to
have the λ - property. Moreover, if

λ (X) := inf { λ (x) : x ∈ S (X)} > 0,
then X is said to have the uniform λ - property.
We shall study many more properties on con-

vexity of Banach spaces. For simplicity of the
presentation, we state each definition in each of its
corresponding section to follow. References for
various kinds of geometric properties can be found
in, for examples, Day5 and Chen.2 Another reference
that contains a number of examples which separate
various convexity properties is M. A. Smith.15 At first,
we present their connections in  Figure 1. The sign
“ ” indicates that the implication always holds
in general, whereas “ ” holds for Nakano
sequence spaces. Then we summarize the results in
Table 1.

For k ≥ 0, let  µk and νk stand for the following
conditions.

µk : µ{ n : pn = 1 } ≤ k.

νk : 
    
inf
n F∉

 pk > 1 for some finite set F having at

most k elements.
Then, for Nakano spaces,
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Table 1.

l always has H, K and UKK
LUR ⇔ WLUR ⇔ µ

0 
 or ν

1

LUkR ⇔ µ
0 
 or ν

k

R ⇔ MLUR ⇔ URED ⇔ G ⇔ µ
1

kR ⇔ µ
k

Rfx ⇔ β ⇔ NUC ⇔ D ⇔ ν
k  

for some k
UR ⇔ kC ⇔ WUR ⇔ ν

1

UkR ⇔ ν
k

uniform λ-property ⇔ µ
k 
for some k.

The above geometric properties have been
thoroughly discussed in the literature, especially on
the Orlicz function spaces and Orlicz sequence
spaces endowed with both the Orlicz and the
Luxemburg norms. In this paper, we extend the study
on another sequence spaces which we describe now.

Let {pk} be a sequence of positive real numbers
larger than or equal to one. Denote l := l(p

k
)  for the

Banach space of all real sequences x = (xk) such that
ρ (λx) < ∞ for some λ > 0, where ρ (x) is the modular
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of x defined by

ρ( ) | | ,x =
=

∞

∑ xk
p

k

k

1

with norm

  
x x= > ( ) ≤{ }inf : .λ ρ λ0 1

The space is called  a Nakano sequence space.
For 0 < pk ≤ 1, the space   l  has been studied by

various authors, eg.10, 12, 8-9 The norm so defined,
which may be called the Luxemburg norm, differs
from the one introduced by Nakano. In fact, Nakano12

defined the norm of x as

  
x

p

x

kk

k p
k= >{ ≤ }

=

∞

∑inf : | | .λ
λ

0 1
1

1

Note that, for each x
p

x
k

k

p

k

k∈ < ∞
=

∞
∑l, | |

1

1

λ for some

λ > 0. Nakano sequence spaces are special cases
of Musielak-Orlicz sequence spaces. Results in the
paper may give some ideas of how ones should
formulate the corresponding results for the more
general cases. In Chen2, extreme points as well as
rotundity and uniform rotundity are studied for
Musielak-Orlicz function spaces.

From now on, we assume that the sequence {pk}
is bounded. The following observation will be
needed throughout the paper:

(1)
  
lim ( ) ( )
δ

ρ δ ρ
→

=
1

x x

(2)   || x ||    (x)  || x ||  if || x ||   1,p
*

p*

≤ ≤ ≥ρ

  || x ||   (x)  || x ||  if || x ||<  1,p* p
*≤ ≤ρ

  where p  = inf  p   and p   =  sup  p ,
* k k

*
k k

(3)   || x ||   =  1   (x) =  1,⇔ ρ
and

  || x || 1 (x )  1.n n→ ⇔ →ρ

We also apply, from time to time, the following
notations: For each n, en is the standard vector in   l
defined by en= (δmn)

∞
m=1.

For a vector x =  (xk) in   l , we write for each n,

  
x n x e

k k
k

n

( ) : ,=
=

∑
1

  
x n x ek k

k n

( , ) : .∞ =
>
∑

Results In what follows, X will stand for a Banach
space.

EXTREME POINTS AND ROTUNDITY

Lemma 1  x ∈ Ext B (  l) if and only if
(i) p (x) = 1, and
(ii)µ{k : xk ≠ 0 and pk = 1} ≤ 1,

where µ is the counting measure on Z+

Proof  (⇒) It is clear that each en satisfies (i) and
(ii).  Now let x be an extreme point with  µ{k : xk ≠
0} ≥ 2. Suppose, without loss of generality, that p1 =
p2  = 1, x1 ≠ 0 and x2 ≠ 0.  Thus  |x1|, |x2| ∈ (0,1).
Choose ε > 0 such that |x1|- ε > 0 and |x2|-ε > 0. Let y
= (yk) and z = (zk) where

  

( , )

( sgn , sgn ), ,

( sgn , sgn ), ,

( , ), .

Y Z

x x x x if k

x x x x if k

x x otherwise
k k

k k k k

k k k k

k k

=

+ − =

− + =









ε ε

ε ε

1

2

Hence 2x = y + z, ||y|| ≤ 1, ||z|| ≤ 1, a contradiction
and we have  (ii). To prove  (i) we suppose on the
contrary that

  
lim ( ) .
δ

ρ δ
↑

= <
1

1x r

Choose ε > 0 so small that |x1 ± ε|p1 < |x1|
p1 + 

  

1

2

− r
.

