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ABSTRACT

Models of the disposition of polychlorinated dibenzo-p-dioxins and dibenzofurans, commonly
known as PCDXs, in the human tissues are considered and partially analyzed. Four cases are investigated
: a single initial exposure 1o PCDXs with constant growth response function of the binding proteins, a
linear growth response function, a Holling type response function, and the case of a periodic exposure
to the dioxins. In the case of a single initial exposure, we are able to determine some important local
dynamics. In the case of a periodic exposure to the dioxins, we are able to show that a small periodic
exposure to the dioxins induces a periodic behavior in the concentration dynamics.

INTRODUCTION

Mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDXs) are reportedly
present everywhere in the environment [1,2]. These substances are persistent and bioaccumulate
and therefore contaminate air, water, soil, and most living organisms as well as humans.
Several attempts [3-5] have been made to model the effects of these toxic substances on
contaminating the environment and the ecological communities. Since their potential for adverse
health effects is great and their residence time can be lengthy, it is most important that efforts
should be devoted to the modelling of their distribution in human tissues.

As attested by Carrier et al. [1], the uncertainties inherent to the conventional dose-
response assessment make it difficult to ascertain realistic allowable exposure limits for these
substances. In the attempt to reduce such uncertainties in the dose response assessment,
physiologically based models have been developed [1-3] to describe the mechanisms of disposition
and tissue response in a quantitative manner.

Leung et al. [6,7] have developed a five-compartment (liver, fat, muscle/skin, viscera, and
blood) physiologically based pharmarcokinetic (PB-PK) model to describle the disposition of
Tetrachlorodibenzo-p-dioxin (TCDD) in rats and mice. Andersen [8] later used the model to
successfully simulate the disposition of the dioxin in female Wistar rats.

In a series of work by Carrier e al. [1,2], a mathematical model is also developed in order
to describe the toxicokinetics of PCDXs in mamalians, including humans. Their modelling
approach does not seem to require as many parameters as the classic PB-PK model, although
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its motivation is based on the same biological concepts. The modelling by Carrier et al. is
conveniently separated into two parts with different time scales. Absorbtion and internal
distribution of PCDXs are presumed to occur in a matter of hours to a few days and the
intertissue concentrations equilibrate quickly, while overall body load and body concentration
varies slowly with time.

The validity of the above approach depends crucially on the stability of the steady state
values to which the system equilibrates. The objective of the present work is to carry out an
analysis of models based on that of Carrier et al. [1] in the four different cases. In the case of
a single initial exposure, the growth response function of the binding proteins is first assumed
to be constant, then it is allowed to vary linearly with the PCDX concentration (C, ), and then
to assume the Holling type functional form. Finally, the case of a periodic exposure to the
dioxins is investigated where a Holling type functional response is also assumed.

MODEL DESCRIPTION

The inter and intratissue processes can be described by the schematic diagrams in Figs.
1 and 2, where

c, = concentration of PCDXs in adipose tissues,

¢, = concentration of PCDXs in blood,

c = concentration of PCDX-binding protein complexes,
c, = concentration of free PCDX molecules,

G, = concentration of proteins available for binding.

and y,8,v, u are positive inter-organ diffusion parameters. The liver kinetic parameters k, and
k, are the association and dissociation rate constants for protein biding, respectively.

The elaboration of these binding proteins in the liver is linked to the presence of free
PCDX molecules (C,) in the liver that bind to Ah receptor, which is the specific cytosolic
receptor that is involved in the regulation of the expression of several genes and the synthesis
of various enzymes. Although the mechanisms of this binding process are not yet fully
understood, evidence supports the assumption [1] that the rate of synthesis of induced proteins
is a positive growth response to PCDX concentration C, available to bind to Ah receptors. The
higher the C_, the greater the amount of this receptor complex and consequently the amount
of these binding proteins. Moreover, limitation of the capacity of the process requires that
there is a maximum rate at which induction of binding proteins can proceed. Thus, it is
reasonable to assume that the growth response of the binding proteins has the general form
?(CI) such that

