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ABSTRACT

Let F(x) be a polynomial with rational integral coefficients and let a be an algebraic number.
A sharp lower bound for the p-adic valuation of nonzero F(ov) is derived. The derivation, which makes
use of a 1967 technique of R. Giiting, gives a quantitative improvement of an old result of K. Mahler

INTRODUCTION

Let F(x) be a polynomial with rational integral coefficients, and let o be an algebraic
number. In the theory of transcendence, one often needs to find a good lower bound for the
valuation of F(a). Sharp lower bounds have already been obtained in the case of ordinary
absolute valuation; see e.g. Shidlovskii [5]. However, in the case of p-adic valuation, the only
well-known lower bound for |F(a)| ot where | .lp denotes the p-adic valuation ,normalized so
that |p|, = 1/p (see e.g. Koblitz [3]), as distinct from the ordinary absolute valuation |.| is
due to Mahler [4, p.46]. The objective of this work is to improve upon this p-adic lower bound
of Mahler by using a technique of Giiting in 1967. Specifically, we prove the following result.

Theorem. Let o be an algebraic number, and let its minimal polynomial be

f(x) = ax® + ax™ + ... + a n21),
with rational integral coefficients. If
Fx) = Ax™ + Ax™! + .+ A (m2>1)

is a polynomial with rational integral coefficients, then either F(a) = 0 or
[F@)l, 2 {c,® max (L, ] *) A}
where A := max ( [A)], |A,| ,..., |A_ ] ) denotes the height of F, and

-l n-1
a® = lagIm I, (|- 1) / (ley] - 1) = lay| "I fo|™ + (o]t +...+ 1}

where o = o, o,,...,00_, are all the conjugates of a, and IT indicates that if o is a root of unity,
then the product is to be replaced by (m + 1)~

Mabhler [4, p.146] proved this theorem with ¢ _(f) = (m+n)la® , where

a =max ( |a,l,|a,],...,]a |) is the height of f.Before proceeding to the proof of the theorem,
we first justify that our c_(f) supersedes the one obtained by Mahler.

Proposition. Let the notation be as above. Then
n-1
(m+n)la™ 2 |a0|m113){ o™ + o™ +...+ 11},
with equality holds only in the case m = n = 1.

Proof of the proposition. For convenience, we call the expressions on the left, and right-
hand sides of the assertion LHS and RHS, respectively. We split the proof into two parts.
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Part I. Verification of the cases m = 1,2 ; n = 1,2,

Throughout, we implicitly use well-known results on symmetric functions for roots of a
polynomial, see e.g. van der Waerden [6, Chapter 5].

(i) Form =1, n =1, we have

LHS = 2a, RHS = |a)| (|a] + 1) = |a,| + |a,] < 2a.
(i) Form =2, n =1, we have

LHS = 6a?, RHS = |aj[*(Ja|? + [a] + 1) = [a,|> + |aga,| + |a,]|? < 3a2.
(i) Form = 1, n = 2, we have

LHS = 6a, RHS = la | (le] + Do | + 1) = |ap] + |a,| + [ag] (|| + [e,]).
Now for i = 0, 1, by the quadratic formula, we note that

| < lal+V]a4aa,| < a+V5a
i 2|a,l 2|a,]

Thus |o| (lee] + |oy]) < (1+ V5)a < 3.3a.
Hence, RHS < 5.3a.
(iv) Form = 2, n = 2, making use of the estimate in (iii), we see that
LHS = 24a% , while
RHS = [a,[2 (Jal? + [a| + D(Joy|? + [o] + 1)
= Jal? + layl? + [ao0y|(lal + |ay])
+ Jap el + loy 2l Jooy [} + lagl2(lal + o)
< a? + a® + 3.3a% + 10.9a? + 3.3a2 < 20a%

Part II. Verification of the cases m = 1,2 ; n > 3 and m 2 3 ; n any positive integer.
Since RHS < |a0|m:1j) (m+1) max (1, |e|™) = (m+1)*{ |a] :fj%max @ lof ) 3™,
then by a result of Duncan [1, Theorem 1, p. 58], we have
RHS < (m+1)" (n+1)™2 a™ .
It remains to show that for m = 1,2; n>3 or m >3 ; all n, we must have
(m+n)? > (m+1* (n+1)™ . *
(v) Thecasesm = 1,2 ;n 23 can be directly checked by induction on n.
(vi)  Finally, we consider the case m = 3 and any positive integer n.
Fix m > 3. We subdivide the consideration into two subcases.
Subcase 1. 1< n<m-l
Since (m+1)® < (m+n)! / m!, then
(m+n)!? 5 (m+n)? mP _ mP | mlP
m+)*(m+1)*» —  (@+D)™ (m+n)?  (@+1)» 0 m"
and so (*) is proved for this subcase.
Subcase 2. n2m 2 3,

We proceed by induction on n.

>1 forallm 23,

(a) When n = m, we have



J.5¢i.Soc. Thailand, 24(1998) 131

_mim _ Cm)P
(m+ 1) (n+1)m menn > L forallm=3

and so (*) is true. ‘
(b)  Assume (*) holds for n. Then
m+n+ D2 = (m+n+1)?(m+n)l
> (m+n+1)%(m+1)®(n+1)" (by induction hypothesis)

(m+1)2*2(n+1)™ n (using n > m)
2 (2m+1)? (ot D0+ 2)" (n+2)

= @2m+1) ” w1 4
g 1y U2 ]

m 1 ;2 1 @) (usingn2=m
2 ()20t — ] (14 =] (using )
> (m+1)22(n+2)m2 - 1/4) e,
becausem =3 and e > {1 + 1/(n+1)}**! for all n > 1. Since' (1.75)%" > 1, then the result
follows by induction.

PROOF OF THE THEOREM

The proof employed here is based upon an original idea of Mahler [4], but at one point
we use a technique of Giiting [2, Lemma C] to compute the absolute upper bound of the
resultant involved.

Since f(x) has rational integral coefficients, then we can view o = o, and all its conjugates
a,,...,o_, as elements of both the field of complex numbers and that of the completion of the
algebraic closure of the field of p-adic numbers. Let R be the resultant of f(x) and F(x), then
(see e.g. van der Waerden [6, p. 106] ) we have

R = a™ F(o) F(a)...F( ) .
For i = 0,1,...,n-1, we see that

[Fle)] = JAe™ +Aoa™ + ...+ A | SAD(m) ,
_ m+1 if || = 1.
where  D,(m) {(Iai|m+1-1)/(iail_1) if o] %1
Therefore, IRl < (b A". Since f(x) is irreducible over the field of rational

numbers, then F(o) = 0 if and only if f(x) divides F(x) and so F(o) = 0 if and only if R
= 0. We now assume that R # 0. As R is a nonzero determinant all of whose elements
are rational integers, we must have that

RI, > IRI" 2 (0 A"
By the arguments used in van der Waerden [6, p.105], and also in Mahler [4, pp.44-45}, we
conclude that there exist two polynomials g(x) and G(x) with rational integral coefficients and
with deg G = n-1 such that R = f(x)g(x) + F(x)G(x). That flo) =0,R#0,and F(a) #0,
then imply F(o) = R /G(a). Since G(x) has rational integral coefficients and deg G = n-1,
then

IG@, s max (1, |al).
Hence, |E(e)], = { ¢ (H) max (1, Ialp‘“) Ar }1 as desired.
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