Let y1 = x1 + ε, z1 = x1- ε, and yk = xk = zk for all k ≥ 2.
Then 2x = y + z,

 
  
ρ δ ρ δ ρ δ( y),  ( z) <  ( x) +  

1

2

− r

for all δ < 1. By (1) we have ||y|| ≤ 1 and ||z|| ≤ 1, a
contradiction.
( ⇐ ) Assume that x satisfies (i) and (ii). Suppose
that 2x = y + z for some y, z ∈ B (   l). Thus xk  ≠ 0 for
at least 2 k, say x1 ≠ 0, x2 ≠ 0, and then p1 ≠ 1 or p2  ≠
1, say p1 ≠ 1. For some ε, y1= x1+ ε, z1  = x1 - ε, and
say,

  
x

y zp
p p

1
1 11

1 1

2
< +| | | |

.

Write p > 0 for the difference of these two numbers.
Now

  

ρ
ρ δ

δ δ
2 2

1 1

2
1

1

+ <
+

≤
+

=
=

∞
∑( )

| | | |
x

y z
k

p

k

p

k

k k

for all 0 < δ < 1. This implies  ρ(δx) < 1 -
  

ρ
2

 for all 0

< δ < 1, and therefore,
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lim ( )
δ

ρ δ
↑

<
1

1x

contradicting (i).
We now immediately have
Theorem 2   l is rotund if and only if pk = 1 for at
most one k.
We consider now a more general type of rotundity.

For k ≥ 1, X is a k-rotund  (kR) space if for vectors
x1, ... ,xk+1 in S (X) with ||x1  + ... + xk+1|| = k + 1, the
set {x1, ... ,xk+1} is linearly dependent.

Theorem 3   l is kR if and only if  µ{k : pk = 1} ≤ k.

Proof  (⇒) Suppose p1= ... = pk+1 = 1. Consider the
independent set {e1, ... ,ek+1} of elements in S (  l).
We see that ||e1 + ... + ek+1 || = k + 1.

 ( ⇐ ) Suppose  ||x1|| = ... = ||xk+1||  = 1 , ||x1 + ... +
xk+1|| = k + 1 and  x1, ... ,xk+1  are linearly independent.
Writing xi = (xi1, xi2, ...), by independence of xi , there
are  j1, ... , jk+1 such that for each jm, xijm ≠ 0 for
some i. Otherwise,

    

det

x

x

x
k

1

2

1

0
M

+





















=

a contradiction.
Suppose jm = m for m = 1, ... ,k + 1. Note that pm ≠ 1
for some m, say, p1 ≠ 1. Put

x0 = x1 + ... + xk+1.

Then ||x0|| = k + 1, ||
  

x

k
0

1+
|| = 1, and 

  
ρ ( )

x

k
0

1+
 1. Now

  

1
1 1 1

0 01 0

1

1

=
+

=
+

+
+∑ ∑

>

x

k

x

k

x

k
j

p

j

p

j

j

pj j

  
<

+ + +
+

+
+ +

+
+

>

+∑
| | | | ... | | | | ... | |

, ,x x x

k

x x

k

p p

k

p

j

j

p

k j

pj j

11 21 11

1

1 1
1 1 1

1 1

  
=

+ +

+≥

+∑
j

j

p

k j

p
x x

k

j j

1

1 1

1

| | ... | |
,

  
= + +

+
=+ρ ρ( ) ... ( )

,
x x

k
k1 1

1
1

a contradiction.

Remark 4  R ⇔1R.

Proof  (⇒) If ||x1|| = ||x2|| = 1 and ||x1 + x2||= 2, then

x:= (x1 + x2)/2 ∈ S (  l). Now 2x = x1 + x2 implies x1

= x2 , and thus x1 and x2  are linearly dependent.

( ⇐ ) Let  ||x|| = 1, ||y|| ≤ 1,  ||z|| ≤ 1, and 2x = y +
z. From 2 = ||y + z|| ≤ ||y|| +||z|| ≤ 2, we have ||y|| =||z||
= 1, and thus y = cz for some c. Now 1 = ||y|| = |c|||z||=
|c|, we have c = 1.
From Remark 4 we see that Theorem 2 becomes a
corollary of Theorem 3.

UNIFORM λ-PROPERTY

Recall that

(4) λ (  l) = inf{   l(x):  ρ (x) = 1}.

Theorem 5   l  has the uniform λ-property if and only
if  µ{k :pk = 1} < ∞. In general, we have λ (  l) = 1/
µ{k : pk = 1}.

Proof  Put w =  µ{k : pk = 1}.

 (⇒) Suppose w = ∞, i.e. pk = 1 for infinitely many
k. For convenience assume pk = 1 for all k. Let 0 < r
< 1 and choose x =  (xk) such that 0 < xk ≤ r  for all k
and ρ (x) = 1. If x = λa + (1-λ) y for some a = (ak) ∈
Ext B (  l), y ∈ B (  l) and some λ ∈ (0,1], then, by

Lemma 1, 
  
a

k0
 = 1 for some k0 and ak = 0 otherwise.

We see that λ ≠ 1 since x is not an extreme point.
Now

  
| | .y x

x
k

k k
k

k k

k

≠ ≠
∑ ∑=

−
=

−

−
0 0

0
1

1

1

1λ λ

Since y ∈ B (  l), 
  

1

1
0

−

−

x
k

λ
 + |

  
y

k0
| ≤ 1. From this we

have λ ≤ 
  
x

k0
 ≤  r. Therefore λ (x) ≤ r, and then λ (l)

= 0, a contradiction.