F(C,=0)=0 M
F(C, > =)=F__ )
and % 20 for all C, (3)

From the diagrams in Figs.1 and 2 and the above discussions, we can write down the
following “fast kinetics” model for the system;

ac,
dt

=-6C,+yC, +f(B 4)
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Fig.1 Intertissue exchange of free PCDX molecules amonge 3 compartments; adipose tissue, blood, and liver.
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Fig.2 Protien induction and binding process in the liver. Here, X is the free PCDX molecules in liver, Pr the protiens
available for binding, Pr-X the PCDX-binding protien complex and F(C, ) is the protien induction response
in presense of free PCDXs.

dc

d_tb’=sc"‘ -yC, -uC, +vC, ©)
dc_

—=kC.C, —k,C. ©)
dc

dtx =-k,C,C, +k,C_+uC, +VC, )
dc,, -

—B-=-k,C,C, +k,C_+F(C,)+kC, ®

where I:’(CI) has the general properties in (1) - (3), and f(t) is the rate at which the substance
is introduced into the process at any time £.
MODEL ANALYSIS

We observe that with the above-characteristics as set out in (1) - (3) , the most frequently
used function to model such behavior is of the Holling type, namely :

F(C ) Fmaxcx 9
" k+C, ©)
where I:’max is the plateau value and k is the half saturation constant.

In the following, we shall first consider the case where f(f)=0 and there is a single
initial exposure : C,(0)=CY, C,(0)=C), C,(0)=C?, C(0)=C?, and Cp,(O) =C3r .
If we add equations (4) - (7), we find that

d
(€ +Cy+C_+C)=0

and hence
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C,+C,+C +C =B=CL+Co+C+C?
or
Cat=ﬁ—cbl_c—_cx

On substituting the above into equation (5), we find that the equations (4) through (8) may
be reduced to

dc,
7-5[; G+y+pC, +(v-8)C, -8&C_ (10)
dC.

=k,C,C, —k,C. 11
dt a~x " pr ( )
dc,
= =—kaCxCp,+de_+uC“—vi (12)
dt -k,C,C,, +k,C_+F(C,)+k'C, (13)

Now, if k is very small then F(Cx) may be approximated by

E €)= ﬁmax = constant (14)
On the other hand, if k is very large, then IE(Cx) may be approximated by

F(C,)=FC, (15)

where F; is a positive constant.

Thus, we investigate each of the above cases separately as follows.
Case 1: f(t)=0,F=F >0 .

Substituting F= ﬁmax in equations (10) - (13), we obtain the following system :

dCM

o =6B-(6+y+u)C,+(v-98)C -dC_ (16)
ac. =kC.C, -k,C_ 1
dt a"x"pr ( 7)
dcC,

5 k,,C,C,,, +k,C_+puC,—vC, ‘ (18)
d_t =-kC.C, +kC_+ F -k'C, (19)

the steady state E, of which is

~ A~ A A kaﬁmaxw Ha ﬁmax
(€ C..C..C =, kk'v VK ) (20)

where

vépk k'
X K (Sv+yv+ )+ udk F 1)

a max
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The Jacobian matrix at this steady state is given by

[—(6+y+u) -6 —(6-v) 0 ]
k E k
0 -k a_k' a:w
h ko - “i’.““+v) - “fw
I 0 k, -kil;"“é" —k“Tm+k' ]

With respect to this steady state E , we are able to derive sufficiency conditions for its
asymptotic stability.

Theorem 1  Let the following inequalities hold.

S+v<y+pu : (22)
ﬁmﬂxkn kﬂw
T + v <k, 23)
kEF
Za max 24
T 24
E_k k
Tmece | < krp it (25)
k v

then E is locally asymptotically stable.

Proof 1f inequalities (22)-(25) hold, then by Gerschgorin’s theorem [8], all eigenvalues of ], have
negative real parts, and the theorem follows.