 ( ⇐ ) In case w = 1 the assertion is clear since S
(l) = Ext B (l). Suppose p1 = ... = pw = 1 and pk > 1

(k > w > 1). To show first λ (l) ≥ 
  

1

w
. Take any x

with ρ (x) = 1. Suppose, for convenience, that |x1| =

  
max
1≤ ≤k w

 |xk|. Put a = |x1| + ... + |xw|. If a = 0, then x ∈ Ext

B (  l) and λ (x) = 1.  Otherwise, put λ =
  

| |x

a
1 .  If λ

= 1, again x ∈ Ext B (  l) and we are done.  Now put
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y

x x
x xw

w w
=

− − + +( , , , , , , )0
1 1

2
1 2λ λ

K K

and
c =  (b, 0, ...,0, xw+1, xw+2,...),

where ck = 0 for 2 ≤ k ≤ w, |b| = a, and 
  

| |x

a
1  b = x1 .

Thus
x =   λc + (1 - λ)y,

    
ρ(c) =  | b | + | | | | , ( ),x x c Ext B

k

p

k w
k

p

k

k k

> ≥
∑ ∑= = ∈

1

1 l

and

    
ρ

λ λ
(y) =

| | | |
| |

| |
| |

x x
x

a x
xw

k

p

k w
k

p

k w

k k2 1

1 1

+ +
−

+ =
−

−
+

> >
∑ ∑

K

  
  
= + = =

>
∑a x x

k

p

k w

k| | ( ) .ρ 1

    
Thus x

x

a w
and by

w
λ λ λ( )

| |
, ( ) ( ) .≥ = ≥ ≥1 1

4
1

l

To complete the proof, we now show that

    
λ( ) .l ≤

1

w
 Let

  
x

w
e

k

w

k
=

=
∑

1

1

. If x =  λc + (1 - λ) y for some λ ∈

[0,1), c ∈ Ext B (  l) and y ∈ B (  l), then c1 ≠ 0, say,
and ck = 0 otherwise. Also  for some  ak,

  
y a e

w
a w a a

wk k
k

w

w= ≥ =
−

−
= = =

−+
∑ , , ...

( )
.

1
1 2

1
1

1

1

1

λ

λ λ

Since  ||y|| ≤ 1,

 
  
ρ

λ

λ λ
( )

( )
.y w w

w
=

−

−
+

−
−

≤

1

1

1

1
1

Note that a1 ≥ 0. Now

 
  
λ =

−

−
≤

1

1

11

1

w
a

a w
.

Thus λ (x) ≤ 
  

1

w
, and we have λ(  l) ≤ 

  

1

w
.

H-PROPERTY

X is said to have the property (H) if each point
of S (X) is an H-point of B (X), that is, every weak
convergence of points xn in B (X) to a point in S (X)
with ||xn|| → 1 is a convergence in norm.

Theorem 6   l  has property H.
Proof Let  x0 ∈  S (  l),  xn ∈ B (  l) be such that

  x x
n

w →
0
. We observe that

(a) xnk → x0k  for all k,
and
(b) || xn || → ||x0||  = 1.

To show xn → x0, we show that for each λ ∈ (0,1),
there exists Nλ such that

(c)

  

x x
nk k

k N

pk−
≤

>
∑ 0 1

λλ

for all large n. Obviously, since xn → x0 pointwise,
the convergence xn → x0 follows from (c). To prove
(c) we suppose on the contrary that there exists
an increasing sequence of natural numbers Nn, Nn

→∞, and λ0 ∈ (0,1) such that

  

x x
N k k

k n

p

n

k−
>

>
∑ 0

0

1
λ

for all n. Thus 
  

| |x x
N k k

p

k n

p

n

k− >>∑
∗

0 0
λ for all n

where p*  = supk pk . Put ε0  =   λ0

14
p p

* *

/ ,+  yn = (xn +

x0)/2. Choose  N0 so that

  
| | .x

k

p

k N

k
0 0

0>
∑ < ε

Thus

  
| | ,x

k

p

k N

k
0 0

0

1
≤
∑ ≥ − ε

and thus for all n ≥ N0  we have

(d)

  
| |

| |
| |

*
x

x x
x

N k

p

k n

N k k

p

pk n
k

p

k nn

k n

k

k

> > >
∑ ∑ ∑≥

−
− ≥ − =0

0 0 0 0
2

4 3ε ε ε .

Choose n0,  by (a), so large that for each n ≥ n0,

(e)
  

| | | |x x
nk

p

k

p

k Nk N

k k> − > −
≤≤
∑∑ 0 0 0

1 2
00

ε ε .

Take n' > N0 so that Nn' > n0  and  (d) holds for n'.
Therefore

(f)
  
ρ ( ) ( )

' '
x x

N N k

p

k Nk Nn n

k= +
>≤
∑∑

00

  
≥ +

≤ >
∑ ∑( )

'
'

k N k n
N k

px
n

k

0

  > − + = +( ) ,1 2 3 1
0 0 0

ε ε ε
a contradiction. Hence we have (c).

Remark 7 The proof of Theorem 6 yields more than
its statement. More precisely, it shows that if xn (in
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the unit ball) converges pointwise to x (in the unit
sphere), then ||xn - x|| → 0. This fact will be needed
later, in the proof of Theorem 16 and 21.

UNIFORM CONVEXITY

X is uniformly convex (UC) if for any ε > 0, there
exists δ > 0 such that for x, y ∈ S (X), inequality

||x - y|| ≥ ε implies 
  

x y+
< −

2
1 δ.

Theorem 8   l is UC  if and only if 
  
inf
k k k

p
≠

>
0

1 for

some k0 .

Lemma 9  Let K > 1 and f (p) = fK (p) = (1 + 
  

1

K
)p +

(1-
  

1

K
)p - 2 (p ≥ 1).  Then f is a strictly increasing

function on [1, ∞).

Proof   Note that f (1) = 0,

f'(p) = (1+
  

1

K
)plog((1+

  

1

K
)+(1-

  

1

K
)log(1-

  

1

K
,

f ' '(p) = (1+
  

1

K
)p log2 (1+

  

1

K
) + (1-

  

1

K
)p log2 (1+

  

1

K
) > 0.

To show f'(1) > 0. For then f > 0 on (1, ∞) by
convexity. Putting y = xlog x, we see that

y' =  1 + log x,    y ' '= 
  

1

x
 > 0.

The convexity implies  (1 + x)log (1 + x)+ (1 - x)log
(1 - x) > 2 (1 log 1) = 0  (0 < x < 1).

Remark 10 From Lemma 9 we derive the following
estimations.

(a) For 0 ≤ 
  

a

K
 < ε ≤ a, and p ≥ p

* > 1,

(a + ε)p + (a - ε)p - 2ap = ap [(1 + 
  

ε
a

)p + (1 - 
  

ε
a

)p - 2]

≥ ap [(1 + 
  

1

K
)p + (1 - 

  

1

K
)p - 2]

≥  ap f (p*)  ≥  εp f (p
*
).

(b) For 0 ≤ a < ε ≤ Ka, and p ≥ p
*
 > 1,

(ε + a)p + (ε - a)p - 2ap ≥ εp [(1+ 
  

ε
a

)p + (1 - 
  

ε
a

)p

- 2]  ≥ εp f (p*).

(c) For 0  ≤ Ka < ε, and p > 1,

(ε+ a)p + (ε - a)p - 2ap ≥ (ε+ a)p + (ε - a)p - 2 (
  

ε
K

)p

=   εp [(1 + 
  

a

ε
)p +  (1 - 

  

a

ε
)p - 

  

2

Kp
]

≥   εp (2 - 
  

2

Kp
).

Proof of Theorem 8

  ( ) , . || ||Case p Put x e Y p Thus x yn k n k n k kk k k
→ = = −

+
1

1

→ 2, but

  

ρ( ) .
x y

k k

p pnk nk+
=









 +









 →

+

2

1

2

1

2
1

1

(Case p1 = p2  =1)  This is clear, since UC implies R.

(Case infk pk = p* > 1)  Let K > 1 be a fixed number
to be chosen appropriately later. Let f = fK be as
defined in Lemma 9. Suppose  xn , yn ∈  S (  l), ||xn -
yn || ≥ ε0 for some ε0 > 0 and

  

x y
zk k

n

+
= →

2
1: .

Write zn  =  (ank), εnk = |xnk - ank|. Thus xnk  = ank  ± εnk

and xnk = ank ± εnk if and only if ynk = ank   m  εnk. Given

ε > 0, choose K > 1 so that 
  

1

K
 < ε.

Put γ = min {f (p*), 2 - 
  

2

K
}. Write, for each n,

  
= << ≥∑∑ ∑( ), andK for the summations cor-

responding to k for which

  
ε ε

nk
nk

nk
nk

a

K
respectively

a

K
< ≥

| |
( ,

| |
).

Note that
(d) | ank + εnk |

p
k + | ank - εnk |

p
k - 2 |ank |

p
k = (|ank| +

εnk)
p

k +|| ank | - εnk |
p

k - 2 | ank |
p

k,

(e) for some λ0 > 0, ρ(xn-yn) = 
  

( )2
0

ε λ
nk

p

k

k∑ ≥ for

all n,
and
(f)

  
(| | | | | | ) ( ) ( ) ( ) .a a a x y Znk nk

p
nk nk

p
nk

p

k
n n n

k k k+ + − − = + − →∑ ε ε ρ ρ ρ2 2 0

By  (d),  (a),  (b),  (c), and  (f) we have

  
( ) ( )( ) ( ( ) ( ) ( ))

*
ε ε

γ
ρ ρ ρ ε εnk

p

k
nk

p

p n n n
k k

K
x y Z∑ ∑∑= + ≤ + + − < +

≥<

1 1
2
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for all large n, contradicting (e).

(Case  
  
p p P

k k1 2
1 1= = >

≥
, inf

*
) Let  xn, yn, zn, ank,

and εnk be as above. By passing through subsequences
we may assume that  xn1 → a and yn1 →  b for some

a, b. Put  c =  
  

( )a b+
2

. Thus,

ρ (xn  (1,  ∞))  → A := 1 -  |a|,
ρ (yn  (1,  ∞))  → B := 1 -  |b|,
ρ (zn  (1,  ∞))  → C := 1 -  |c|.

Note that  A + B = 2C. As before we have,

  
( )

*
ε

γnk
k

p

p

k

K≥
∑ ≤ +

2

1 1
(ρ(xn (1, ∞)) + ρ (yn (1,∞)) - 2

ρ (zn (1, ∞)) )

which leads to

(g)
  

( )ε
nk

k

pk

≥
∑

2

→  as  n  → ∞.

Since 2C = A + B, we see that |a + b|  =  |a| + |b|, i.e. ab
> 0. Suppose  a ≥ b > 0. From   (g) and  (e) we obtain
|a - b| > 0. Therefore  a > b ≥ 0, and so  A < C < B.