Case 2: f()=0, F=FC,
On substituting F = EC, in equations (10)-(13), we obtain the following steady state

E, :
2 2 Az k, u'b’ Hb #F
€,,C..C..C)=, vy =) (26)
where 5 my
u's
- - 2
i 6+ +7)+J(6+ +7) kv —
= 2, 27)
k'vk,
and the corresponding Jacobian matrix is
[—(S+y+p) -8 -(6-v) 0 A
k pFb k ub
-k a0 a
0 4 k'v 14
= ka[.tF b k ub
S o =ity S
v (28)
ka[.tF b k ub
_ 0 k, - k'vo +F, —( ” )_
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For E,, we are also able to prove the following theorem.

A Theorem 2 Let the following inequalities hold.

SHvey+u | (29)

Ekbu kub

0 Tl

ey Ty < y _ (30)
k ub uk Eb

k,+pu+ <V k'vo (31)

HEkK b . kb

k(')_v+k"+1:°<k+ » (32)

Then E, is locally asymptotically stable.
Proof When the Gerschgorin’s theorem is applied to the matrix J, then the theorem again

follows.

=0 ﬁ—ﬁmﬂcx
Case 3 : f(t)=0, _k+Cx

In this case, we simplify the analysis by considering only two compartments, lumping
the adipose tissues with the blood. The intertissue exchange described schematically in Fig. 3
together with the binding process in the liver described in Fig. 2 can be modelled by the
following system of differential equations :

d
—Cos =~ HC,, +VC, +ft) (33)
dC_
7 = kaCxCp' - de_ (34)
dc,

—==—kC,C, +kC_+4C,,~VC, (35)
dc,, _ '
—F=-kCC, +kC +FC)-kC, (36)

where C,_, respresents the concentration of PCDXs in the adipose tissue and blood.
In this case f(r) = 0, and if we add equations (33)-(35) together, then we find

d
d—t(cn_b +C_+C)=0 (37)

which means

u
Adipose tissue/blood Liver
(Ca-b) ¢ v (Cx/ C., Cpr)

Fig.3 Intertissue exchange of free PCDX molecules amonge 2 compartments, adipose tissue/blood and liver,
investigated in Case 3 of the text. '
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C,,+tC +C =a=C +Cl+C] (39)
or
C,,=a-C -C, (39)

Thus, using (39), equations (33) through (36) can be reduced to the following system
of 3 differential equations.

dac
— =kC.C, -kC. (40)
dC,
—5=-kC,C, +kC_ ~(u+VIC, - puC_+ay (41)
-k CC +k,.C_ F‘“"‘"C" -k'C
+ 4 X
o RS k+C, " (42)
The steady state E, of the system in this case is
(C..C,.C,) =(a—(u+V)o,u0,d) (43)
where _
; ~0+0°4k k kap’E,, u
B 2k'k kp 49
with .
O0=k'k (ku+kv+ o) (45)
and
ko
yk d+pk, +k,v

while the corresponding Jacobian matrix is

-k, kd pok,
I = k,~p —kd-p-v - uok,
k kd F"‘a"k ok -k
_ + ——max — -
d a (k+/.lO')2 U a

We are then able to write down the following theorem for the stability of E,.
Theorem 3  Let the following inequalities hold.

kd+pok, <k, (46)

kd+pok, <kd+v 47)
kE

k +kd+—"%_< uock +k'

d a (k+[10')2 u a (48)

Then E, is locally asymptotically stable.