Choose L > 1 so that 
  
η : ( ) *= + − <

−
1

1
1

L

B C

C
P , where

p*  = supk pk. By (g) we have

(h)
  k L≥ ≥

∑
2, ,

( |ank + εnk| )
p

k ≤ (1+L)p* 
  

( )ε
nk

k

pk

≥
∑

2

→ 0

as  n →∞.

On the other hand we have

(i)
  k L≥ ≥

∑
2, ,

( |ank + εnk| )p
k ≤ (1+η) 

  
| |ank

P

k

k

≥
∑

2

→

(1+η)C  as  n →∞.

But then  (h) and  (i) imply

  
limsup ( (| | ) ) ( )

n
nk nk

k

p
a Ck

→∞ ≥
+ ≤ +∑ ε η

2

1

which leads to a contradiction since

  
limsup ( (| | ) ) limsup ( (| | ( )

n
nk nk

k

p

n
nk

k

p
a y B Ck k

→∞ ≥ →∞ ≥
+ ≥ = > +∑ ∑ε η

2 2

1 .

PROPERTY β

X has the property β if for any ε > 0, there exists
δ > 0 such that

α (D (x,B (X))\B (X)) < ε

whenever  1 < ||x|| < 1 +  δ. Here α is the Kuratowski
measure of non-compactness on subsets of X, and

D (x,B (X)) = co ({x} ∪ B (X)),

the drop determined by  x.
We will make use of the following equivalent form
of property β.(See9)

X has property β if and only if for each ε > 0,
there exists δ > 0 such that for each  x  in B (X) and
each sequence {xn } in B (X) with sep (xn) ≥ ε, there

exists  k  such that  
  

x x
k

+
≤ −

2
1 δ.

Here

sep (xn) := 
  
inf .
m n

m nx x
≠

−

Theorem 11   l  has property β if and only if

  k
p

k→∞ >liminf .1

Proof If pk → 1, then for each n0, choose k0 such that

  
( )
1

2

1

2

1

0

Pk

n
> −  for all  k  ≥ k0.  Let xk = ek (k ≥ k0)

and let 
  
x e

ko
= . We see that sep (xk)  

  
≥

1

2
. But

  

x x

n
k Pk Pk+ ≥ + > −

2

1

2

1

2
1

2
0

0

( ) ( )  for all k ≥ k0,

violating the property β.

To prove the converse, suppose

  
p Pm and P

k m
k1 0

1
1 1

0

= = = >
≠

... inf .
,...,

Note that the space

    l l': ( , , ,...)= + +1 1 20 0Pm Pm

is UC and hence has property β. Thus given ε > 0,
we take a δ > 0 such that for each sequence  xn  in

B (  l ') and x ∈ S (  l ') with  sep (xn)  
  
≥

ε
2

, we have

  

x x
k

+
≤ −

2
1 δ  for some k. Now let xn ∈ B (  l)

with  sep (xn)  ≥ ε. Passing through a subsequence if
necessary, we assume  xni → ai for each  i = 1, ..., m0.
Again, passing through a tail of the sequence we

assume that sep (x'n) 
  
≥

ε
2

 where x'n = 
  

x e
n m k

k
k( )

.
01

1+
≥

+∑
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Let x0 ∈ S (  l) and put a = |a1| + ... +| 
  
a

m 0
 | and b =

|x01| + ... + | 
  
x

m0 0
 |. Writing, for example,  (b,x'0) for

the vector be1 + 
  

x e
m k

k
k0

1
10( )
.+

≥
+∑  It is clear that (b, x'0 )

∈ B (  l) and sep ( (a, x'n)) 
  
≥

ε
2

. To see that (a, x'n)

∈ B (  l) for all large  n  we let λ > 1 and estimate

  
ρ

λ
(

, '
)

a x
n . Since  xni → ai (i = 1, ...,m0), and writing

ρ (a, x’n) = ρ (xn) + εn , we see that εn → 0. Thus,

since 
  
ρ

λ
( )
x

n  < 1,

  
ρ

λ
ρ

λ
ε(

, '
) ( )

a x x
n n

n
= + ≤1for all large n as desired.

Now by the definition of δ we have for infinitely
many k,

  

( , ' ) ( , ' )
.

b x a x
k0

2
1

+
≤ − δ

If λ > 1 - δ, then 
  

a b x x
k

+
+ ( + ) <

2 2
10

λ
ρ

λ
' '

,  which

in turn implies

  

a x a x

x x

m m

k

1 01 0

0
2 2

2
1

0 0+ + +
+

+ ( + ) <

...
' '

.
λ

ρ
λ

This means that for sufficiently large k,

  

x x
k0

2
1

+
≤ − δ .

UNIFORM KADEC-KLEE PROPERTY

X is said to have the uniform Kadec-Klee property
(UKK) if for any ε > 0, there exists δ > 0 such that
for any  xn ∈ B(X) with xn → x weakly and sep (xn)
≥ ε, we have ||x|| < 1 - δ.

Theorem 12   l  has property UKK.

Proof The proof of this Theorem follows the same
lines as of the proof of [1, Theorem 3.17]. We repeat
here just to present some (minor) differences. Let
0 < ε < 1 and put

  

β
ε

=








4
p*

where p* =  supk pk. Choose  0 < δ < 1 so that (1 -δ)p*

> 1 - β. Now if  xn  ∈ B (  l) with sep (xn) ≥ ε and xn

  
w → x, we show that ||x|| < 1 - δ.  Suppose not, we

choose K ∈ ZZ+ such that ||x (K)|| > 1 - δ.  Recall that
x (K) denotes the truncation of x at K, that is, x (K)

=  
  

x e
k k

k

K

=
∑

1

, whereas its complement  x (K, ∞) is the

vector 
  

x e
k k

k K>
∑ .  Next we choose N such that

||xn (K)|| > 1 - δ and  || (xm - xn ) (K)|| ≤ 
  

ε
2

 (m, n

> N, m ≠ n).  This can be done since  xn → x pointwise.
The first inequality implies, by (3), that ρ (xn (K)) >
1 - β, while the second one implies ρ ( (xn - xm) (K,

∞)) ≥ 
  

ε
2

.  From the last estimation we may assume

||xn (K, ∞)|| ≥ 
  

ε
4

.  Again, by (3), we have

ρ(xn (K, ∞)) ≥ ||xn (K, ∞)||p* ≥  
  
( )

*ε
4

p  = β.

Thus, ρ (xn) > 1, a contradiction.

NEARLY UNIFORM CONVEXITY

X is nearly uniformly convex  (NUC) if for any
ε > 0, there exists δ ∈ (0,1) such that for every
sequence {xn} in B (X) with sep ({xn}) ≥ ε, we have

co ({xn}) ∩ (1 - δ)B (X) ≠ ∅.

Theorem 13 [3,Theorem]   l  is NUC if and only if

  k
p

k→∞ >liminf .1

Huff8 proved that X is NUC if and only if X is
reflexive and X has the property UKK. Thus, by
Theorem 12 and 13, we have the following corollary.

Corollary 14   l  is reflexive if and only if

  k
p

k→∞ >liminf .1

UNIFORM K - ROTUNDITY

X is a uniformly rotund (UR) space if for any
xn, yn ∈ B (X), || xn + yn || → 2 implies xn - yn → 0.
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X is  uniformly k-rotund (UkR) (k ≥ 1) provided
that for each ε > 0, there exists δ > 0 such that any
x0, x1, ... ,xk ∈ B (X), the inequality

|| x0 + x1 + ... + xk || ≥ (k + 1) - δ

implies ∆ ( x0, x1, ... ,xk) < ε, where

∆ ( x0, x1, ... ,xk)=

  

sup
( )f B Xi∈

∗
 ∆ ( x0, x1, ... ,xk; f1, f2, ..., fk),

and

∆ ( x0, x1, ... ,xk; f1, f2, ... , fk) = 

    

det
( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 0 1 1 1

0 1

L

L

M M L M

L

f x f x f x

f x f x f x

k

k k k k





















.

X is LukR (k ≥ 1) if for any  x ∈ S (X) and ε > 0,
there exists δ > 0 such that for x1, ... ,xk ∈ B (X) with

|| x + x1 + ... + xk || ≥ (k + 1) - δ,

we have ∆ ( x, x1, ... ,xk) < ε.

LOCAL UNIFORM ROTUNDITY

X is a locally uniform rotund (LUR) space if
every point of S (X) is a URP of B (X), that is, for
each x ∈ S (X), if xn ∈ B (X) and ||xn + x|| → 2, then
xn → x.

Replacing the convergence in norm by the weak
one for each x ∈ S (X), we obtain a  weakly locally
uniformly rotund  (WLUR) space.

Clearly, UC and UR are same property.  Also LU1R
⇔ LUR.

Theorem 15   l  is UkR  if and only if 
  
inf

n Fpn∉
>1

  infn F nP∉ for some finite set F having at most k
elements.

Proof (Case p1 = p2 = ... = pk  = pk+1 = 1) Let  x0 = e1,
x1 = e2, ... , xk = ek+1.  It is seen that || x0 + x1 + ... + xk ||
= k + 1.  Write πi for the ith projection on   l .
Therefore, ∆ ( x0, x1, ... ,xk;  π1, π2, ... , πk) =1.

(Case pn' → 1 for some subsequence {pn'})  Assume,
for convenience, that pn → 1.  Consider the sequence
{en}.  We have || en + en+1 + ... + en+k || → k + 1 as n →
∞, whereas ∆ ( en, en+1, ..., en+k; πn+1, πn+2, ..., πn+k) = 1.

The above two examples show that   l  is not UkR
in the first two cases.

(Case 
  
inf

,...,n k
pn≠

>
1 0

1 for some k0 ≤ k) Let xn
0, x

n
1 ,

..., xn
k ∈ B (  l) and

|| xn
0 + xn

1 + ... + xn
k || → k + 1 as n → ∞.

To show ∆ (xn
0, x

n
1 , ... , x

n
k) → 0, we shall prove

that

(a)
  

( )x xn
ij

j

k
n

j
=
∑ − →

1
0 0  (i = 1, ... , k),

and

(b) ρ ( ( xn
i - x

n
0) (k0, ∞)) → 0 (i = 1 , ... , k).

Observe that, for f1, ... , fk  ∈ B (  l*),

(c)

∆ (xn
0,x

n
1 , ... , x

n
k; f1, f2, ... , fk ) ≤ 

    

det

( ) ( )

( ) ( )

f x x f x x

f x x f x x

n n n
k

n
k

k
n n

k
n

k
n

k

1 11 01 1 1 0

11 01 1 0

− −

− −



















L

M L M

L

  
+ − ∞

=
∑M x x kn

j
j

k
nρ(( )( , )),

1
0 0

 k0, ∞)),

where  M = k!2k.
Taking (a) and (b) for granted we see that

∆ (xn
0, x

n
1, ... , x

n
k) → 0 as n → ∞.