Proof  Again we invoke the Gerschgorin’s theorem and we find that all eigenvalues of ], have
negative real parts when conditions (46)-(48) hold and therefore E, will be locally asymptotically
stable.
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. E_C
. = )= t , PE__m_al_x
Case 4 : f(t)=¢ep(t) = eplt + w) k+C,
. F_C
On substituting f(t)=¢€¢p(t) and F= 4+ C into (33)-(36) we obtain the following
system, ¥
ac
7’[‘1 =-uC,_, +vC_+eg(t) (49)
ac_
—=kCC -k,C_ 50
dt a " x p! ( )
acC,
Tl —*,C.C, +kC_+uC,_, —VC, (61)
=-kCC +kC_ +1~:‘“‘"‘C’r kC
dt I k+C, Lt (52)
Following the example of Freedman and Shukla [9] we write the above system as
z = F(z)+&G(t), 2(0) = z, (53)
where
z, C,,
”e z, _ C ’
z,| |C
2, C,
[ - 'uCa—b + vcx ]
kC.C,-kC.
F(z)=|-kCC, +kC_+uC,_, -vC,
kCC +kC +-F2=X F‘“‘"C’ kC
a"x pr k+Cx pr
and - )
) c
0 C.
GO=| o %=\
0 Cor Jino

Let z(t,&,€) be the solution of equations (49)-(52) such that

2(0,¢,e)=2+¢&
where Z is the steady state of the system of equations (49)-(52) when £€=0. We then note
that

2(,0,0)=2

In order now to establish the existence of a periodic solution of period @ of the system

of equations (49)-(52) for sufficiently small €, which tends to Z as &£— 0, we need only to
show that & can be chosen as a function of € for € small, £ 50 as € — 0, such that

2w, € e)=2+¢&
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With this in mind, we define

}(é, &) =z(o, 6/ £)-z- é (54)
then show that J(£,€)=0 has a solution &(¢) of g, such that £§(0)=0.

Now, we observe that
J(0,0) = z(®,0,0)-2 =0
while
]5(0/0) = zg(wlolo) -1
where I is the identity matrix. However,
2 = (t,é,E) = FZ(Z(t,é,E))Zg(t,é,E) (55)
and
2,0,8,€)=1 (56)

Hence, setting £ =0 and £ =0 into (55) and (56), we have that z g(t, 0,0) is the matrix solution
of

z; =(t,0,0) = F(z(t,0,0))z,(t,0,0),2,(0,0,0) = I (57)

But z(t,0,0)=2 and F,(Z) is the Jacobian matrix of the model system (49)-(52) evaluated at
z. Hence,

2 =(t,0,0)= Jz,(t,0,0),2,(0,0,0) =1 (58)
The solution of (58) is
2,(t,0,0)=¢" 59)
and hence
],(0,0)= e -1 (60)

This leads to the following theorem.

Theorem 4  If ] has no eigenvalues with zero real parts, then the system of equations
(49)-(52) has a periodic solution of period @ which tends to Z as £—0.

Proof 1f ] has no eigenvalues with zero real parts, then 1 is not an eigenvalue of ¢/®. Therefore,
det ] (0,0) = det (e -I)#0

and, by the implicit function theorem {10], equation J(&,€) =0 can be solved for &(g) such that
£0)=0.

This means that we have found a solution z=(t,&,€) of the system of equations (49)-
(52) such that
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z=(w,&€)=2+E=12(0,& €)

" This establishes the existence of a periodic solution of period w.

CONCLUSION

In this paper, we have considered compartmental models of the absorption and disposition
of PCDXs in the human body tissues. Four cases have been investigated, in the first three of
which we have been able to obtain criteria for the asymptotic stability for the steady state.
The third case in fact includes the first two limiting cases in the limit as k -0 or k—

In the periodic case, we have shown that a small periodic exposure of the dioxins
induces a periodic behavior in the intra-tissue concentrations. In such a situation, therefore,
it would not be _p0331b1e to take all concentrations at their “internal” equilibrium values
C _b,C C and C, in order to establish the overall body concentration C ,(t) in the manner
suggested by Carrier et al. in [1] and [2]. The validity of the steady state approximation of
enzyme kinetics is then in question. Yet, these toxic compounds have been shown to cause
immunological, neurological, and heptic effects, as well as reproductive disorders at relatively
low daily doses. As humans are exposed to low levels of PCDXs over the lifetime, the possible
toxicological consequences are of grave concern. Thus, this question of longterm disposition of
the dioxins in the body tissues subject to repeated exposure is of great interest, and needs to
be more extensively explored in future research.
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