Note from || xn
0 + xn

1 + ... + xn
k || → k + 1, that

|| xn
i || → 1, || xn

i + xn
j || → 2 for all i, j.

Now (b) is easily obtained as in the proof of Theorem
8. Again, as in the proof of (h) and (i) in the proof of
Theorem 8, we obtain from (b) that

ρ (xn
i (k0, ∞)) - ρ (xn

0 (k0, ∞)) → 0  as  n → ∞
(i = 1 , ... , k).

Now (a) is immediate.

Theorem 16   l  is LUR  if and only if pk > 1 for all k

or 
  
inf

k k
pk≠

>
0

1some k0.

Lemma 17 If x0 ∈ S (  l), xn ∈ B (  l) for all n, and
|| xn  + x0 || → 2, then xnk → x0k for each k where pk

> 1.
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Proof Put yn = (xn + x0)/2.  Suppose p1 > 1. If, for
some ε0 > 0, |xn1 - x01 | ≥ ε0 for infinitely many n,
then there exists λ0 > 0 such that

|yn1|
p

1 + λ0 ≤ 
  

| | | |x x
n

p p

1 01
1 1

2

+
 for all such  n.

Thus
ρ (yn) + λ0 ≤ (ρ xn) + ρ (x0)) /2 ≤ 1,

which implies

||yn|| -/→ 1,

a contradiction.

Lemma 18  For p1  = 1 and 
  
inf

k pk≥
>

2
1, if the norms

of yn in the proof of Lemma 17 converge to 1, then
xn1 → x01.

Proof The proof is the same as the proof of Theorem

8 (Case p1 =1, 
  
inf

k pk≥
>

2
1).  Observe that ||xn|| → 1.

Proof of Theorem 16

Suppose there are 2 pk, say p1 and p2 that are equal
to 1. Then   l  is not R by Theorem 2.

Next suppose p1  = 1, say, and pk  → 1, otherwise
pass to a subsequence.  Let x0 = e1, xn = en. Thus x0,
xn ∈ S (  l),

  
Y

x x
e e Y Pn

n
n n n: , ( ) ( ) .= + = + = + →0

12

1

2

1

2

1

2

1

2
1ρ

Therefore ||xn + x0|| = 2||yn|| → 2, but xn -/→ x0.

Conversely, suppose pk > 1 for all k or 
  
inf

k k
pk≠

>
0

1

for some k0.  Let x0 ∈ S (  l), xn ∈ B (  l) and ||xn +
x0|| → 2.  By Lemma 17 and 18 we have

Xnk → x0k  for all k,

and

||yn|| → ||x0|| = 1.

We can prove that xn → x0 by applying Remark 7.

Since   l  has property H, we clearly have

Corollary 19  WLUR is equivalent to LUR on   l .

Theorem 20   l  is LUkR  if and only if   l  is UkR or
pn > 1 for all n.

Proof  (Case p1 = p2 = ... = pk = pk+1 = 1)  Employ the
same example as of the UkR case.

(Case 
  
p

k0
= 1 for some  k0 and 

  
p

mn
 → 1) Suppose

p1 = 1. Let x0 = e1 and xn = 
  
e

mn
.  Note that

||x0 + xn+1 + ... + xn+k|| → k + 1 as n → ∞.

Hence,   l  is not LUkR.

(Case pn  > 1 for all n)  Let  x0 ∈ S (  l) and  xn
1 , ... ,

xn
k ∈ B (  l).  If || x0 + xn

1 + ... + xn
k || → k + 1, then

|| x0 + xn
i || → 2 for all i.  By locally uniform rotundity

of   l  (Theorem 16), || xn
i - x0 || → 0 for all i.  It is

clear now that ∆ (x0, x
n

1, ... , x
n

k) → 0 as  n → ∞.

MID-POINT LOCALLY UNIFORM ROTUNDITY AND
UNIFORM ROTUNDITY IN EVERY DIRECTION

X is mid - point locally uniformly rotund (MLUR)
if for any x ∈ S (X) and xn, yn ∈ B (X) with xn + yn →
2x imply xn - yn → 0.

X is uniformly rotund in every direction (URED)
if, for any xn, z ∈ X with || xn || → 1, || xn+ z || → 1
and || 2xn + z || → 2 imply z = 0.

Theorem 21   l  is MLUR  if and only if pk  = 1 for at
most one k.

Proof (⇒) This is clear, since MLUR implies R.

    ( ⇐ ) Suppose p1 = 1, pk > 1 for all k ≥ 2.  Let
xn, yn ∈ B (  l), x0 ∈ S (  l) and xn + yn → 2x0.  Note
that || xn || → 1, || yn || → 1, || xn + x0 || → 2 and ||yn +
x0|| → 2.  Lemma 17 implies that xnk → x0k and ynk

→ x0k for all k ≥ 2.  Now given any subsequence n'
of n we choose a subsequence n' ' of n' so that xn' 'k

→ w0k and yn' 'k → z0k for all k ≥ 1, where w0k = x0k =

z0k for k ≥ 2.  Note that 
  

w z
01 01

2

+
 = x01.  Since ρ (xn)

≤ 1 and ρ (yn) ≤ 1, we must have ρ (w0) ≤ 1 and
ρ (z0) ≤ 1.  And from ρ (x0) = 1 we then have ρ (w0)
= ρ (z0) = 1.  So w01 = x01 = z01 as well.  By Remark 7,
xn' ' - yn' ' → 0  and therefore xn - yn → 0 as desired.

Theorem 22   l  is URED if and only if pk = 1 for at
most one k.
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Proof (⇒) Follows from Theorem 2.

( ⇐ ) Suppose || xn || → 1, || xn + z || → 1, || xn

+ 
  

z

2
 || → 1, but z ≠ 0. Thus zk ≠ 0 for some k with

pk > 1, say k = 1.  There exists λ0 > 0  such that

  
x

z x x z
n

p
n n

p

1

1 1 1 11 1

2 2 2
+ = + +

  
< +

+
−x x z

n
p p

n1 1 1 1

2 2
1

0λ

for all large n.  For these n,

  
ρ ρ ρ λ λ( ) ( ) ( ) .x

z
x x z

n n n
+ ≤ + + − ≤ −

2

1

2

1

2
1

0 0

Hence limn 
  
ρ ( )x

z
n

+
2

 ≠ 1, a contradiction.

Therefore z = 0.

FULL CONVEXITY AND WEAK UNIFORM ROTUNDITY

For k ≥ 2,  X is fully k - convex (kC) if for every

sequence {xn} in B (X) with || 
  
x

n1
+ ... +  

  
x

nk
|| → k

as n1 , ... , nk → ∞, the sequence {xn} is convergent.

X is weakly uniform rotund (WUR) if for any
xn, yn ∈ B (X), || xn + yn || → 2 implies  xn - yn → 0
weakly.

Theorem 23   l  is kC  if and only if 
  
inf

n n
pk≠

>
0

1 for

some n0.

Proof (⇒) If p1 = p2 = 1, say, consider the sequence
e1, e2, e1, e2, e1, e2, ... .

If pn' → 1 for some subsequence {n'}, then
consider  the sequence {en' }.  Therefore,   l  is not
kC for each of these two cases.

( ⇐ ) Follows from the uniform rotundity of

  l  (Theorem 15.)

Theorem 24   l  is WUR  if and only if   l  is UR.

Proof   If p1 = p2 = 1, say, let xn = e1 , yn = e2.  If pn →
1, let xn = en, yn = en+1.

DROP PROPERTY

X has the drop property (D) if  for  every  closed
set C  with C ∩ B (X) = ∅, there exists element x ∈
C such that

D (x, B (X)) ∩ C = {x}.

Theorem 25   l  has property D if and only if

  k
p

k→∞ >liminf .1

Proof Assume, instead of considering a subsequence,

p
k
 → 1.  Let x1 = 2e1

, x2 = e1 + 
  

1

2
 e2, and in general, let

  
x e e

n n k
k

n

n k
= +−

=

−

+ −∑
1

2

1

22 1
1

1

1
.

Put C = {xn : n ≥ 1}. It is clear that C is a closed

set, C ∩ B (  l) = ∅, and for each n, since xn+1 = 
  

1

2
 xn

+ 
  

1

2
 en+1, we see that xk ∈ D (xn, B (  l)) (k ≥ n).

Thus   l  does not have property D in this case. For
the other case,   l  is NUC by Theorem 13, and hence
has property D.

Remark 26 Observe that, for the set C in the proof

above,   inf
x C∈  || x || = 1.  In fact, for any Banach space

X, any closed set C which does not overlap with B
(X), if for some x ∈ C,

inf { ||y||  : y ∈ D (x, B (X)) ∩ C} > 1,

then we must have

A (y) := D (y, B (X)) ∩ C = {y}

for some  y ∈ C.

Proof Suppose there is no such point y ∈ C for some

point x0 ∈ C.  Put α0 = 
  
inf

( )y A x∈ 0
 || y || > 1.  Take x1 ∈

A (x0) so that || x1 || ≤ α0 + 1, and put α1 = 
  
inf

( )y A x∈ 1

|| y ||.  Clearly α1 ≥ α0.  By induction, we can find a
sequence {xn} in C such that

Xn+1 ∈ A(xn) and || xn+1 || ≤ αn + 
  

1

2n



ScienceAsia  26 (2000) 31

where αn = 
  

inf
( )y A xn∈

 || y ||.

Writing xn+1 = rnxn + (1 - rn)tn  as a convex combination
of xn' and some point tn ∈ B (  l), we see that

α0 ≤ αn-1 ≤ αn ≤  || xn+1 || ≤ rn (αn-1 + 
  

1

2 1n− ) + (1 - rn).

This implies

r'n 

  
:

( )
= − ≤

− −1
1

1 20
1

rn nα
,

and then

|| ||x xnn+ − ≤1 r'n 

  
(|| || )

|| ||

( )
.xn

x
n

+ ≤ +
− −1

1

1 2
0

0
1α

The sequence  {xn} is then a Cauchy sequence,
and converges to some point c ∈ C.  We show that
A (c) = {c} which is a contradiction.  If x ∈ A (c),
then αn ≤ || x || ≤ || c ||  for all n.  But then || x || =
|| c || and x = c since x ∈ A (c).

FINAL REMARK

X is said to have property G if every point of
S (X) is a denting point of B (X), that is,

x ∉   co (B (X)\ (x + ε B (X)))

for all x ∈ S (X) and all ε > 0.

X is said to have property K if the weak topology
and norm topology on S (X) are equivalent.

From the relation

G ⇔ K + R,

and the property H of   l , we see that property
G and property R are equivalent on the Nakano
sequence space   l .

We have seen that the boundedness of the
sequence {pk} is required for every geometric
property considered. It is interesting to see what
properties having the boundedness of {pk}  as their
necessary condition.
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